
Energy-Aware High Performance Computing with
Graphic Processing Units

Mahsan Rofouei, Thanos Stathopoulos, Sebi Ryffel, William Kaiser, Majid Sarrafzadeh

{mahsan,Thanos,majid}@cs.ucla.edu, {sebi,Kaiser}@ee.ucla.edu
University of California, Los Angeles

 Abstract – The use of Graphics Processing Units

(GPUs) in general purpose computing has been shown to
incur significant performance benefits, for applications

ranging from scientific computing to database sorting and

search. The emergence of high-level APIs facilitates GPU

programming to the point that general purpose computing

with GPUs is now considered a viable system design and
programming option. Nevertheless, the inclusion of a GPU

in general purpose computing results in an associated

increase in the system’s power budget. This paper
presents an experimental investigation into the power and

energy cost of GPU operations and a cost/performance

comparison versus a CPU-only system. Through real-time

energy measurements obtained using a novel platform

called LEAP-Server, we show that using a GPU results in

energy savings if the performance gain is above a certain
bound. We show this bound for an example experiment

tested by LEAP-Server.

I. INTRODUCTION

 Graphic Processing Units (GPUs) are special-
purpose programmable parallel architectures, primarily
designed for real-time rasterization of geometric
primitives. Due to their highly parallel design and
dedicated computational nature, GPUs have recently
been used for scientific, bioinformatics and database
applications, including sorting and searching [5,6],
increasing performance by at least an order of
magnitude compared to conventional CPUs. This vast
performance increase, combined with the wide
availability of GPUs and the existence of high-level
APIs such as the NVDIA CUDA [4] present system
designers with a very appealing performance
improvement solution.
From the perspective of energy consumption however,
the choice of shifting computational load to a dedicated
co-processor becomes more complex. As a
sophisticated hardware component with multiple
parallel elements, the GPU requires significant power to
operate. In addition to requiring expensive cooling
solutions so as to control heat dissipation, modern
GPUs also require a dedicated direct connection to the
power supply. From a system design perspective, the
performance increase offered by the inclusion of an

additional hardware component must be balanced by the
associated energy cost induced by the new component.
This paper presents an experimental investigation into
the performance and energy efficiency of a combined
CPU-GPU system. Our goal is to characterize the
conditions under which the inclusion of a GPU
component is beneficial, from both a performance and
an energy efficiency perspective. Our investigation is
based on LEAP-Server, a novel architecture that
incorporates standard server functionality with high-
fidelity, real-time energy monitoring of individual
system components, such as the CPU, GPU,
motherboard and RAM. Through real-time energy
measurements obtained by LEAP-Server, we show that,
despite an increase in total system power, using a GPU
is more energy efficient when the performance
improvement is above a certain bound which depends
on application specific factors, compared to a CPU-only
solution. We also use an analytical model to derive
maximum throughput when having both CPU and GPU
executing tasks. Through our experiments we also
demonstrate the value of a real-time measurement
system such as LEAP-Server in selecting the best
performance-energy operating point in real time.
The paper is organized as follows. Section II describes
the importance of general purpose computing on GPUs
and gives a brief summery on GPU architecture. Section
III describes the experimental setup used for our
experiments, while section IV shows several
experiments and their results. Finally, conclusions are
drawn in section V.

II. IMPORTANCE OF GPGPU AND GPU ARCHITECTURE

General purpose computing with graphic
processing units (GPGPU) has enabled orders of
magnitude speedups over the conventional CPUs for
various applications in science and engineering. With
the progress on the level of programmability, support
for IEEE floating-point standards and arbitrary memory
addressing, GPUs now offer new capabilities beyond
the graphic applications which they were initially
designed for. Recently the challenges in GPGPU

community have revolved around the constraints of the
programming environment and on optimal mapping of
applications so to best leverage the highly parallel GPU
architecture.
CUDA [4] (Compute Unified Device Architecture) is a
new API that is designed to facilitate GPU
programming for general purpose tasks. CUDA allows
programmers to implement algorithms in a data-parallel
programming model. CUDA treats the GPU as a
coprocessor that executes data-parallel functions, also
known as kernel functions. The source program is
divided into host (CPU) and kernel (GPU) code, which
are then compiled by the host compiler and NVIDIA’s
compiler (nvcc). The common execution path for an
application on a combined CPU-GPU system is as
follows:

1) Allocate memory on GPU-exclusive memory
2) Transfer data from CPU to GPU
3) Execute kernel on the GPU
4) Transfer results back from GPU to CPU.

The rest of this Section presents a brief summery of
NVIDA’s G80 GPU architecture, which supports the
single-program, multiple-data (SPMD) programming
model. G80 graphics processing unit architecture was
first introduced in NVIDIA’S GeForce 8800 GTS and
GTX graphics cards.
The G80 GPU consists of 16 streaming multiprocessors
(SMs), each containing eight streaming processors
(SPs). Each SM has 8,192 registers and 16KB of on-
chip memory that are shared among all threads assigned
to the SM. The threads on a given SM’s cores execute
in SIMD fashion, with the instruction unit broadcasting
the current instruction to the eight cores. Each core has
a single arithmetic unit that performs single-precision
floating-point arithmetic and 32-bit integer operations.
In order to reduce the application’s demand for off-chip
memory bandwidth, there are several on-chip memories
that can be employed to exploit the data locality and
data sharing. Each SM has shared memory for data that
is either written and reused or shared among threads.
The constant memory space is cached. Finally, for read-
only data that is shared by many threads but not
necessarily accessed simultaneously by all threads, the
off-chip texture memory and the on-chip texture caches
exploit 2D data locality to substantially reduce memory
latency.
Applications that can benefit from the above described
SPMD model can result in very high speedups. There
are numerous speedup reports in variety of application
domains. Some examples are image registration for
medical imaging, numerical algorithms, fluid simulation
and molecular simulation [8,9,10]. Many types of CT
reconstruction algorithms are successfully accelerated
on commodity graphical graphics hardware. RapidTC
[7] can greatly benefit from the SIMD parallelism that

GPU provides. It was demonstrated that both iterative
and non-iterative algorithms suite the GPU architecture
well.
The aforementioned prior work indicates that GPUs are
good platforms for executing parallelizable
applications. However, as an extra piece of hardware
they incur a cost, mostly in terms of power. In this paper
we aim to find conditions where it is beneficial to add
GPUs to an existing system both in terms of
performance and energy consumption.

III. EXPERIMENTAL SETUP

 In this Section, we will describe the LEAP-Server
platform that was used in our experiments and also
provide information on the particular applications used
as workloads for our experiments.

A. Real-time Energy Measurements with LEAP-Server

 LEAP-Server is the adaption of the embedded low
power energy-aware processing (LEAP) project [1] to
desktop and server-class systems. LEAP-Server differs
from previous approaches such as PowerScope [11] in
that it provides both real-time power consumption
information and a standard application execution
environment on the same platform. As a result, LEAP-
Server eliminates the need for synchronization between
the device under test and an external power
measurement unit. Moreover, LEAP-Server provides
power information of individual subsystems, such as
CPU, GPU and RAM, through direct measurement,
thereby enabling accurate assessments of software and
hardware effects on the power behavior of individual
components.
The LEAP-Server platform used in our experiments is
equipped with an Intel® Core™ 2 Duo CPU E7200
with 3MB of shared L2 cache, 2GB 800MHz DDR2
SDRAM and a NVIDIA® CUDA™ enabled graphics
processor. Power measurements are performed by an NI
PCI-6024E DAQ card capable of sampling 200kS/s
with a resolution of 12bit. In order to measure the
energy consumption of individual subsystems, we
inserted 0.1 Ohm sensing resistors in all the DC outputs
of the power supply---3.3, 5 and 12V rails. Components
such that are powered through the motherboard such as
SDRAM DIMS are placed on riser cards in order to
gain access to the voltage pins. Power measurements
are obtained by first deriving the current flowing over
the sensing resistors through voltage measurements
across the resistors and then multiplying with the
measured voltage on the DC power connector. The
DAQ card autonomously samples the voltages at the
specified frequency and stores them in its buffer. A
Linux driver periodically initiates a DMA transfer of the

buffer's content to main (kernel) memory. The module
then exports the values to user space, where the power
is calculated and integrated over time. Figure 1 depicts
the architectural diagram of the LEAP-Server.

Fig.1 LEAP-Server Architectural Diagram

It must be noted that LEAP-Server utilizes the main
CPU to process the power information, unlike the
LEAP2 platform which contains a dedicated ASIC for
this task. As a result, care must be taken so that the task
of energy measuring does not create a negative
performance---or energy---impact in the rest of the
system. The performance overhead is directly related to
the sampling rate as more samples result in higher
amounts of data that need to be transferred to the CPU
and processed. Experiments showed that sampling
above 500Hz per channel does not result in any
significantly higher accuracy. At 500Hz, the CPU
performance penalty was under 3%.

 B. GPU Applications

 Making the correct decision in choosing the best
platform in order to meet both performance and energy
goals depends on the execution times on each platform.
In situations where the GPU can finish a task in a very
small period compared to its CPU counterpart, the
performance gain results in energy savings as well,
making the GPU a preferred choice. However, when the
GPU speedup is not as pronounced and as rich the
execution times on CPU and GPU are comparable,
choosing the right approach is more complex. Based on
this, for our experiments we categorized applications in
two major groups: first, applications that benefit from
high speedups when using the GPU implementation
compared to their CPU implementation and second,
applications resulting in lower speedups. For the
purpose of our experiments, we consider speedups of 5x
and higher as high speedup applications. Section IV will
give more accurate criteria for distinguishing between
these two categories. All the applications chosen are
from the CUDA developer SDK examples [2,3]. We do

note that that the CPU and GPU implementations in
these examples are not necessarily fully optimized;
however, their wide availability makes them good
candidates for experimentation.
High Speedup Applications: We have chosen separable
convolution to represent this category. Convolutions are
used by a wide range of systems in engineering and
mathematics. Many algorithms in edge detection use
convolutional filtering. Separable filters are a special
case of general convolution in which the filter can be
expressed in terms of two filters, one on rows and the
other on the columns of the image. In image
processing, computing the scalar product of input
signals with filter weights in a window surrounding
output pixels is a highly parallelizable operation and
results in good speedup using GPUs. The GPU speedup
over its CPU counterpart as implemented in CUDA
SDK is 30-36x [2].
Low Speedup Applications: The Prefix-sum (scan)
algorithm is one of the most important building blocks
for data-parallel computation. Its applications include
parallel implementations of deleting marked elements
from an array (stream-compaction), sort algorithms
(radix and quick sort), solving recurrence equations and
solving tri-diagonal linear systems. In addition to being
a useful building block, the prefix-sum algorithm is a
good example of a computation that seems inherently
sequential, but for which there are efficient data-parallel
algorithms [3]. In our experiments we use the version
implemented to use for large arrays of arbitrary size.
The result of an array scan is another array where each
element is the partial sum of all elements up to and
including j (inclusive scan). If the jth element is not
included the scan is exclusive. The speedup of the SDK
example over a CPU implementation is around 2-6x [3].

IV. EXPERIMENTAL RESULTS

 In this Section, we present our experimental results,
based on the application categories described in the
previous Section. Figure 2 shows a sample result of a
LEAP-Server experiment on the separable convolution
example. In all our experiments we account for the
memory transfers to the GPU when computing the
energy. The data in all cases fits in the GPU memory
and a single transfer at the beginning is sufficient to
copy data to the GPU. We copy the results back in the
end.

A. Idle power and event frequency analysis

 A well-engineered and energy optimized system
would place an unused hardware asset to its lowest
possible power state, while still retaining a quick
reaction time, to account for an unanticipated increase
in the workload. During the course of our experiments,
our LEAP-Server energy managements indicated the

GPU was not placed in a low-power state when not
used; rather it was placed in its peak power state,
thereby dissipating a higher amount of energy without
any actual benefit.

Fig. 2 LEAP-Server Output for Separable Convolution.

Inclusion of an additional component in a system
imposes at least idle power consumption when not used.
Therefore assuming the component uses its idle power
when not used, there should be a minimum bound on
the number of events executed on the GPU in order to
balance between the performance gain and energy cost.
The amount of energy consumed for performing
separable convolution on a 3072 × 3072 data with
kernel radius of 8 on CPU and GPU are as follows:

ECPU= 17.74 J, EGPU = 2.13J

In a timeframe of 10s, the addition of a GPU to the
system will add an extra 16500 J to the total energy
consumed. In order to benefit from adding an extra
component from energy prospective we must therefore
have at least 11 GPU kernel calls. We take this idle
power into account in all our experiments.

B. High-speedup applications

 In applications having significant differences in
their execution times on CPU and GPU where the
energy consumed for data transfer is negligible, the
performance benefits will result in significant energy
saving benefits as well. Changing system or application
parameters that increase the performance of an
application over its CPU counterpart result in lower
execution times and so decrease the energy
consumption of the overall system. Our experiments on
separable convolution confirm this. Table 1, shows the
effect of different memory usage of the separable
convolution SDK example on both performance and
energy consumption.

Table. 1 Performance-Energy Comparison in Separable
Convolution

 Performance
(MPix/sec)

Energy
on GPU

(J)

Energy
on CPU

 (J)
Convolution

(shared)
346 2.44 12.91

Convolution
(Texture)

215 2.76 12.91

As Table 1 shows, due to high performance on the GPU
both implementations (shared and texture) result in less
energy consumption. Optimizing performance using
shared memory therefore also uses less energy.
We present a first-order analysis to determine how to
distinguish applications that fit into this category.

CPUavgCPUCPU PtE
−

×= (1)

transferCPUidleGPUavgGPUGPU EPPtE ++×=
−−

)((2)

From Equations 1 and 2, if the energy consumed for
transfer can be neglected we have:

Speedup =
CPUavg

CPUidleGPUavg

GPU

CPU

P

PP

t

t

−

−−
+

< (3)

As Equation 3 indicates there is no constant bound on
the limit of the application speedup since Pavg-GPU and
Pavg-CPU can change based on the specific characteristics
of an application. Therefore the presence of a real time
measurement system such as LEAP-Server can identify
the best performance-energy choice real-time.

C. Break-even point for power-performance graph

In applications having low speedups where the CPU
execution time is comparable with GPU execution time,
there is a break-even point for the power-performance
graph.
Our experiments on the scan SDK example confirm
this. The total energy consumed for performing scan on
1000000 elements is 0.13J on CPU and 0.16J on the
GPU. The speedup in this case is 2.23. This example
demonstrates a case where it is beneficial to run the task
on CPU. The results can be seen in Fig. 3. In practice, a
well-engineered system can have the CPU executing
other tasks while waiting for the results from the GPU
task. Thus, adding the CPU idle power to the total
power can bias the results in favor of a CPU-only
approach. On the other hand, we cannot eliminate the
CPU power completely by turning the CPU off, since a
GPU acts as a coprocessor to the CPU and as such

requires the CPU to transfer data to/from it and execute
kernels on it. In the case that both a CPU and GPU
execute tasks, we consider the following scenario.

Fig. 3 Energy and performance comparison of Scan

We have two tasks T1 and T2 that take t1C and t2C to
execute on a single core CPU and t1G and t2G to execute
on the GPU. In the first case that we execute both tasks
on the CPU, the overall energy consumed is computed
as below:

CCC PttE ×+=)(211
 (4)

Now if we have T1 executing on the CPU and T2 on
GPU, we will have two cases: If t2G <t1C:

)()()(2122 CIdleGGCCGG PPttPPtE +×−++×=
−

 (5)

And if t2G > t1C we will have:

)()()(1212 GIdleCCGCGC PPttPPtE +×−++×=
−

 (6)

Here the problem becomes similar to the well-studied
category of task scheduling. This problem can also be
extended to multiple core CPU and GPU systems.

D. Discussion

 There is a huge potential of research in the field of
energy-aware high performance computing with GPUs.
For parallel applications that suit the GPU’s
architecture, GPUs are good choices both from
performance and energy consumption prospective.
Nevertheless in order to optimize energy consumption
based on the specific application there are several
considerations to make.
As described in Section II, there are constant, texture
and global memories available to use by the streaming
multiprocessors. Based on the application and the
locality and frequency of data usage pattern the
programmer can choose from the cached memories
(constant and texture) or global memory or choose to
copy data to shared memory to increase performance.
Similar categorization as done in Sections IV.B and C
can be done in terms of memory access patterns. Here
again the memory choice can affect total system energy

consumption. Finally, the order of execution of tasks on
the CPU-GPU system, the length of CPU idle time and
task scheduling are factors to consider in a
heterogeneous system composed of CPUs and GPUs.
Based on our experiments, a real-time measurement
system such as LEAP-Server can be very helpful in
making correct decisions.

V. CONCLUSION

Graphic processing units have been introduced as high
computational units offering high throughputs for a
broad range of applications in science and engineering.
In this paper we investigated the use of GPUs from the
perspective of energy consumption as well as
performance. Our experiments are based on a real-time
measurement system called LEAP-Server and we show
that being able to monitor energy real-time can have
beneficial results in choosing appropriate platforms for
different applications both from performance and
energy consumption prospective.

REFERENCES

[1] Thanos Stathopoulos, Dustin McIntire, and William J. Kaiser.
The energy endoscope: Real-time detailed energy accounting for
wireless sensor nodes. In IPSN, 2008.

[2] V.Podlozhnyuk. Image Convolution with CUDA. NVIDIA
whitepaper

[3] M. Harris. Parallel Prefix Sum (Scan) with CUDA. NVIDIA
whitepaper.

[4] NVIDIA Corporation. NVIDIA CUDA Programming Guide.
2007.

[5] W. Liu, B. Schmidt, G. Voss, A.Schroder, and W. Muller-Wittig.
Bio-Sequence Database Scanning on a GPU. 20th IEEE IPDPS,
2006

[6] N. Govindaraju, J. Gray, Ritesh Kumar, and Dinesh Manocha.
GPUTeraSort: High Performance Graphics CoprocessorSorting
for Large Database Management. In ACM SIGMOD, June 2006.

[7] K. Mueller and F. Xu. Practical considerations for GPU-
accelerated CT. IEEE Symp. Biomedical Imaging (ISBI'06), pp.
1184-1187, 2006.

[8] Sanjiv S. Samant, Junyi Xia, Pinar Muyan-Özçelik, John D.
Owens. High performance computing for deformable image
registration: Towards a new paradigm in adaptive radiotherapy.
Medical Phisics, 2008.

[9] Naga K. Govindaraju , Dinesh Manocha, Cache-efficient
numerical algorithms using graphics hardware, Parallel
Computing, v.33 n.10-11, p.663-684, November, 2007

[10] C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten, W. W.
Hwu., GPU acceleration of cutoff pair potentials for molecular
modeling applications. Proceedings of the 2008 Conference On
Computing Frontiers, pp.273-282, 2008.

[11] J. Flinn and M. Satyanarayanan. Powerscope: a tool for
profiling the energy usage of mobile applications. In Second
IEEE Workshop on Mobile Computing Systems and
Applications, Feb. 1999.

