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 Abstract – The use of Graphics Processing Units 

(GPUs) in general purpose computing has been shown to 
incur significant performance benefits, for applications 

ranging from scientific computing to database sorting and 

search. The emergence of high-level APIs facilitates GPU 

programming to the point that general purpose computing 

with GPUs is now considered a viable system design and 
programming option. Nevertheless, the inclusion of a GPU 

in general purpose computing results in an associated 

increase in the system’s power budget.  This paper 
presents an experimental investigation into the power and 

energy cost of GPU operations and a cost/performance 

comparison versus a CPU-only system. Through real-time 

energy measurements obtained using a novel platform 

called LEAP-Server, we show that using a GPU results in 

energy savings if the performance gain is above a certain 
bound. We show this bound for an example experiment 

tested by LEAP-Server. 
 

I.  INTRODUCTION 

 Graphic Processing Units (GPUs) are special-
purpose programmable parallel architectures, primarily 
designed for real-time rasterization of geometric 
primitives. Due to their highly parallel design and 
dedicated computational nature, GPUs have recently 
been used for scientific, bioinformatics and database 
applications, including sorting and searching [5,6], 
increasing performance by at least an order of 
magnitude compared to conventional CPUs. This vast 
performance increase, combined with the wide 
availability of GPUs and the existence of high-level 
APIs such as the NVDIA CUDA [4] present system 
designers with a very appealing performance 
improvement solution. 
From the perspective of energy consumption however, 
the choice of shifting computational load to a dedicated 
co-processor becomes more complex. As a 
sophisticated hardware component with multiple 
parallel elements, the GPU requires significant power to 
operate. In addition to requiring expensive cooling 
solutions so as to control heat dissipation, modern 
GPUs also require a dedicated direct connection to the 
power supply. From a system design perspective, the 
performance increase offered by the inclusion of an 

additional hardware component must be balanced by the 
associated energy cost induced by the new component. 
This paper presents an experimental investigation into 
the performance and energy efficiency of a combined 
CPU-GPU system. Our goal is to characterize the 
conditions under which the inclusion of a GPU 
component is beneficial, from both a performance and 
an energy efficiency perspective. Our investigation is 
based on LEAP-Server, a novel architecture that 
incorporates standard server functionality with high-
fidelity, real-time energy monitoring of individual 
system components, such as the CPU, GPU, 
motherboard and RAM. Through real-time energy 
measurements obtained by LEAP-Server, we show that, 
despite an increase in total system power, using a GPU 
is more energy efficient when the performance 
improvement is above a certain bound which depends 
on application specific factors, compared to a CPU-only 
solution. We also use an analytical model to derive 
maximum throughput when having both CPU and GPU 
executing tasks. Through our experiments we also 
demonstrate the value of a real-time measurement 
system such as LEAP-Server in selecting the best 
performance-energy operating point in real time.  
The paper is organized as follows. Section II describes 
the importance of general purpose computing on GPUs 
and gives a brief summery on GPU architecture. Section 
III describes the experimental setup used for our 
experiments, while section IV shows several 
experiments and their results.  Finally, conclusions are 
drawn in section V.  

  

II.  IMPORTANCE OF GPGPU AND GPU ARCHITECTURE 

General purpose computing with graphic 
processing units (GPGPU) has enabled orders of 
magnitude speedups over the conventional CPUs for 
various applications in science and engineering. With 
the progress on the level of programmability, support 
for IEEE floating-point standards and arbitrary memory 
addressing, GPUs now offer new capabilities beyond 
the graphic applications which they were initially 
designed for. Recently the challenges in GPGPU 



community have revolved around the constraints of the 
programming environment and on optimal mapping of 
applications so to best leverage the highly parallel GPU 
architecture.   
CUDA [4] (Compute Unified Device Architecture) is a 
new API that is designed to facilitate GPU 
programming for general purpose tasks. CUDA allows 
programmers to implement algorithms in a data-parallel 
programming model. CUDA treats the GPU as a 
coprocessor that executes data-parallel functions, also 
known as kernel functions. The source program is 
divided into host (CPU) and kernel (GPU) code, which 
are then compiled by the host compiler and NVIDIA’s 
compiler (nvcc). The common execution path for an 
application on a combined CPU-GPU system is as 
follows: 

1) Allocate memory on GPU-exclusive memory 
2) Transfer data from CPU to GPU 
3) Execute kernel on the GPU 
4) Transfer results back from GPU to CPU.  

The rest of this Section presents a brief summery of 
NVIDA’s G80 GPU architecture, which supports the 
single-program, multiple-data (SPMD) programming 
model. G80 graphics processing unit architecture was 
first introduced in NVIDIA’S GeForce 8800 GTS and 
GTX graphics cards.  
The G80 GPU consists of 16 streaming multiprocessors 
(SMs), each containing eight streaming processors 
(SPs). Each SM has 8,192 registers and 16KB of on-
chip memory that are shared among all threads assigned 
to the SM. The threads on a given SM’s cores execute 
in SIMD fashion, with the instruction unit broadcasting 
the current instruction to the eight cores. Each core has 
a single arithmetic unit that performs single-precision 
floating-point arithmetic and 32-bit integer operations.  
In order to reduce the application’s demand for off-chip 
memory bandwidth, there are several on-chip memories 
that can be employed to exploit the data locality and 
data sharing. Each SM has shared memory for data that 
is either written and reused or shared among threads. 
The constant memory space is cached. Finally, for read-
only data that is shared by many threads but not 
necessarily accessed simultaneously by all threads, the 
off-chip texture memory and the on-chip texture caches 
exploit 2D data locality to substantially reduce memory 
latency. 
Applications that can benefit from the above described 
SPMD model can result in very high speedups. There 
are numerous speedup reports in variety of application 
domains. Some examples are image registration for 
medical imaging, numerical algorithms, fluid simulation 
and molecular simulation [8,9,10]. Many types of CT 
reconstruction algorithms are successfully accelerated 
on commodity graphical graphics hardware. RapidTC 
[7] can greatly benefit from the SIMD parallelism that 

GPU provides. It was demonstrated that both iterative 
and non-iterative algorithms suite the GPU architecture 
well. 
The aforementioned prior work indicates that GPUs are 
good platforms for executing parallelizable 
applications. However, as an extra piece of hardware 
they incur a cost, mostly in terms of power. In this paper 
we aim to find conditions where it is beneficial to add 
GPUs to an existing system both in terms of 
performance and energy consumption.   
 

III. EXPERIMENTAL SETUP 

 In this Section, we will describe the LEAP-Server 
platform that was used in our experiments and also 
provide information on the particular applications used 
as workloads for our experiments. 
 

A. Real-time Energy Measurements with LEAP-Server  

 

 LEAP-Server is the adaption of the embedded low 
power energy-aware processing (LEAP) project [1] to 
desktop and server-class systems. LEAP-Server differs 
from previous approaches such as PowerScope [11] in 
that it provides both real-time power consumption 
information and a standard application execution 
environment on the same platform. As a result, LEAP-
Server eliminates the need for synchronization between 
the device under test and an external power 
measurement unit. Moreover, LEAP-Server provides 
power information of individual subsystems, such as 
CPU, GPU and RAM, through direct measurement, 
thereby enabling accurate assessments of software and 
hardware effects on the power behavior of individual 
components. 
The LEAP-Server platform used in our experiments is 
equipped with an Intel® Core™ 2 Duo CPU E7200 
with 3MB of shared L2 cache, 2GB 800MHz DDR2 
SDRAM and a NVIDIA® CUDA™ enabled graphics 
processor. Power measurements are performed by an NI 
PCI-6024E DAQ card capable of sampling 200kS/s 
with a resolution of 12bit. In order to measure the 
energy consumption of individual subsystems, we 
inserted 0.1 Ohm sensing resistors in all the DC outputs 
of the power supply---3.3, 5 and 12V rails. Components 
such that are powered through the motherboard such as 
SDRAM DIMS are placed on riser cards in order to 
gain access to the voltage pins. Power measurements 
are obtained by first deriving the current flowing over 
the sensing resistors through voltage measurements 
across the resistors and then multiplying with the 
measured voltage on the DC power connector. The 
DAQ card autonomously samples the voltages at the 
specified frequency and stores them in its buffer. A 
Linux driver periodically initiates a DMA transfer of the 



buffer's content to main (kernel) memory. The module 
then exports the values to user space, where the power 
is calculated and integrated over time. Figure 1 depicts 
the architectural diagram of the LEAP-Server. 

Fig.1 LEAP-Server Architectural Diagram 
 

It must be noted that LEAP-Server utilizes the main 
CPU to process the power information, unlike the 
LEAP2 platform which contains a dedicated ASIC for 
this task. As a result, care must be taken so that the task 
of energy measuring does not create a negative 
performance---or energy---impact in the rest of the 
system. The performance overhead is directly related to 
the sampling rate as more samples result in higher 
amounts of data that need to be transferred to the CPU 
and processed. Experiments showed that sampling 
above 500Hz per channel does not result in any 
significantly higher accuracy. At 500Hz, the CPU 
performance penalty was under 3%. 
 
   B. GPU Applications 

 Making the correct decision in choosing the best 
platform in order to meet both performance and energy 
goals depends on the execution times on each platform. 
In situations where the GPU can finish a task in a very 
small period compared to its CPU counterpart, the 
performance gain results in energy savings as well, 
making the GPU a preferred choice. However, when the 
GPU speedup is not as pronounced and as rich the 
execution times on CPU and GPU are comparable, 
choosing the right approach is more complex. Based on 
this, for our experiments we categorized applications in 
two major groups: first, applications that benefit from 
high speedups when using the GPU implementation 
compared to their CPU implementation and second, 
applications resulting in lower speedups. For the 
purpose of our experiments, we consider speedups of 5x 
and higher as high speedup applications. Section IV will 
give more accurate criteria for distinguishing between 
these two categories. All the applications chosen are 
from the CUDA developer SDK examples [2,3]. We do 

note that that the CPU and GPU implementations in 
these examples are not necessarily fully optimized; 
however, their wide availability makes them good 
candidates for experimentation. 
High Speedup Applications: We have chosen separable 
convolution to represent this category. Convolutions are 
used by a wide range of systems in engineering and 
mathematics. Many algorithms in edge detection use 
convolutional filtering.  Separable filters are a special 
case of general convolution in which the filter can be 
expressed in terms of two filters, one on rows and the 
other on the columns of the image.  In image 
processing, computing the scalar product of input 
signals with filter weights in a window surrounding 
output pixels is a highly parallelizable operation and 
results in good speedup using GPUs. The GPU speedup 
over its CPU counterpart as implemented in CUDA 
SDK is 30-36x [2].  
Low Speedup Applications: The Prefix-sum (scan) 
algorithm is one of the most important building blocks 
for data-parallel computation. Its applications include 
parallel implementations of deleting marked elements 
from an array (stream-compaction), sort algorithms 
(radix and quick sort), solving recurrence equations and 
solving tri-diagonal linear systems. In addition to being 
a useful building block, the prefix-sum algorithm is a 
good example of a computation that seems inherently 
sequential, but for which there are efficient data-parallel 
algorithms [3]. In our experiments we use the version 
implemented to use for large arrays of arbitrary size. 
The result of an array scan is another array where each 
element is the partial sum of all elements up to and 
including j (inclusive scan). If the jth element is not 
included the scan is exclusive. The speedup of the SDK 
example over a CPU implementation is around 2-6x [3]. 

IV.  EXPERIMENTAL RESULTS 

 In this Section, we present our experimental results, 
based on the application categories described in the 
previous Section. Figure 2 shows a sample result of a 
LEAP-Server experiment on the separable convolution 
example. In all our experiments we account for the 
memory transfers to the GPU when computing the 
energy. The data in all cases fits in the GPU memory 
and a single transfer at the beginning is sufficient to 
copy data to the GPU. We copy the results back in the 
end. 
 
A. Idle power and event frequency analysis 

 A well-engineered and energy optimized system 
would place an unused hardware asset to its lowest 
possible power state, while still retaining a quick 
reaction time, to account for an unanticipated increase 
in the workload. During the course of our experiments, 
our LEAP-Server energy managements indicated the 



GPU was not placed in a low-power state when not 
used; rather it was placed in its peak power state, 
thereby dissipating a higher amount of energy without 
any actual benefit.  
 

 
 
Fig. 2 LEAP-Server Output for Separable Convolution. 
 
Inclusion of an additional component in a system 
imposes at least idle power consumption when not used. 
Therefore assuming the component uses its idle power 
when not used, there should be a minimum bound on 
the number of events executed on the GPU in order to 
balance between the performance gain and energy cost.  
The amount of energy consumed for performing 
separable convolution on a 3072 ×  3072 data with 
kernel radius of 8 on CPU and GPU are as follows:   
 
ECPU= 17.74 J,   EGPU = 2.13J  
 
In a timeframe of 10s, the addition of a GPU to the 
system will add an extra 16500 J to the total energy 
consumed. In order to benefit from adding an extra 
component from energy prospective we must therefore 
have at least 11 GPU kernel calls. We take this idle 
power into account in all our experiments. 
 

B. High-speedup applications 

 In applications having significant differences in 
their execution times on CPU and GPU where the 
energy consumed for data transfer is negligible, the 
performance benefits will result in significant energy 
saving benefits as well. Changing system or application 
parameters that increase the performance of an 
application over its CPU counterpart result in lower 
execution times and so decrease the energy 
consumption of the overall system. Our experiments on 
separable convolution confirm this. Table 1, shows the 
effect of different memory usage of the separable 
convolution SDK example on both performance and 
energy consumption.  

 

Table. 1 Performance-Energy Comparison in Separable 
Convolution  

 

 Performance 
( MPix/sec) 

Energy 
on GPU 

( J) 

Energy 
on CPU 

 (J) 
Convolution 

(shared) 
346 2.44 12.91 

Convolution 
(Texture) 

215 2.76 12.91 

 
As Table 1 shows, due to high performance on the GPU 
both implementations (shared and texture) result in less 
energy consumption. Optimizing performance using 
shared memory therefore also uses less energy. 
We present a first-order analysis to determine how to 
distinguish applications that fit into this category. 
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From Equations 1 and 2, if the energy consumed for 
transfer can be neglected we have:  

Speedup = 
CPUavg
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As Equation 3 indicates there is no constant bound on 
the limit of the application speedup since Pavg-GPU and 
Pavg-CPU can change based on the specific characteristics 
of an application.  Therefore the presence of a real time 
measurement system such as LEAP-Server can identify 
the best performance-energy choice real-time.   
 

C. Break-even point for power-performance graph 

In applications having low speedups where the CPU 
execution time is comparable with GPU execution time, 
there is a break-even point for the power-performance 
graph. 
Our experiments on the scan SDK example confirm 
this. The total energy consumed for performing scan on 
1000000 elements is 0.13J on CPU and 0.16J on the 
GPU. The speedup in this case is 2.23. This example 
demonstrates a case where it is beneficial to run the task 
on CPU. The results can be seen in Fig. 3. In practice, a 
well-engineered system can have the CPU executing 
other tasks while waiting for the results from the GPU 
task. Thus, adding the CPU idle power to the total 
power can bias the results in favor of a CPU-only 
approach. On the other hand, we cannot eliminate the 
CPU power completely by turning the CPU off, since a 
GPU acts as a coprocessor to the CPU and as such 



requires the CPU to transfer data to/from it and execute 
kernels on it. In the case that both a CPU and GPU 
execute tasks, we consider the following scenario.  
 

 

 
Fig. 3 Energy and performance comparison of Scan  

 
We have two tasks T1 and T2 that take t1C and t2C to 
execute on a single core CPU and t1G and t2G to execute 
on the GPU. In the first case that we execute both tasks 
on the CPU, the overall energy consumed is computed 
as below: 

CCC PttE ×+= )( 211
  (4) 

Now if we have T1 executing on the CPU and T2 on 
GPU, we will have two cases: If t2G <t1C: 

)()()( 2122 CIdleGGCCGG PPttPPtE +×−++×=
−

  (5) 

 
And if t2G > t1C we will have: 

)()()( 1212 GIdleCCGCGC PPttPPtE +×−++×=
−

 (6) 

 
Here the problem becomes similar to the well-studied 
category of task scheduling. This problem can also be 
extended to multiple core CPU and GPU systems.  
 
D. Discussion 

 There is a huge potential of research in the field of 
energy-aware high performance computing with GPUs. 
For parallel applications that suit the GPU’s 
architecture, GPUs are good choices both from 
performance and energy consumption prospective. 
Nevertheless in order to optimize energy consumption 
based on the specific application there are several 
considerations to make. 
As described in Section II, there are constant, texture 
and global memories available to use by the streaming 
multiprocessors. Based on the application and the 
locality and frequency of data usage pattern the 
programmer can choose from the cached memories 
(constant and texture) or global memory or choose to 
copy data to shared memory to increase performance. 
Similar categorization as done in Sections IV.B and C 
can be done in terms of memory access patterns. Here 
again the memory choice can affect total system energy 

consumption. Finally, the order of execution of tasks on 
the CPU-GPU system, the length of CPU idle time and 
task scheduling are factors to consider in a 
heterogeneous system composed of CPUs and GPUs. 
Based on our experiments, a real-time measurement 
system such as LEAP-Server can be very helpful in 
making correct decisions. 

V.  CONCLUSION  

Graphic processing units have been introduced as high 
computational units offering high throughputs for a 
broad range of applications in science and engineering. 
In this paper we investigated the use of GPUs from the 
perspective of energy consumption as well as 
performance. Our experiments are based on a real-time 
measurement system called LEAP-Server and we show 
that being able to monitor energy real-time can have 
beneficial results in choosing appropriate platforms for 
different applications both from performance and 
energy consumption prospective. 
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