
Memory-aware Scheduling for Energy Efficiency on Multicore Processors

Andreas Merkel Frank Bellosa
University of Karlsruhe

Abstract

Memory bandwidth is a scarce resource in multicore sys-
tems. Scheduling has a dramatic impact on the delay
introduced by memory contention, but also on the effec-
tiveness of frequency scaling at saving energy. This pa-
per investigates the cross-effects between tasks running
on a multicore system, considering memory contention
and the technical constraint of chip-wide frequency and
voltage settings. We make the following contributions:
1) We identify the memory characteristics of tasks and
sort core-specific runqueues to allow a co-scheduling of
tasks with minimal energy delay product. 2) According
to the memory characteristics of the workload, we set the
frequency for individual chips so that the delay is only
marginal. Our evaluation with a Linux implementation
running on an Intel quad-core shows that memory-aware
scheduling can reduce EDP considerably.

1 Introduction

Today’s operating system schedulers treat cores of a chip
multiprocessor (CMP) largely like distinct physical pro-
cessors. Yet, there are some interdependencies between
cores that need be taken into account for optimal perfor-
mance and energy efficiency. For example, many chips
only allow setting frequency and voltage for the entire
chip.

The optimal frequency at which the processor can ex-
ecute a task most efficiently in terms of runtime and en-
ergy depends on the task’s characteristics [5, 11], in par-
ticular on the frequency of memory accesses. For a mul-
ticore chip that offers global frequency scaling, the ques-
tion arises whether it is advantageous to run tasks with
similar characteristics together in order to run the chip at
the corresponding optimal frequency.

On the other hand, the cores of a chip share some re-
sources such as caches and memory interfaces. This is
likely to cause contention between the cores if tasks with

similar characteristics, for example several memory-
bound tasks, are running together [9].

In this paper, we analyze what is the optimal way to
co-schedule tasks on a multicore processor considering
the criteria of frequency selection and contention. We
find that in order to optimize the product of runtime and
expended energy (energy delay product, EDP), the main
goal must be to avoid contention by combining tasks with
different characteristics. Only if nothing but memory-
bound tasks are available, it is beneficial to apply fre-
quency scaling.

Based on this analysis, we propose a scheduling policy
that sorts the tasks in each core’s runqueue by their mem-
ory intensity in order to co-schedule memory-bound with
compute-bound tasks. Additionally, we apply a heuris-
tic that lowers the frequency when only memory-bound
tasks are available. An evaluation with a Linux imple-
mentation of sorted scheduling using SPEC CPU 2006
benchmarks reveals that our policies manage to reduce
EDP for many scenarios.

The rest of this paper is structured as follows: Sec-
tion 2 reviews related work. Section 3 presents our anal-
ysis of optimal multicore scheduling. Section 4 describes
our scheduling policy and frequency heuristic. Section 5
evaluates our proposed policy and Section 6 concludes.

2 Background and Related Work

Previous research [5, 11] has investigated the problem of
selecting a frequency at which to run a task most effi-
ciently. Memory-bound tasks can be executed at lower
CPU frequencies without significant slowdown, since
memory throughput and not CPU speed is the determin-
ing factor for their performance. In contrast, compute-
bound tasks run more efficiently at higher frequencies,
since lower frequencies prolong their runtime and cause
them to consume power for a longer time, often negating
the power savings gained by frequency scaling. How-
ever, all previous research was based on the assumption



that a separate frequency can be chosen for each CPU.
To our knowledge, this is the first work that considers
the constraint that multiple cores need to run at the same
frequency in this context.

The memory bus has been identified as a bottleneck
for symmetric multiprocessor (SMP) systems. For real-
time SMP systems, throttling memory-bound tasks in or-
der to guarantee bandwidth reservations has been pro-
posed [2]. Combining tasks based on memory bandwidth
demands has been proposed for SMP systems [12, 1] and
simultaneously multithreaded (SMT) systems [7]. To our
knowledge, no previous research has addressed memory-
based co-scheduling and frequency selection in combi-
nation. Also, most research concentrates on finding op-
timal combinations of tasks for co-scheduling, but omits
the discussion about how a real multiprocessor scheduler
can succeed in combining tasks accordingly.

Up to now, research on co-scheduling for CMP sys-
tems has concentrated on the L2 cache as limiting re-
source [10, 4, 3]. However, our experiments with the
recent SPEC CPU 2006 benchmarks suggest that mem-
ory contention is becoming more important than cache
contention.

3 Analysis
For investigating the effects of contention and frequency
selection, we chose a 2.4GHz Intel Core2 Quad Q6600.
The chip houses four cores, two of which share 4MB of
L2 cache, respectively. In our test system, the chip is
connected via a 266MHz front side bus to 8GB of DDR2
PC-6400 memory. The processor supports scaling the
frequency down to 1.6GHz. In this case, the core voltage
is scaled from 1.20V to 1.12V. (For the rest of the paper,
when we speak of frequency scaling, we will imply that
voltage scaling is also applied.) This results in a reduc-
tion of typical processor power consumption from about
70W to about 45W.

For judging energy efficiency, we sampled the power
consumption of the processor using a National Instru-
ments Labview board. We use the EDP of the processor
as measure since in many systems the processor is the
component requiring most energy and cooling effort, so
it is desirable to reduce its power consumption. On the
other hand, it is undesirable to sacrifice too much perfor-
mance. EDP considers both factors.

3.1 Resource Contention
We evaluated resource contention between the cores us-
ing several microbenchmarks. The resources the cores
are contending for are L2 cache (shared by two cores,
respectively) and memory bandwidth (shared by all four
cores).

We selected microbenchmarks that differ in their use
of the named resources. aluadd performs integer ad-

Figure 1: Normalized runtime of microbenchmarks

ditions exclusively on the CPU’s registers. stream
is a memory benchmark [6].We also use modified ver-
sions of the benchmark having working sets that fit
into the L2 cache once (stream-fit1) or twice
(stream-fit2).

Figure 1 shows the runtimes for the microbenchmarks
running alone, for two instances running on cores not
sharing L2 cache, two instances on cores sharing L2
cache, and for four instances. All runtimes are normal-
ized to the runtime of one instance running alone.

As expected, aluadd’s runtime is not influenced by
other cores. stream-fit2’s runtime increases slightly
when another instance uses the same cache because of
conflict misses. stream-fit1’s runtime increases
considerably when two instances share a cache because
of conflict and, mainly, capacity misses. When four in-
stances are running, memory contention causes a fur-
ther increase in runtime. Finally, the original memory-
bound stream benchmark suffers from memory con-
tention already when two instances are running on dif-
ferent caches.

We did the same evaluation using the SPEC CPU 2006
benchmarks. It revealed that most SPEC benchmarks ei-
ther behave like aluadd and stream-fit2, showing
no or only little slowdown even when combined on the
same cache, or like stream, showing heavy slowdown
even when running on separate caches. This indicates
that the case that one task’s working set fits into the cache
but two tasks’ working sets do not is rare. Therefore, we
will concentrate on memory bandwidth as constraining
resource.

3.2 Frequency Selection
For evaluating the effects of frequency scaling, we ran
different combinations of the aluadd and the stream
benchmark on the cores. Table 1 shows the factor by
which the runtime, expended energy, and EDP changes
for each benchmark when dropping the frequency from
2.4GHz to 1.6GHz.

Since aluadd is compute-bound, its runtime in-
creases when the frequency is dropped. This increase



stream aluadd avg
instances time ener edp time ener edp edp

4 aluadd — — — 1.49 1.16 1.68 1.68
1 str. + 3 alu. 1.13 0.83 0.93 1.49 1.08 1.63 1.45
2 str. + 2 alu. 1.07 0.77 0.82 1.49 1.1 1.60 1.23
3 str. + 1 alu. 1.09 0.85 0.93 1.49 1.13 1.73 1.13

4 stream 1.04 0.80 0.83 – – — 0.83

Table 1: Effects of frequency scaling

outweighs the decrease in power consumption, so the en-
ergy and the EDP increase. For stream, the runtime
hardly increases when the frequency is lowered, so here
the EDP is dominated by the power consumption and de-
creases. However, when looking at the averaged EDP
of all tasks, only a combination of four memory-bound
tasks justifies frequency scaling. We obtained the same
results with the SPEC benchmarks.

If we have more tasks available for execution than
there are execution contexts, the question arises whether
it is better to run memory-bound tasks together in or-
der to be able to profit from frequency scaling, or to
run compute-bound with memory-bound tasks in order
to avoid resource contention.

The experiments in Section 3.1 indicate a huge per-
formance penalty (increase in runtime of up to a fac-
tor of four) for memory-bound tasks running simultane-
ously (see Figure 1), which leads to an increase in energy
consumption by nearly the same factor. This outweighs
the reduction in energy consumption achievable by fre-
quency scaling (factor of 0.8, see Table 1) by far. These
effects become even more prominent in EDP, which in
addition to energy also considers the slowdown intro-
duced by contention and frequency scaling.

We want to illustrate this with the results of an experi-
ment with two SPEC benchmarks. We ran four instances
of soplex, the memory-bound benchmark we found to
profit most from frequency scaling, together with four in-
stances of hmmer, a completely compute-bound bench-
mark. We compare the following three scheduling sce-
narios:

1. Co-schedule the four instances of soplex at their
optimal frequency of 1.6GHz, then co-schedule the
four instances of hmmer at their optimal frequency
of 2.4GHz.

2. Always co-schedule two instances of soplex with
two instances of hmmer at 2.4GHz

3. Always co-schedule two instances of soplex with
two instances of hmmer at 1.6GHz

As expected, scenario 2 showed the best EDP; here the
benchmarks can be executed requiring only 3

4 the EDP
of the other two scenarios.

Motivated by the results of this analysis, our schedul-
ing policies presented in the next section strive to com-
bine tasks with different characteristics, and only engage

frequency scaling if nothing but compute-bound tasks are
available.

4 Memory-aware Scheduling
4.1 Runqueue Sorting
We propose a policy for timeslice-based multitasking,
multiprocessor scheduling. Our goal is to combine
memory-bound with compute-bound tasks to reduce
memory contention. Thus, our policy is a special form
of gang scheduling.

Whenever the CPU executes a task for one timeslice,
we use the processor’s performance monitoring counters
to determine the memory intensity of the task by count-
ing the number of memory transactions. We use this
characterization to sort the tasks in each processor’s run-
queue by their memory intensity. In previous work [8],
we have shown that it is possible to sort a runqueue lazily
with low overhead. We sort the tasks descendingly in
runqueues of cores with even processor numbers and as-
cendingly for odd processor numbers to be able to co-
schedule tasks of different memory intensities.

To achieve this co-scheduling, we ensure that the cores
process their runqueues synchronously. Therefore, we
introduce the concept of epochs. During an epoch, each
runqueue shall be processed exactly once. We achieve
this by executing each task in a runqueue for 1

n epoch,
where n is the number of tasks in the runqueue. As the
epoch length, we choose m standard timeslices, where
m corresponds to the number of tasks in the longest
runqueue. Thus, the tasks in the longest queue get
executed for exactly one standard timeslice (100ms in
Linux), while tasks in shorter queues get longer times-
lices, resulting in all runqueues taking the same time
to be processed. Since the tasks in the runqueues are
sorted in different directions, this results in combinations
of memory-bound and compute-bound tasks running at a
time without having too much synchronization overhead.

If there are more than two cores on a chip, we shift the
beginning of the epochs for each additional pair of cores.
This way, situations when the first two cores both execute
tasks with relatively low memory demands in the middle
of their epoch can be used to run a memory-bound task
on one of the remaining cores (see Figure 2).

To make sure that tasks of different memory intensity
levels are available on each core, we employ a balancing
mechanism that migrates tasks if needed.

4.2 Frequency Selection
In Section 3, we have pointed out that the primary lever
to achieve energy efficiency is combining tasks in a way
that avoids resource contention. Hence, we use fre-
quency scaling only if contention cannot be avoided.

On modern processors like the Core2, switching the
frequency introduces delays in the order of microsec-



Figure 2: Sorted scheduling. Bars stand for tasks of dif-
ferent memory intensity.

onds, which is several orders of magnitude smaller than
the granularity of scheduling. This allows to select a suit-
able frequency on every task switch without introducing
noticeable overhead.

In addition, sorted scheduling, being designed primar-
ily to avoid contention, also facilitates frequency selec-
tion, since it controls the combination of tasks running
at a time. Hence, scheduling decisions do not occur ran-
domly and independently on the cores, which reduces the
number of frequency changes.

The experiments with the microbenchmarks presented
in the preceding subsection indicate that, on average, the
EDP of tasks with memory bus utilization of 0% scales
by a factor of 1.67 when lowering the frequency, whereas
the EDP of tasks with memory bus utilization of 100%
scales by a factor of 0.88 (Table 1). Based on this, we
estimate the scaling of EDP of a task with memory bus
utilization x with the following equation:

EDP factor = x∗0.88+(1− x)∗1.67 = 1.67−0.79x

In practice, the situation is more complex. Since mod-
ern processors can have several memory requests out-
standing and still continue executing instructions not de-
pendent on the results of the memory references, the de-
gree of slowdown caused by limited memory bandwidth
depends on the instruction-level parallelism the task ex-
hibits.

Our benchmark used for calibration, the stream bench-
mark, performs loops over arrays, and the individual it-
erations are independent from each other, resulting in
high instruction-level parallelism. Real-world applica-
tions can show less instruction-level parallelism, result-
ing in a lower EDP factor. (They benefit more from lower
frequencies.) In practice, we achieved good results with
the following EDP calculation:

EDP factor = 1.4−0.8x
Whenever a scheduling decision has been made, we

check whether the average EDP factor of the tasks cur-
rently selected for execution on the cores is smaller than
one. If this is the case, we engage frequency scaling, else
we disable it.

Figure 3: Effects of runqueue sorting: runtime and EDP
relative to standard Linux scheduling

For chips that support more than two frequency levels,
the EDP factor can be calculated analogously for each
available frequency, and the frequency with the lowest
EDP factor chosen.

5 Evaluation
We implemented sorted scheduling as well as our fre-
quency heuristic for a Linux 2.6.22 kernel and evaluated
it on the Intel Core2 Quad described in Section 3, using
the SPEC CPU 2006 benchmarks.

In the first test, we evaluated runqueue sorting. We ran
four compute-bound benchmarks (gamess, gromacs,
hmmer, namd) together with four memory-bound
benchmarks (lbm, libquantum, mcf, soplex) at a
fixed frequency of 2.4GHz. Figure 3 shows the runtime
and the EDP of the benchmarks when sorting is applied,
relative to the runtime and EDP using standard Linux
scheduling.

While the compute-bound benchmarks’ runtime
hardly changes (they are affected a little, since they
show some memory references, too), the runtimes of all
memory-bound benchmarks decreases. libquantum’s
runtime is not reduced as much as the other memory-
bound benchmarks’ runtimes. The reason for libquantum
not profiting as much is that even with runqueue sorting,
two memory-bound tasks have to share the memory bus
at a time, and bandwidth distribution can be unfair [9].

Since the power consumption is almost the same for
sorted scheduling and standard Linux scheduling, EDP is
determined solely by the runtime, and reduced with run-
time, but quadratically. Enabling our frequency heuristic
in addition to runqueue sorting yields almost the same
results for this scenario (not shown), since at every point
in time, two compute-bound tasks are running, so fre-
quency scaling is never engaged.

To evaluate the effects of our frequency heuristic in
isolation, we executed four instances of the compute-
bound hmmer benchmark in parallel, followed by four
instances of the memory-bound lbm benchmark running
in parallel. We compare our adaptive policy with fixed
frequency settings of 2.6GHz and 1.6GHz.



Figure 4: Effects of frequency heuristic

Figure 4 depicts runtime, power, and EDP normalized
to the values at 2.4GHz. hmmer shows a better EDP
at the high frequency, the reason being a substantial in-
crease in runtime at 1.6GHz. lbm, on the other hand,
shows a better EDP at the low frequency, since its run-
time only increases slightly, so the decrease in power
dominates the EDP. Our adaptive policy succeeds at se-
lecting the best frequency for each situation, achieving
the the same EDP as fixed 2.4GHz for hmmer and nearly
the same EDP as fixed 1.6GHz for lbm.

Last, we evaluated the effects of our frequency heuris-
tic in a dynamic scenario. We ran a workload consisting
of one purely compute-bound benchmark (hmmer), and
seven benchmarks that are memory-bound to varying de-
grees (GemsFDTD, lbm, libquantum, mcf, milc,
omnetpp, soplex) and activated sorted scheduling as
well as our frequency heuristic.

Here, sorted scheduling in itself leads only to marginal
EDP improvements, since with only one compute-bound
task, an over-saturation of the memory bus cannot be pre-
vented.

The frequency heuristic, however, is able to reduce
EDP by a factor of 0.918 compared to a static setting of
2.4GHz, averaged over all eight benchmarks by lower-
ing the frequency whenever all cores run memory-bound
tasks, and by using the high frequency as soon as one of
the cores runs the compute-bound task. A fixed setting
of 1.6GHz only reduces EDP by a factor of 0.930, since
it does not consider the compute-bound task.

6 Conclusion

In this paper, we have analyzed scheduling for avoiding
resource contention and for optimal frequency selection.
We found that the two are oppositional goals, and that
scheduling to avoid resource contention is crucial both in
terms of performance and energy efficiency. Frequency
scaling can only lead to savings for situations in which
contention cannot be prevented by scheduling, and com-
bining tasks that run best at a certain frequency does not
pay off if it leads to resource contention.

We designed a scheduling policy that avoids memory
contention by sorting the processors’ runqueues by mem-
ory intensity, and a frequency heuristic based on memory
intensity. Our evaluations show that our policies are able
to reduce EDP for scenarios where there is contention
that can be reduced by co-scheduling or, if that is not
possible, mitigated by frequency scaling.

In future systems, the memory bandwidth will in-
crease, but so will the number of cores, so memory con-
tention can be expected to remain a problem. Our co-
scheduling solution scales with larger number of cores,
since only pairs of cores need be synchronized.

References
[1] ANTONOPOULOS, C., NIKOLOPOULOS, D., AND PAP-

ATHEODOROU, T. Scheduling algorithms with bus bandwidth
considerations for smps. International Conference on Parallel
Processing (2003).

[2] BELLOSA, F. Process cruise control: Throttling memory access
in a soft real-time environement. Tech. Rep. TR-I4-97-2, Univer-
sity of Erlangen, Department of Computer Science, 1997.

[3] CHANDRA, D., GUO, F., KIM, S., AND SOLIHIN, Y. Predict-
ing inter-thread cache contention on a chip multi-processor ar-
chitecture. In HPCA ’05: Proceedings of the 11th International
Symposium on High-Performance Computer Architecture (2005).

[4] FEDOROVA, A., SELTZER, M., AND SMITH, M. D. Improv-
ing performance isolation on chip multiprocessors via an oper-
ating system scheduler. In PACT ’07: Proceedings of the 16th
International Conference on Parallel Architecture and Compila-
tion Techniques (2007).

[5] KOTLA, R., DEVGAN, A., GHIASI, S., KELLER, T., AND RAW-
SON, F. Characterizing the impact of different memory-intensity
levels. In Proceedings of the Seventh IEEE International Work-
shop on Workload Characterization (WWC-7) (2004).

[6] MCCALPIN, J. D. Sustainable memory bandwidth in current
high performance computers, 1995.

[7] MCGREGOR, R. L., ANTONOPOULOS, C. D., AND
NIKOLOPOULOS, D. S. Scheduling algorithms for effec-
tive thread pairing on hybrid multiprocessors. In IPDPS
’05: Proceedings of the 19th IEEE International Parallel and
Distributed Processing Symposium (2005).

[8] MERKEL, A., AND BELLOSA, F. Task activity vectors: A new
metric for temperature-aware scheduling. In Third ACM SIGOPS
EuroSys Conference (2008).

[9] MOSCIBRODA, T., AND MUTLU, O. Memory performance at-
tacks: denial of memory service in multi-core systems. In SS’07:
Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium (2007).

[10] SIDDHA, S., PALLIPADI, V., AND MALLICK, A. Process
scheduling challenges in the era of multi-core processors. Intel
Technology Journal 11, 4 (2007).

[11] WEISSEL, A., AND BELLOSA, F. Process cruise control: Event-
driven clock scaling for dynamic power management. In Pro-
ceedings of the International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems (2002).

[12] ZHANG, X., DWARKADAS, S., FOLKMANIS, G., AND SHEN,
K. Processor hardware counter statistics as a first-class system
resource. In HOTOS’07: Proceedings of the 11th USENIX work-
shop on Hot topics in operating systems (2007).


