
Workload Decomposition for Power Efficient Storage Systems∗

Lanyue Lu and Peter Varman
Rice University, Houston, TX
{ll2@rice.edu, pjv@rice.edu}

Abstract

Power consumption and cooling costs of hosted storage
services and shared storage infrastructure in data cen-
ters account for a growing percentage of the total cost
of ownership. The bursty nature of storage workloads re-
quires significant over provisioning of the capacity and
power consumption to meet traditional response-time
QoS guarantees. In this paper, we propose a graduated,
distribution-based QoS model and a runtime scheduler
for power efficient storage servers. Through the eval-
uation of the real storage workload traces, we show a
new general tradeoff between the performance and power
consumption.

1 Introduction

The widespread deployment of Internet-based services
and the growing interest in application hosting have fu-
eled the growth of large data centers having tens of thou-
sands of disks. The power density of these servers grows
quickly, even up to 700 W/ft2 [1], raising several chal-
lenging issues: the cost of energy consumption, the cost
of cooling, environmental pollution, and secondary ther-
mal effects. A typical data center with 1000 racks con-
suming 10MW total power, costs $7M for power and
$4M-$8M for cooling per year, with $2M-$4M of up-
front costs for cooling equipment [7]. Among the dif-
ferent components of the data center, the storage system
accounts for a significant percentage of the total power
consumption [11]. All of these issues result in strong in-
centives and motivations for developing energy efficient
storage systems for current data centers.

As storage systems evolve towards a service-based
paradigm, tradeoffs with regard to QoS performance
guarantees, pricing, and resource provisioning assume
increasing importance. Several QoS schedulers have
been proposed in general server and network environ-
ments to provide throughput or response time guaran-
tees based on Service Level Agreements (SLA) between
clients and the service provider. The server needs to
provision enough resources (servers and their associated
power and energy costs) to ensure that performance guar-
antees of the SLAs can be met. A major difficulty in

∗Supported by NSF Grant CNS 0615376

providing storage QoS is realistic resource provision-
ing due to the extremely bursty nature of storage work-
loads. Since the instantaneous arrival rates can be signifi-
cantly higher than the average long-term rate, provision-
ing based on worst-case traffic patterns result in oner-
ous capacity and power consumption requirements. The
mismatch in speeds between the rate of load fluctuations
and the ability of storage devices like commodity hard
disks to respond to dynamic power management tech-
niques [10] makes it an enormous challenge to provide
effective power management in such environments.

In this paper, we provide a new framework for trad-
ing off performance and power consumption of storage
systems based on a graduated, distribution-based QoS
model. Many clients will willingly accept some perfor-
mance deviation if the cost is lower or the service is more
predictable [8], provided the degradation is quantifiable
and bounded. For instance, the performance SLA may be
specified by a distribution of response times rather than
a worst-case latency. At run-time, the storage scheduler
analyzes and decomposes the workload into classes with
different latency bounds, and serves them concurrently
without interference, to achieve the graduated perfor-
mance guarantees. These graduated QoS requirements
result in very different capacity and power consumption
costs, and (as we show in this paper) provide an opportu-
nity to achieve significant power savings with relatively
small performance impact. Towards this end, we ana-
lyzed a set of storage workload traces to determine the
tradeoff between QoS distribution and required server
capacity and power consumption. We confirm the exis-
tence of a well-defined knee in the QoS-power relation,
whereby an overwhelming portion of the server power
consumption is used to guarantee the performance of a
small fraction of the requests. By relaxing the perfor-
mance guarantees for this small fraction, a significant re-
duction in server capacity and power consumption can be
achieved while maintaining strong QoS guarantees for all
but a small fraction of the workload.

The rest of the paper is organized as follows. In Sec-
tion 2 we present an overview of the method, and the per-
formance and power model for decomposing the work-
load. The evaluation results are presented in Section 3.
The discussion is presented in Section 4. The paper con-
cludes with Section 5.

2 Power Management Approach

Many proposals for power management of general
servers and storage systems are based on exploiting the
temporal periodicity in workloads [3, 4, 11]. A general
stylized form is shown in Figure 1. The load fluctuates
in daily, weekly or even monthly cycles, with periods of
high load period and periods of low load. The periodic
pattern provides opportunities for predicting the future
traffic and varying the number of active servers (or stor-
age pools) accordingly, to meet the performance require-
ments in different time periods. By keeping the inactive
servers in the low power (or powered down) state power
is conserved during periods of low utilization.

Figure 1: Periodic workload in servers

At the end of a time epoch, a prediction of the load
in the next epoch is made, and enough servers are spun
up (or down if transitioning to a low power epoch) to
satisfy the performance QoS in that interval. Although
the longer term trends of the workload are predictable,
the workload tends to be very bursty at a finer granular-
ity, meaning that the instantaneous arrival rates in some
time intervals can be higher than the long-term rate by
an order or two in magnitude. Thus during the high load
period, estimates based on worst-case patterns result in
significant over provisioning of capacity and increased
power consumption. On the other hand, spinning up a
powered-down commodity disk can take tens of seconds,
and starting a server from the sleeping state needs up to
several minutes to power on and warm up; hence, chang-
ing the number of active servers dynamically at a fine
granularity is not a viable option. As a consequence, to
meet the QoS performance requirements, a large num-
ber of servers, (in some cases maybe all the servers), are
always kept powered on, although they are critical only
for short periods of bursty or worst-case activity. This
results in significant power consumption even if most
of the time the workload is relatively low. By shaping
the workload one can keep the number of active servers
small, while providing an improved and quantifiable per-

formance profile.
The scenario above motivates our performance models

which explores a new tradeoff among the performance
and power consumption, by shaping the workload to ac-
count for bursty traffic.

2.1 Performance Model

A general form of graduated QoS requirements for a stor-
age server is described by its Response Time Distribution
(RTD), a statistical distribution of its response time re-
quirements. Ann-tier RTD is a set of n pairs{ (fi, Ri)
: 1 ≤ i ≤ n}, which specifies that a fractionfi of
the workload’s requests must have a response timeRi or
less. An RTD specifies a lower bound on the cumulative
response time distribution achieved by that workload. A
simple SLA in which 100% of the requests are guaran-
teed a maximum response timeR1, corresponds to an
RTD with n = 1. A 3-tier RTD {(0.9, 20ms), (0.99,
50ms), (1.0, 500ms)} indicates that no more than 10% of
the requests can exceed 20 ms latency, and no more than
1% can exceed 50 ms, while all request must be served
within a 500 ms response time.

Figure 2: Architecture of Multi-queue Scheduler

Figure 2 shows the system organization of ann-tier
RTD. The request stream of an application arriving at the
workload shaper is partitioned into different classesW1

throughWn, and directed to separate queues. Then the
queues are multiplexed on the storage pools, that serve
the requests with response time guarantees to each class.
In this paper we will concentrate on a two-tier RTD ar-
chitecture for simplicity; the extension to multiple QoS
tiers is deferred to the full paper. In this case, the work-
loadW is partitioned into two classesW1 andW2 that
will be referred to asprimary andsecondary classes re-
spectively.

Figures 3(a) and 3(b) show the QoS variation of the
Financial Transaction workload from UMass Storage
Repository as the capacity is varied. They show the
server capacity in IOs/sec (IOPS) needed for a fraction
f of the workload, to meet response time bounds of 50
ms, 20 ms and 10 ms, forf between 90% and 100%, and

 0

 200

 400

 600

 800

 1000

 1200

 1400

 90 91 92 93 94 95 96 97 98 99 100

C
ap

ac
ity

 R
eq

ui
re

m
en

t (
IO

P
S

)

Percentage of Workload

R=50ms
R=20ms
R=10ms

(a) f : from 90% to 100%

 0

 200

 400

 600

 800

 1000

 1200

 1400

 99 99.1 99.2 99.3 99.4 99.5 99.6 99.7 99.8 99.9 100

C
ap

ac
ity

 R
eq

ui
re

m
en

t (
IO

P
S

)

Percentage of Workload

R=50ms
R=20ms
R=10ms

(b) f : from 99% to 100%

Figure 3: Capacity on percentage of workload meeting specified latency bound for Financial Transaction trace

99% to 100% respectively. As can be seen, the capacity
required falls off significantly by exempting between 1%
and 10% of the workload from the response time guaran-
tee. For a 10 ms latency, the capacity increases almost 7
times (from 186 IOPS to 1300 IOPS) whenf increases
from 90% to 100%, and by a factor of 4.3 in going from
99% to 100%. Corresponding capacity increases by fac-
tors of 4.8 (10%) and 3.4 (1%) for a response time of 20
ms can be observed. In fact, for response times of 10 ms,
20 ms and 50 ms, the capacity increases in going from
99.9% to 100% guarantees are by factors of 2.3, 1.7, and
1.5 respectively. Similar trends for other storage work-
load are noted from our experiments.

These experiments provide strong empirical evidence
of the bursty nature of storage traces, and show the
significant potential for optimizing capacity and power
consumption using a graded QoS policy. Exempting
even a small fraction of the workload from the response
time guarantees can substantially reduce the capacity re-
quired, especially for aggressive service with low re-
sponse time requirements. Motivated by this, we apply
this model for reducing power consumption.

2.2 Power Model

Figure 4 shows the basic architecture of the target stor-
age system logically organized as multiplestorage pools.
A pool may be considered as a logical volume that stores
the entire data set. For reliability and performance, data
is replicated and stored multiply in several pools. A pool
is simply assumed to be made up of commodity disks
connected by a high speed SAN. A disk may be in any of
three states:sleep, idle or active. In theidle state the disk
is powered on but is not actively seeking, while in theac-
tive state it is performing a read or write operation. When
in sleep mode, the disk is assumed to consume negligible
power. The energy consumption of a single diskEdisk is
calculated by weighting its power consumption in a par-

ticular mode by the time spent in that mode. The total
energy is the sum of all the disks,

∑
i Edisk(i).

Edisk = tactive×Pactive+tidle×Pidle+tsleep×Psleep (1)

At the start of an epoch, a subset of the storage pools are
placed in the powered on state (ON pools) and the rest
are powered down in the sleep mode (OFF pools). The
number of ON pools is estimated by analyzing the work-
load using our workload analysis tool RTT (explained
in section 2.3) and the statistical QoS performance pro-
file (RTD) discussed in Section 2.1. We first use RTT
to statically profile the workload to get the capacity re-
quirementCtotal for providing the QoS guarantees for
the workload during this epoch. If the capacity of each
pool is Cpool, then a conservative estimate of the num-
ber of pools that must be powered ON during this epoch
is ⌈Ctotal/Cpool⌉. Using the example in Figure 3, it re-
quires a server capacity ofCtotal = 1300 IOPS to guar-
antee a 10 ms response time for 100% of the workload,
while satisfying 99% of workload with a 10 ms dead-
line only requires a capacity of 300 IOPS. The remaining
1% is provided a much larger deadline (or is classified as
best effort), and uses either the spare capacity from that
provisioned for the 99% or a small additional amount.
Suppose, for instance, we assume each pool has capacity
Cpool = 300 IOPS, then provisioning 100% of workload
needs 5 pools while provisioning 99% of workload only
needs 1 active pool while keeping the remaining 4 pools
in the OFF states for power conservation.

The RTT scheduler partitions the workload to different
classes at runtime to obtain the required 99%-1% split,
and issues them to the underlying storage pools. Within
the collection of ON pools, requests are sent to the disks
in one pool as long as it can handle the workload. This
allows the disks in the remaining pool to stay in the lower
power idle state, until forced to become active to serve
a request from an overloaded disk among the currently
active disks.

Figure 4: Runtime scheduler for storage pools

2.3 Runtime Scheduler

Algorithm RTT (Response Time Threshold) is used to
dynamically partition the workload by incorporating the
response time requirement into the workload shaping
policy. In past work, a utilization-based strategy was pro-
posed for overbooking of CPU resources [9] and end-to-
end latency was used to profile network workloads in [5].
Both these algorithms are static methods that are used for
off-line analysis of the performance trace.

Let the primary class receive capacityc (from the pro-
filing as shown in Figure 3) and letr be its response time
bound. If the number of queued requests is higher than
c× r, an incoming request is redirected to the secondary
queue (with a more relaxed latency), since either this re-
quest or some other queued request will necessarily miss
its deadline. Once can show that for a given server capac-
ity RTT redirects the smallest number of requests possi-
ble with that capacity.

Figure 5: RTT decomposition of workload

Figure 5 shows the operation of the RTT method [6].
The Cumulative Arrival Curve shows the total number
of requests that have arrived at any time. An arriving
request causes a jump in the arrival curve. The Service
Curve models a constant rate server that completes re-
quests at a rate equal to its capacity as long as there are
requests in its queue. The Response Time Curve is ob-
tained by time-shifting the arrival curve by the latency

boundd; it indicates the time by which a request must
complete to meet its latency guarantee. Whenever the
Service Curve crosses the Response Time curve, a re-
quest must be redirected to the secondary class.

3 Evaluation

We evaluated our storage system using the simulation
tool DiskSim [2] with OpenMail, TPC-D and WebSearch
traces obtained from UMass Storage Repository and HP
Research Labs. The test system consists of several pools
of storage, in which each pool contains several IBM Ul-
trastar 36Z15 disks as shown in Figure 4. For this disk
model, the active power is 13.5 W and idle power is 10.2
W. In this experiment, the baseline system provisions
enough capacity and power resources to serve the entire
workload (100%) with a 20 ms response time guarantee.
By decomposing the workload using RTT, we filter out
the burstiest 1% of the workload and serve the remain-
ing 99% with the same performance requirement as the
baseline system.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Openmail TPC-D WebSearch

P
ow

er
 (

W
)

workload

Baseline
Decomposition

Figure 6: Power consumption for OpenMail, TPC-D and
WebSearch workload

In Figure 6, we compare the power consumption of the
baseline system and that obtained by the decomposition
of the workloads. For OpenMail, TPC-D and WebSearch
workloads, the power consumption of the baseline sys-
tem is 1.93, 2.88 and 1.90 times of that obtained by de-
composing the workload respectively while only serving
1% additional requests within 20 ms. We report the mea-
sured response times using the baseline system and the
decomposed workload in Table 1. We note that both fin-
ish their specified percentage within the guaranteed 20
ms bound. From the CDF of the response time, we can
see that for 10 ms, 15 ms and 20 ms, the decomposition
method works well with acceptable response time when
compared with the baseline.

Trace OM(base) OM(decom) TPC-D(base) TPC-D(decom) WS(base) WS(decom)
< 10 ms 99.87% 94.53% 99.51% 97.78% 99.92% 92.24%
< 15 ms 99.98% 98.38% 99.94% 98.85% 99.99% 98.58%
< 20 ms 100.0% 99.00% 100.0% 99.0% 100.0% 99.0%

Table 1: Response time performance comparison for OpenMail(OM), TPC-D and Websearch(WS)

4 Discussion

One key issue we need to solve is how to handle the 1%
requests that were filtered by RTT. Since the QoS is spec-
ified using a response time distribution (RTD), this small
percentage of requests can tolerate bigger latency com-
pared to the remainder of the workload. One possible
way is to provision the resource based on 99% of the
workload meeting its guarantees, and treat the remain-
ing on a best-effort basis. In this case, for the remaining
1%, we can monitor the spare capacity of the system,
and issue these requests to the system when some spare
capacity can be used. The benefit of this method is that
it provides the minimum initial resource allocation, and
uses free resource without extra resource cost. The draw-
back is that it needs to be careful not to compete with the
base 99% of workload when issuing the 1% requests.

A complementary approach is to allocate additional
resources for the 1%; because these requests have a
larger response time requirement than the 99%, the sum
of these two is still much smaller than provisioning the
entire workload with the smaller response time require-
ment. (Experimental results not shown here.) We are
currently exploring several alternative strategies to find
the best approach, but the underlying conclusion remains
valid that significant power savings are obtained by treat-
ing the 1% out-of-band.

In a multi-tier system, if the workload is decomposed
appropriately coordinated with other tiers, it will not only
conserve the power consumption of the storage system,
but will also improve the power efficiency of the other
tiers, such as the front end web servers.

5 Conclusion

In this paper, we propose a new graduated, distribution-
based QoS model and a runtime scheduler for power ef-
ficient storage servers. The approach addresses the dif-
ficulties of employing traditional dynamic power man-
agement techniques due to the bursty nature of typical
storage workloads, and the relatively long latencies in
spinning up commodity storage devices. We employ a
distribution-based QoS model to provide a larger space
to optimize the tradeoff between power and performance,
by noting that even a small relaxation in performance
guarantees results in significant reduction in capacity and
power consumption. The method is complementary with
current techniques based on predicting and exploiting pe-

riodicities in the workload patterns. Initial experimental
results show promising potential for reducing power con-
sumption using this approach.

References
[1] L. A. Barroso, J. Dean, and U. Hölzle. Web Search for

A Planet: The Google Cluster Architecture.IEEE Micro,
2003.

[2] J. Bucy and G. Ganger. The DiskSim Simulation Envi-
ronment Version 3.0.http://www.pdl.cmu.edu/DiskSim/,
2003.

[3] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle. Managing Energy and Server Resources
in Hosting Centers.In Proceedings of the ACM Sympo-
sium on Operating Systems Principles(SOSP), 2001.

[4] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and
F. Zhao. Energy-Aware Server Provisioning and Load
Dispatching for Connection-Intensive Internet Services.
In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2008.

[5] T. Dumitras and P. Narasimhan. Fault-tolerant middle-
ware and the magical 1%.In Proceedings of the Middle-
ware, 2005.

[6] L. Lu, K. Doshi, and P. Varman. Workload Decomposi-
tion for QoS in Hosted Storage Services.In Proceedings
of the Middleware MW4SOC Workshop, 2008.

[7] S. Rivoire, M. A. Shah, P. Ranganathan, and
C. Kozyrakis. JouleSort: A Balanced Energy-Efficiency
Benchmark.In Proceedings of the ACM SIGMOD, 2007.

[8] B. Schroeder, M. Harchol-Balter, A. Iyengar, and
E. Nahum. Achieving class-based qos for transactional
workloads. In Proceedings of the ICDE, Poster paper,
2006.

[9] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource over-
booking and application profiling in shared hosting plat-
forms. In Proceedings of the Symposium on Operating
Systems Design and Implementation(OSDI), 2002.

[10] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat. Currentcy:
Unifying Policies for Resource Management.In Proceed-
ings of the USENIX Annual Technical Conference, 2003.

[11] Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and
J. Wikes. Hibernator: Helping Disk Arrays Sleep through
the Winter. In Proceedings of the ACM Symposium on
Operating Systems Principles(SOSP), 2005.

