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Abstract

In this paper, we describe a design of a novel architec-
ture for RAID that uses an SSD as a large cache to con-
serve energy. This approach stems from the fact that
short term footprints are small enough to be efficiently
managed within an SSD. More specifically, in this study,
we consider two simple approaches to reduce the en-
ergy consumed in RAID. First, when a read happens in
RAID, a copy of the read request is copied to the SSD, so
that future requests may be serviced by the SSD. Then,
for writes, all writes are buffered in SSDs so that the
interval between requests may be increased reducing ac-
tivities at RAID disks. We incorporate these approaches
into a real implementation of a RAID 5 system that con-
sists of four hard disks and an SSD in a Linux envi-
ronment. Our preliminary results in actual performance
measurements using the cello99 and SPC traces show
that energy consumption is reduced by a maximum of
14%.

1 Introduction
The federal Environmental Protection Agency (EPA) re-
ported electricity consumption of U.S. data centers in
2006 was about $4.5 billion [2]. This is more than the
electricity consumed by all color televisions in the U.S.
These huge electricity bills are painful to the companies
that run these data centers. For this reason and, more
importantly, the environmental aspect, studies on energy
conservation has become an active research issue. In
this paper, we look into how energy can be conserved
at the storage system component of a system, which is
responsible for a large portion of energy consumption in
today’s data centers [17].

RAID is a popular form of storage system in data
centers since they can provide high performance and
fault-tolerance with relatively low cost. From the energy
conservation perspective, however, it is more challeng-
ing due to the philosophy behind RAID. Performance of
RAID comes from parallelism. RAID tries to even the
load of every disk, and this forces every disk to be active
even though the load may be light.

Recently, the Solid State Drive (SSD), a new type of

disk device that makes use of Flash memory, is being
spotlighted as a new storage medium due to its many
attractive characteristics. It is fast, lightweight, durable,
and noiseless, but most of all it is efficient in terms of
energy. Despite these attractive characteristics, there are
still a number of challenges that must be overcome for
it to be adopted as a main storage component in data
centers. Above all, the capacity of SSD is too small to
construct data centers and the cost per capacity also can
be too high for server systems.

In this paper, we describe the design of a novel archi-
tecture for RAID that uses an SSD as a large cache to
conserve energy while meeting their performance goal.
(Though any form of RAID is possible, we limit our
study to RAID 5; hence hereafter, RAID will imply
RAID 5.) If judiciously managed, this will allow the
hard disks composing RAID to be inactive most of the
time leading to energy savings. This approach stems
from the fact that even though overall storage size is
growing at a high rate, considerable space is being un-
used and even for used space, short term footprints are
small enough to be efficiently managed within an SSD.

More specifically, in this study, we consider two sim-
ple approaches to reduce the energy consumed by RAID.
For reads, when a read happens in RAID, a copy of the
read request is copied to the SSD, so that future requests
may be serviced by the SSD. Then, for writes, all writes
are buffered in SSDs so that the interval between re-
quests may be increased so that activities at RAID disks
may be reduced.

We have implemented these approaches in a Linux en-
vironment with real hard disks and an SSD deployed.
Our preliminary results in actual performance measure-
ments using the cello99 and SPC traces show that energy
consumption is reduced by a maximum of 14%, which
is not significant, but encouraging. With many more op-
timizations possible, more convincing results are antici-
pated.

The rest of the paper is organized as follows. Sec-
tion 2 discusses SSD basics and works related to this
study. We then describe in more detail the approach we
take in Section 3. Section 4 describes the implemen-
tation and the results. Finally, we summarize and give



directions for future work in Section 5.

2 Background and Related Work

In this section, we first present an SSD overview and
compare it with conventional disk drives. We then dis-
cuss several of the previously proposed energy manage-
ment techniques for disk arrays.

2.1 SSD overview

Flash memory is widely used in many small devices and
embedded systems because of its characteristics such
as low energy consumption, fast data access, and light
weight. Recently, many companies are producing and
marketing Solid State Drives (SSDs) that are based on
NAND Flash memory to adopt the many attractive Flash
memory features into personal and server computers.
NAND Flash memory-based SSDs are constructed from
an array of Flash memory modules that are accessed
in parallel. By employing parallelism and interleaving
among the modules that comprise the SSD, performance
of SSDs is considerably better than conventional hard
disks for random reads, while sustaining comparable
performance for other kinds of workloads. Performance
of SSDs has been consistently increasing recently and
is expected to continue increasing for some time in the
future.

The greatest advantage of SSDs, though, is energy ef-
ficiency. Since SSDs do not have any mechanical mov-
ing parts energy consumption of SSDs is much smaller
than disks. However at this time, SSDs have some lim-
itations as server system storage. First, the capacity of
SSD is not large enough for server computers. Currently,
the 128GB SSD is the largest one available in the mar-
ket, though surely in the close future, this is bound to
increase. The more serious problem is that of cost per
capacity; currently the cost per capacity of SSDs is no
match to that of hard disks. Hence, though there have
been approaches to construct RAID using only SSDs,
this can be an attractive solution to the few tech savvy
personal users but not for server systems in general.

2.2 Related works

There have been considerable work related to saving en-
ergy in the storage system. One approach that has been
proposed is to use multispeed disks that have two or
more rotational speed levels in active mode. Gurumurthi
et al. [6] and Carrera et al. [5] propose a multi-speed disk
that change their rotational speed dynamically, and they
make use of this feature for energy consumption.

Zhu et al. [16] propose an energy management
scheme that make use of two-speed disks for disk ar-
rays. Unfortunately, to date, this type of disk is not yet
readily available. Our approach is different from these

approaches in that we are making use of available tech-
nology, that is, SSDs, making our approach more practi-
cal.

Another common approach to save energy in conven-
tional disk arrays is to keep disks in standby mode as
long as possible. To achieve this goal, many different
data management schemes have been proposed. Some
previous studies have proposed migrating frequently ac-
cessed data to a particular disk(s) so that the other disks
can remain in standby mode longer [15, 16]. Some stud-
ies consider producing redundant data by making copies
of the original data to some free disk area to prevent un-
necessary spin up [8, 11]. If the requested data is in a
disk that is in standby mode and the replicated copy is
in one of the active disks, the request may be serviced
without spin up overhead.

Yet another common approach used for energy sav-
ings and improved performance is to make use of mem-
ory management algorithms for the cache on the con-
troller. Here, redundant data is stored in memory lo-
cated in the hardware disk array controller. Some stud-
ies have focused on prefetching schemes [3, 13], while
some studies have proposed caching schemes [4, 9, 17]
for energy efficient disk arrays. However, because of
the memory space limitation within the controller, the
replacement policy becomes the critical issue for both
caching and prefetching. Furthermore, it is very diffi-
cult, if not impossible, to expand memory in disk array
controllers. Hence, use of this approach may be limited.
In some sense, the approach taken in our study is simi-
lar to these approaches. First, we make use of redundant
data that is kept in the SSD. Second, the SSD is used as
a cache. Though conceptually the same, redundant data
is kept in a much faster and energy efficient medium that
does not require any spin up time. Furthermore, the SSD
as a cache is much larger than could be imagined with
the disk controller.

3 SSD cache in RAID
In this section we describe our idea in detail. First, we
describe our observations that serve as our motivation.
Then, we describe the design of our system.

3.1 Observation
Figure 1 shows two aspects of the HP cello99 trace,
which is a popular I/O trace used in many I/O related
studies. The dates of these traces are from November
29, Monday to December 4th, the Saturday of that week.
The aspect that we need to note is the footprint of the
trace relative to the whole data set size of the disk, de-
noted as the ’Footprint Ratio’ in the figure. The numbers
tell us that the actual footprint for each day is generally
less that 0.2% of the whole data set. That is, given a
day of activities, the range of blocks that are accessed



is very small relative to the data that the disk possesses.
The ’Footprint Size’ on the righty-axis reveals the ac-
tual size of the footprint. It shows that over a day’s ac-
tivities, only 30GBs or less are being accessed. What is
more, the dark column, which represents the newly in-
serted data each day in comparison to the data accessed
the prior day is even smaller, always being well below
10GBs.
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Figure 1: HP cello99 daily footprint ratio

Our motivation for this work is based on these obser-
vations. That is, they tell us that if we could take this
footprint, which is relatively quite small, into a more en-
ergy efficient medium and service requests from there,
benefits may be possible. More specifically, if the foot-
print could be cached in a low energy medium allowing
the high energy consuming RAID disks to reduce their
activities, then energy conservation would be possible.
Finding a cache of this size and satisfying the energy
requirement is the question at hand.

There can be several candidates that may be able to
satisfy this large cache requirement. The traditional hard
disk is one such candidate. However, a hard disk is a
high energy consumer, and if one disk is used to cache a
whole day’s activity, performance will obviously be de-
graded. Furthermore, the benefit of having a RAID, that
is, high performance and reliability, simply disappears.
Memory in the RAID controller could be another can-
didate. This, however, is prohibitively expensive. Fur-
thermore, RAM is volatile, hence the reliability of this
method comes into question. The third candidate could
be non-volatile RAM (NV-RAM), which resolves the
volatility issue of RAM in RAID controllers. Since NV-
RAM provides the memory interface, it would be easy
to deploy them as a cache. However, NV-RAM is still
very expensive and has limited capacity making it even
more infeasible than RAM.

The medium that is energy efficient, non-volatile,
large enough, and at the same time, able to provide high
performance under reasonable cost today is the Solid

State Drive (SSD). Due to these many merits, we em-
ploy the SSD as the large cache. Not only does SSDs
consume low energy, while providing high performance,
they are disks with the exact same disk interface as hard
disks, hence incorporating them to RAIDs is simple.
Only the controller needs to be aware of its existence.

3.2 System design

The system that we propose simply adds a single SSD
to a normal RAID configuration. The key design issue
is, then, how to cache the whole daily footprint so that
all other disks may remain inactive. Occassionally, the
RAID disks inevitably must awake. Ideally, this is when
all dirty blocks residing in SSDs should be written and
when all reads that are anticipated to happen in the future
should be prefetched.

In the work that we present here, we are not able to
provide all these features. Instead, we only consider a
very simple approach. Specifically, when the very first
read request of a block arrives at the controller, this read
is satisfied at the RAID disk. The block, however, is
copied to the SSD as well for possible later requests. For
writes, all write requests are satified at the SSD to extend
the RAID disk inactivity time. However, to prevent lose
of data during SSD failure, we make a mirror copy in
unused space of an active disk.

4 Evaluation

In this section, we discuss the evaluation of our sys-
tem. We describe the implementation, the environment
in which the evaluation was performed, and the results.

4.1 Evaluation environment

For our evaluation, we implement our system on the
Linux software RAID environment. Our environment
uses a SATA interface as we were not able to pur-
chase SCSI SSDs. Though SATA based RAID would be
slower than SCSI based RAID the idea presented here
is equally applicable. As hard disks composing RAID,
we use 500GB hard disks (ST3500320AS) produced by
Seagate, and for the SSD cache, we use a 32GB SSD
(MSD-SATA3035) produced by Mtron. According to
their data sheets, this SSD consumes 0.5W when idle
and 1.66-2.43W when reading/writing while the hard-
disk consumes 7.96-9.29W when idle and 11.16W when
reading/writing [10, 12]. All our implementations and
evaluations are done on the Linux 2.6.21.7. The orig-
inal RAID system consists of four hard disks and our
proposed system adds one SSD to that original configu-
ration.

The Linux software RAID is implemented in themd
(multiple device) driver and controlled by themdadm
application. We modified themdadm to consider the



SSD cache. Furthermore, the following additions are
made to themd device driver code.

We maintain a hash table to manage data in SSD.
Along with the original disk number and sector number,
we keep information such as it corresponding SSD sec-
tor number and its dirty/clean status in this hash table.
When a read request arrives, the SSD is first checked
through the hash table. If it is not found here, then the
request is serviced via the RAID hard disk. While so do-
ing, that sector is copied to the SSD and the hash table
is updated. If the read request is found in the hash table,
the request is serviced via SSD directly. If the request
is a write, the request is written on the SSD and on a
RAID hard disk that is awake, and again, the hash table
is updated.

The performance measure of interest is energy and re-
sponse time. To measure how much energy is consumed,
we take two approaches simultaneously. One is to im-
plement a daemon that monitors the disk status. There
are four statuses that our disks can be in, namely, sleep,
standby, idle, and active. This daemon distinguishes be-
tween sleep, standby and idle/active (that is, it cannot
distinguish active and idle states). At every 5 second
intervals it checks to see what state the disk is in and
records this into a separate disk aside from the RAID
hard disks and the SSD. In the other approach, we make
actual measurements of the energy being consumed us-
ing the HPM-300A, a power meter, which can measure
power consumed by the entire system [1]. For the re-
sponse time, we measure the time it takes for each re-
quest using thegettimeofday call before and after
the requests are sent, driven by the workload.

For the workload we replay two traces. One is the
cello99 traces that are widely used in I/O related re-
search [7], and the other is a trace of the SPC Web search
engine benchmark [14]. For the cello99 trace, three days
worth of traces (dated Dec. 2 (Thursday), 3 (Friday),
and 4 (Saturday)) are used. The former is write oriented,
while the latter is a read oriented workload. For each
of the workloads, we run the experiments at three dif-
ferent request rates representing the load of the system.
To represent low, medium, and high loads, we generate
100, 200, and 500 requests per second, respectively. The
requests are sent directly from the application to themd
device.

4.2 Results
The results of the experiments are presented in Figures 2
and 3. The former reports the energy consumed by the
two different RAID systems. Thex-axis is the load of
the system, that is, the rate at which the traces are run
and they-axis reports the Watt-hours consumed during
the run. The numbers reported here are the energy con-
sumed by the disks. These were obtained by measur-
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Figure 2: Energy consumption
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Figure 3: Average response time

ing the energy consumed by the system with the disks
off, for the duration of the time that the trace would
execute with the original RAID system, and then, sub-
tracting this value from the actual energy measurements
for executing the traces with the original RAID and the
SSD attached systems. The disk off state was acheived
by putting all the disks under the RAID configuration to
the sleep state using thehdparm command. Note that
more energy is being consumed for lower loads as it is
taking longer. The energy savings at low loads is greater
as well, saving approximately 14% for both the cello99
and SPC traces. For medium and high loads, the saving
are minimal being less than 10%.

The savings reported here are only modest. However,
they are encouraging in two aspects. First, through the
disk monitoring daemon, we were able to observe that
for most of the executions for both traces, the hard disks
in the RAID system rarely sleep. This is because of the
way the experiments are set up. We were not able to
use the actual timing information available in the traces
because our system is an actual implementation. Hence,
we used the load approximations to inject requests to the
system. This left no room for the disk to become idle,
hence sleep time was reduced. We are currently investi-
gating how to accurately model the request intervals of
the traces so that a more realistic workload could be re-
produced.

So one must wonder where all this savings is coming
from. This is the second encouraging factor. In our cur-
rent implementation, we are taking a simple and naive
approach for making use of the SSD cache as described
previously. Yet, the little activity that is being transferred



to the SSD is resulting in around 10% savings in en-
ergy. Even though disks are not going to sleep, their
activities are being reduced as some of these are being
done by the SSD. This is resulting in the energy savings.
With further optimizations such as intelligent prefetch-
ing schemes, further improvements should be possible.

Figure 3 shows the average response times observed
by all the requests. For the SPC workload, which is
largely composed of random reads, we see a roughly
17% improvement when the load is high and a small
improvement for medium loads. For the low load, per-
formance becomes worse by a small percent. For the
cello99 trace, we see that response time increases by
a maximum of 30% for the low load, though the other
loads fair better. An interesting observation for this
trace is that the response time decreases for higher loads.
Though we are taking a closer look, we do not have a
clear reason for this behavior though we can conjecture
that the way writes are being serviced has something to
do with it as the cello99 traces are write oriented and
writes are being requested asynchronously.

5 Conclusion

In this paper, we proposed a design of a novel archi-
tecture for RAID that uses an SSD as a large cache to
conserve energy while meeting their performance goal.
This design was based on our observation that short
term daily footprints are small enough and change slow
enough to be efficiently managed within an SSD of to-
day.

We incorporated our approaches into a real implemen-
tation of a RAID system using a Linux environment con-
sisting of four hard disks and an SSD. Our preliminary
results in actual performance measurements using the
cello99 and SPC traces show that energy consumption
is reduced by a maximum of 14%.

The performance numbers, though encouraging, were
not satisfactory. We believe there is much room for im-
provement. In our current implementation, we took a
simple and naive approach to making use of the SSD
cache. In order to make better use of this cache, we
need to incorporate a prefetching mechanism so that the
RAID disks may remain idle for long durations. We also
need to consider piggybacking reads and writes so that
much of the disk activities may be done when and only
when they are necessary. These, and more, are part of
the research that are currently being conducted.
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