
Analysis of Dynamic Voltage Scaling for System Level Energy Management

Gaurav Dhiman
Department of CSE

UC San Diego

Kishore Kumar Pusukuri
Department of CSE

UC Riverside

Tajana Rosing
Department of CSE

UC San Diego

Abstract
In this paper we show that in modern computing sys-
tems, DVFS gives much more limited energy savings
with relatively high performance overhead as compared
to running workloads at high speed and then transition-
ing into low power state. The primary reasons for this
are recent advancements in platform and CPU architec-
tures such as sophisticated memory subsystem design,
and more efficient low power state support. We justify
our analysis with measurements on a state of the art sys-
tem using benchmarks ranging from very CPU intensive
to memory intensive workloads.

1 Introduction
Power consumption has become an over-riding concern
in the design of computer systems today. Dynamic volt-
age frequency scaling (DVFS) is a power management
technique, that dynamically scales the voltage and fre-
quency (v-f) settings of the CPU so as to provide “just-
enough” speed to process the system workload. Scal-
ing down of voltage levels results in a quadratic reduc-
tion in CPUs dynamic power consumption. Many mod-
ern CPUs such as AMD Opteron and Intel Xeon are
equipped with DVFS capability [1].

Previous work (explained in section 2) on DVFS has
reported results that demonstrate its ability to achieve
energy savings while keeping the performance degrada-
tion under acceptable limits. Though the basic ideas in
these policies are scalable across architectures, it is dif-
ficult to understand how the energy savings and perfor-
mance change due to newer technologies and system de-
sign. For instance, policies proposed in [2] and [3] as-
sume that it is always beneficial to minimize the CPU
idle periods by scaling down the frequency. This as-
sumption was true when these policies were designed,
since the idle CPU used to consume a lot of power. How-
ever, it is no longer the case, since recent processors
have introduced efficient support for low power modes
that can reduce the power consumption to near zero.
This changes the applicability of such policies for cur-
rent generation of processors. In addition, the increas-
ing power consumption of other system components like
memory can significantly change the possible benefits of
DVFS. Hence, it is important to understand the benefits
of DVFS from the whole system standpoint.

In this work we show experimentally and through

analysis that the potential for energy savings with DVFS
has significantly diminished in newer CPU technologies
due to faster memory interface system, more efficient
support for low power modes in CPUs and higher rela-
tive power consumption of components other than CPU
(e.g. memory). We further provide a key insight that
simple power management policies based on low power
states of system components provide better system en-
ergy savings/performance tradeoffs across a wide range
of workloads than DVFS.

The rest of the paper is organized as follows. We dis-
cuss the related work in section 2 followed by the back-
ground on DVFS and the motivation for our work in sec-
tion 3. In section 4 we provide an overview of our evalu-
ation setup and elaborate on our experiments and results
before finally concluding in section 5.

2 Related Work
Previous DVFS-related work may be broadly divided
into three categories. The first category of techniques
target real time systems, where the task arrival times,
workload and deadlines are known in advance [4,5]. The
second category of techniques require either application
or compiler support for performing DVFS [6, 7]. The
third category comprises of system level DVFS tech-
niques that do not rely on any application/compiler level
support and target general purpose systems. The work
done in [2, 3] monitor CPU utilization at regular inter-
vals and performs dynamic scaling based on their esti-
mate of utilization for the next interval. The premise
is to shorten the idle period as much as possible using
scaling, since it is always beneficial to do so from en-
ergy savings perspective. As we show in our work, this
assumption is no longer true. The work done in [8, 9]
characterize the running tasks and accordingly make the
voltage scaling decisions only for those phases of the
tasks where it is beneficial. Further, the policies take
DVFS decisions based on how beneficial they are from
CPU energy savings perspective. We show that doing
so does not necessarily result in higher system level en-
ergy savings as well. In contrast, we show that simple
power management policies based on utilizing the low
power modes commonly available in modern processors
and memories can provide better energy savings and per-
formance tradeoffs.



Figure 1:Power Consumption and Execution Times

3 Background
Figure 1 illustrates system power consumption with and
without DVFS for a workload. Without DVFS the CPU
executes the workload at the highest frequency for time
t1 and the system consumes powerPsys1

. When not ex-
ecuting anything useful, the system/CPU is idle and con-
sumes powerPidle. With DVFS the power consumption
reduces toPsys2

, while the execution time increases by
tdelay from t1 to t1 + tdelay (shown ast2) because of
CPU operation at a lower v-f setting. The decrease in
power consumption depends on the degree of reduction
in voltage and frequency, while the increase in execu-
tion time of the workload (tdelay) is a function of how it
utilizes the CPU resources [8, 9]. We can further break
down the system power consumption into that of CPU
(Pc) and the other devices in the system (Pd). If we let
the power consumption of CPU at v-f settings 1 and 2 by
Pc1

andPc2
respectively, andPcidle

, when it is idle (as
shown in Figure 1), we can represent the energy savings
due to DVFS as:

EDVFS = Psys
1
t1 + Pidletdelay− Psys

2
(t1 + tdelay)

= (Psys
1
− Psys

2
)t1 − (Psys

2
− Pidle)tdelay

= (Pc1 − Pc2)t1 − (Pc2 + Pd − Pcidle − Pdidle)tdelay

= (Pc1 − Pc2)t1 − ((Pc2 − Pcidle) + (Pd − Pdidle))tdelay

= PRt1 − PEtdelay

= ER − EE (1)

PR/ER is the reduction in CPU power/energy consump-
tion because of DVFS. The second term (PEtdelay/EE)
represents the extra energy consumption that DVFS
causes relative to the case without DVFS. There are two
sources of extra power consumption for a system with
DVFS: 1) The difference between CPU power consump-
tion at the lower v-f setting and the idle CPU (Pc2−Pcidle),
2) The difference between device power consumption
when it is active and idle (Pd − Pdidle). The extra device
power consumption depends on how often the executing
workload accesses the devices. For instance, for a mem-
ory bound workload, the difference would be high, since
it would make the memory consume more power for the
extra time tdelay compared to an idle system. In contrast,
for a CPU bound workload, the difference would be neg-
ligible. The performance delay (tdelay) determines for

how long the DVFS based system consumes this addi-
tional power, and hence the extra energy consumption
(EE).

Clearly, the DVFS provides energy savings only as
long as ER > EE. When this inequality does not hold,
the system incurs performance overhead (tdelay) and
consumes more energy than when running at the high-
est CPU frequency. We next show how the performance
delay, low overhead of entry into sleep states and the
energy impact of other system components affects the
efficiency of DVFS.

Performance Delay (tdelay) A memory bound work-
load incurs lower performance hit at a lower frequency
setting, since it causes many CPU stalls due to memory
accesses [8,9]. For an ideal stall intensive workload, the
delay in execution is zero, and hence represents the best
case for DVFS. In contrast, the execution time of a CPU
intensive workload is entirely determined by the CPU
frequency. For an ideal CPU intensive workload, the in-
crease in execution time when switching from frequency
f1 tof2 can be estimated as (f1

f2

). Such a workload repre-
sents the worst case for DVFS, since it incurs the highest
possibletdelay.

In SPECCPU 2000 suite, mcf is the most memory
bound benchmark, while sixtrack is one of the most CPU
intensive [10]. To understand the correlation between
execution time delay and workload characteristics we
ran the benchmarks at different frequency settings on a
state of the art quad core AMD Opteron based OpenSo-
laris system. Table 2 shows the %delay incurred by the
benchmarks at the four settings supported by the proces-
sor. We also plot the %delay for an ideal CPU intensive
workload, which we label as the“worst” case, and for
the ideal stall intensive workload, which we label as the
“best” case. Sixtrack incurs a delay that is identical to
that of the worst case due to its high CPU intensiveness.
In contrast, for mcf it is relatively lower.

Figure 2:%delay for mcf and sixtrack

However, this delay is significantly larger than the
best case. This delay is much smaller on processors
with smaller caches and slower memory controllers. The



AMD processor we use has three levels of caches (L3
cache of 6MB), an on-die memory controller that op-
erates at 2.6GHz and sophisticated cache prefetching
mechanisms. Consequently, the memory bound phases
of mcf are much shorter on this processor compared to
running it on a processor with slower memory accesses.
For instance, running mcf on an older Intel quad core
Xeon (with two frequency settings: 2.6/1.9GHz, no L3
cache and an off chip memory controller), the delay of
mcf at 1.9GHz is just 6% from the best case (see Fig-
ure 2). This is much lower when compared to 30% de-
lay on the Opteron at the same frequency. Faster mem-
ory controllers and larger caches successfully mask the
memory latency making the execution more dependent
on the CPU frequency, thus limiting the possible energy
savings due to DVFS.

Lower idle CPU power consumption The support
for ACPI C-states or CPU low power states/modes has
evolved significantly over the last few years. The C1
state, where the clock supply to the CPU is gated, is so
efficient in modern processors, that it is currently used
by default in all major operating systems (eg. Linux,
OpenSolaris) when CPU is idle. Recently announced
Intel and AMD processors have also added support for
deeper C states which can signifcantly reduce the power
consumption of CPU during idle times [11]. For in-
stance, C6 power state can reduce the power consump-
tion to zero. The roundtrip overhead of such states is
in the order of justµ-seconds, thus allowing their fre-
quent use. The previous generation processors did not
have such C-state support, and thus consumed higher
power during the idle periods. But newer CPUs, that
are equipped with these states, can use them effectively
to decrease their idle time power consumption. This in-
creases the difference between the CPU power consump-
tion at lower v-f setting and idle time, or in terms of
equation 1, increases(Pc2 − Pcidle), and hence EE (see
Figure 1).

Power consumption of other system components
An important aspect that is often ignored by research
in DVFS is its impact on system level power savings.
This is important to consider since workloads can make
other system components consume more power for a
longer duration due to DVFS. For instance, our Opteron
system is equipped with 4GB DDR3 RAM, which ap-
proximately consumes 4.5W when it is idle/not being
accessed. However, when a memory intensive bench-
mark (like mcf) is running, the memory consumption in-
creases by 5W, i.e. it more than doubles. Thus, running
mcf at a lower frequency makes the memory consume
extra 5W for tdelay (see Figure 1), compared to a system
without DVFS. This means a higher value of(Pd−Pdidle),
or higher EE (see Figure 1).

Policy name Description
PM-1 switch CPU to ACPI state C1 (remove clock supply) and

move to lowest voltage setting
PM-2 switch CPU to ACPI state C6 (remove power)
PM-3 switch CPU to ACPI state C6 and switch the memory to self-

refresh mode

Table 1:Power Management Policies

4 Evaluation Setup and Results
Setup: To evaluate the effectiveness of DVFS for sys-
tem level energy savings we formulate a simple static
DVFS policy (s-DVFS), where workloads are executed
statically at different v-f settings. This is sub-optimal,
since one can potentially get better results by running
a workload at different settings based on its phase of
execution. However, as we show later, it does give a
fair idea of the possible savings in the best case for
most of the benchmarks. We also propose three simple
power management policies that are based on running
the workload at the highest speed and then reducing the
power during the idle periods (Pidle in Figure 1) through
different mechanisms. These policies are listed in Table
1. Each policy is successively more aggressive than the
previous one in terms of reducingPidle. PM-1 is ex-
tremely easy to implement as support for C1 states is
widely available in current processors. PM-2 relies on
efficient C6 state support, which has recently been intro-
duced in Intel and AMD processors. PM-3 is the most
aggressive as it puts the memory into self-refresh mode
thereby getting higher system level savings. We assume
availability of low overhead entry/exit from self-refresh
mode. The motivation of our evaluation is to compare
the performance of s-DVFS against these three policies.

For our experiments, we instrument a quad core AMD
Opteron processor based system running OpenSolaris.
The processor supports four v-f settings: 1.25V/2.6GHz,
1.15V/1.9GHz, 1.05V/1.4GHz and 0.9V/0.8GHz. For
workloads, we use integer and floating point benchmarks
from the SPECCPU 2000 suite. For comparison of s-
DVFS with the other PM policies in Table 1, we use the
model developed in section 3 (see equation 1). For in-
stance to compare s-DVFS and PM-1, we run the bench-
marks at all the frequencies and measure the correspond-
ing execution time and system power. In terms of Figure
1, we gett1 andPsys1

, i.e. time and power for the high-
est frequency (we use that for PM-1) andt2 andPsys2

for the lower frequencies(we use that for s-DFVS). We
measure power at the power outlet of the system using
a data acquisition system (DAQ), which collects power
samples every 300ms. These measurements allow us to
estimatePR, PE , t1 andtdelay (see Figure 1), and hence
EDV FS based on equation 1 for each frequency ’f’. In
other wordsEDV FS gives the energy savings of s-DVFS
over PM-1. Based on this, we estimate the %energy sav-
ings of s-DVFS over PM-1 at given frequency ’f’ as:



%EsavingsP M−i
=

EDV FSf

EPM−i

where i = 1,2,3 (2)

EPM−i varies based on the policy we are compar-
ing s-DVFS against, since each has different idle system
power consumption orPidle (see Table 1). We measure
the CPU and memory power consumption separately to
estimatePidle for PM-(1-3).
Results: Table 2 shows the comparison of energy
and performance results achieved for s-DVFS and poli-
cies PM-(1-3) across 18 SPEC benchmarks. The ”fre-
quency” column indicates the frequency (in GHz) at
which the processor is set for s-DVFS policy. The %de-
lay indicates the percentage by which the benchmark’s
execution time increases because of s-DVFS when com-
pared against policies PM-(1-3). The %energy savings
(%EsavingsP M−i

) column indicates the system level en-
ergy savings achieved by the s-DVFS policy compared
to the PM-(1-3) based on equation 2. Positive savings
indicate that s-DVFS at the given frequency is more en-
ergy efficient than the corresponding PM policy and vice
versa.

We can observe from Table 2 that across all the bench-
marks the performance delay because of s-DVFS is
large. For 10 benchmarks (bzip2, eon, gcc, crafty, gzip,
parser, vpr, sixtrack, mesa, ammp) the performance de-
lay is within 5% of the worst case (refer to Figure 2)
due to their high CPU intensiveness. For 6 benchmarks
(vortex, art, mgrid, twolf, swim, applu), it is within 15%
of the worst case, which means they comprise of some
phases of execution, which are memory bound. Only for
mcf and lucas it is more than 15%. Thus, in terms of per-
formance all the benchmarks except mcf and lucas take
a severe hit because of DVFS. The primary reason for
the high delay is the sophisticated memory subsystem of
the CPU we use (refer to section 3).

The %energy savings results indicate that s-DVFS is
also not very efficient from the perspective of energy
savings. Compared to PM-1, it achieves on an aver-
age a maximum of just 7% energy savings across all the
benchmarks, which comes at the cost of around 208%
increase in execution time. We observe two interest-
ing trends in these results: 1)Energy savings has lit-
tle correlation to benchmark characteristics: This hap-
pens due to %delay being uniformly high for most of
the benchmarks. Intuitively mcf and lucas should incur
higher savings due their lower tdelay. However, as iden-
tified in section 3, the memory bound workloads cause
the memory to consume extra energy when compared to
CPU bound workloads. This offsets their higher CPU
energy savings. 2)There is not much gained by running
benchmarks at lower v-f settings: Across all the bench-
marks, the average gain in energy savings for s-DVFS

Table 2:Comparison of s-DVFS and PM 1-3

Workload freq %delay
%EsavingsP M−i

PM-1 PM-2 PM-3

mcf
1.9 29% 5.2% 0.7% -0.5%
1.4 63% 8.1% 0.1% -2.1%
0.8 163% 8.1% -6.3% -10.7%

bzip2
1.9 37.1% 4.7% -0.6% -2.0%
1.4 85.7% 7.4% -2.4% -5.2%
0.8 222.9% 7.8% -9.0% -14.2%

eon
1.9 33.3% 4.0% -0.9% -2.3%
1.4 81.0% 6.6% -3.1% -5.8%
0.8 219.0% 7.1% -9.9% -15.1%

crafty
1.9 37.6% 4.7% -0.6% -2.1%
1.4 85.5% 7.5% -2.3% -5.1%
0.8 222.4% 7.9% -8.9% -14.1%

gcc
1.9 34.7% 4.3% -0.7% -2.0%
1.4 81.3% 7.4% -2.0% -4.6%
0.8 214.2% 7.9% -8.6% -13.7%

gzip
1.9 36.6% 6.4% 1.3% -0.1%
1.4 85.2% 8.4% -1.2% -4.0%
0.8 224.7% 7.9% -8.9% -14.1%

parser
1.9 35.8% 4.4% -0.9% -2.3%
1.4 82.1% 7.0% -2.7% -5.5%
0.8 214.8% 8.0% -8.6% -13.8%

twolf
1.9 35.1% 4.5% -0.8% -2.2%
1.4 80.5% 6.8% -2.8% -5.6%
0.8 211.4% 7.1% -9.6% -14.8%

vortex
1.9 34.2% 6.8% 2.0% 0.05%
1.4 80.5% 7.5% -1.8% -4.5%
0.8 205.3% 8.2% -7.9% -12.9%

vpr
1.9 35.5% 2.7% -2.7% -4.1%
1.4 82.1% 7.1% -2.5% -5.3%
0.8 216.4% 7.6% -9.2% -14.4%

(a) SPEC 2000 INT

Workload freq %delay
%EsavingsP M−i

PM-1 PM-2 PM-3

sixtrack
1.9 37.3% 5.0% -0.5% -2.0%
1.4 86.2% 6.0% -4.3% -7.2%
0.8 226.4% 6.8% -10.7% -16.1%

mesa
1.9 36.5% 2.9% -2.5% -4.0%
1.4 84.8% 5.8% -4.2% -7.0%
0.8 223.8% 7.2% -9.9% -15.2%

lucas
1.9 29% 4.3% 0.2% -0.9%
1.4 63.2% 6.7% -1.0% -3.1%
0.8 169.4% 6.1% -8.5% -12.9%

swim
1.9 31.8% 3.3% -1.2% -2.4%
1.4 75.2% 3.9% -5.0% -7.4%
0.8 198.4% 4.2% -11.9% -16.8%

art
1.9 32.4% 5.9% 1.2% -0.01%
1.4 76.1% 7.3% -1.7% -4.2%
0.8 202.4% 8.0% -8.0% -12.9%

mgrid
1.9 31.1% 2.9% -1.6% -2.8%
1.4 79.2% 4.1% -5.3% -7.9%
0.8 208.5% 4.3% -12.3% -17.4%

ammp
1.9 35.6% 5.0% -0.2% -1.7%
1.4 83.3% 6.6% -3.3% -6.1%
0.8 218.8% 2.0% -16.0% -21.6%

applu
1.9 32.5% 2.7% -2.1% -3.4%
1.4 73.9% 4.7% -4.4% -6.9%
0.8 193.9% 5.7% -10.3% -15.2%

(b) SPEC 2000 FP

by switching from 1.9GHz to 0.8GHz is just 2%. For the
same switch the increase in performance delay is around
180%. This indicates that the higher power savings at
lower v-f setting do not translate into higher energy sav-
ings due to higher performance delay at that setting.

In comparison to PM 2 and 3, the results of s-DVFS
are worse. Compared to PM-2, for majority of the
benchmarks, s-DVFS is actually energy inefficient. The
reason for this follows from our analysis on idle CPU



power consumption, which is now reduced to zero, in
section 3. Consequently, based on equation 1, EE be-
comes greater than ER. Compared to PM-3, it is even
worse, since policy-3 further lowers the idle system
power consumption by putting memory into self-refresh
mode.

To understand the energy savings under multi-
threaded environments, we experimented with multiple
instances of SPEC benchmarks. For illustration pur-
poses we have chosen three benchmarks with different
characteristics based on %delay results in Table 2: six-
track, art and mcf. Table 4 shows the %delay and %en-
ergy savings results for different combinations of these
benchmarks. We can see that for sixtrack there is no
change in the %delay results, since being CPU inten-
sive, the threads do not contend with each other for any
CPU resources. In case of mcf we observe a bigger drop
in %delay, since being memory intensive, the threads
contend for the L3 cache. This increases their memory
boundedness. For art, the drop is lower because of lesser
contention. The drop in %delay for mcf and art results in
higher energy savings compared to the single threaded
case. For instance, compared to PM-1, the maximum
average energy savings for s-DVFS is now 12% (7% in
single threaded case). However, that gets reduced to just
6% when compared to PM-3, while still incurring an av-
erage delay of 54%. Just like single threaded results,
these results also show that the lower v-f settings of-
fer inferior energy performance tradeoffs compared to
higher ones.

Table 3:Multi-threaded Results
Workload freq %delay

%EsavingsP M−i

PM-1 PM-2 PM-3

4-sixtracks
1.9 37.3% 7% 3.2% 2%
1.4 86.2% 11% 3.7% 1.5%
0.8 226.4% 10% -3.8% -8.2%

4-mcfs
1.9 15% 9% 8% 7%
1.4 31% 14% 11% 10%
0.8 90% 13% 5% 3%

4-arts
1.9 20% 9% 7.7% 7%
1.4 56% 13% 8.6% 7.3%
0.8 154% 14% 4.6% 1.7%

2-mcfs+2-six
1.9 20% 10% 8% 7.5%
1.4 44% 13% 8.7% 7.5%
0.8 117% 14% 5% 2.6%

2-arts+2-mcfs
1.9 22% 8% 6% 5.6%
1.4 50% 12% 8% 6.7%
0.8 149% 11% 0.1% -3%

Discussion: The results indicate that benefits of DVFS
from system level energy savings viewpoint has dimin-
ished a lot. We draw the following main conclusions
from these results: 1) Simple idle power management
policies achieve better system level energy performance
tradeoffs in majority of the cases. For CPU intensive
workloads, DVFS gets negligible energy savings at the
cost of large delay. For memory bound workloads, the
highertdelay because of faster memory subsystem and
higher extra memory power consumption they cause, has

decreased the potential benefits. 2) Lower v-f settings
are not beneficial for energy savings. DVFS policies, if
used, should employ higher v-f settings, since they get
almost equivalent energy savings at much lower delay.
3) On a system with slower memory controllers, and low
power system components, DVFS would still get good
system level energy savings and performance tradeoff.

5 Conclusion
In this paper we have provided insights into the effec-
tiveness of DVFS from a system level energy savings
perspective. We show through experiments on a modern
state of the art system, that a combination of changes in
platform and CPU architecture has resulted in diminish-
ing the energy savings potential of DVFS. We show that
simple policies based on low power modes of system
components can be fairly effective in providing good en-
ergy savings and performance compared to DVFS.

References
[1] http://www.intel.com/support/processors/xeon/sb/cs

012641.htm.

[2] M. Weiser, B. Welch, A. Demers, and S. Shenker,
“Scheduling for reduced cpu energy,” inOSDI, 1994,
p. 2.

[3] A. Varma, B. Ganesh, M. Sen, S. R. Choudhury, L. Srini-
vasan, and J. Bruce, “A control-theoretic approach to dy-
namic voltage scheduling,” inCASES, 2003, pp. 255–
266.

[4] G. Quan and X. Hu, “Minimum energy fixed-priority
scheduling for variable voltage processor,” inDATE ’02,
2002, p. 782.

[5] Y. Zhu and F. Mueller, “Feedback edf scheduling of real-
time tasks exploiting dynamic voltage scaling,”Real-
Time Syst., vol. 31, no. 1-3, pp. 33–63, 2005.

[6] D. Shin, J. Kim, and S. Lee, “Low-energy intra-task volt-
age scheduling using static timing analysis,” inDAC ’01,
2001, pp. 438–443.

[7] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt,
A. Veidenbaum, and A. Nicolau, “Profile-based dynamic
voltage scheduling using program checkpoints,” inDATE
’02, 2002, p. 168.

[8] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime
phase monitoring and prediction on real systems with ap-
plication to dynamic power management,” inMICRO,
2006, pp. 359–370.

[9] G. Dhiman and T. S. Rosing, “Dynamic voltage fre-
quency scaling for multi-tasking systems using online
learning,” inISLPED, 2007, pp. 207–212.

[10] S. Bird, A. Phansalkar, L. K. John, A. Mericas, and R. In-
dukuru, “Characterization of performance of spec cpu
benchmarks on intel’s core microarchitecture based pro-
cessor,”SPEC Benchmark Workshop, 2007.

[11] http://www.intel.com/technology/architecture-
silicon/intel64/45nm core2whitepaper.pdf.


