
Spread-Spectrum Computation

Derek G. Murray and Steven Hand
Computer Laboratory

University of Cambridge
{Firstname.Lastname}@cl.cam.ac.uk

Abstract
We observe that existing methods for failure-tolerance
are inefficient in their use of time, storage and compu-
tational resources. We aim to harness the power of idle
desktop computers for data-parallel computations, which
are particularly sensitive to failure, and propose spread-
spectrum computation as a suite of techniques to mitigate
failures in an internet-scale distributed system.

Spread-spectrum computation will use computation
dispersal algorithms to add redundancy to computations,
in order that they may tolerate a particular failure distri-
bution. In this position paper, we introduce computation
dispersal algorithms, providing examples of their imple-
mentation and applications.

1 Introduction

Failure-tolerant computing is inefficient. Existing meth-
ods waste time by repeating partly-completed tasks [4,
9]; computational resources by sending the same task
to several hosts [1]; or storage by taking regular check-
points [17]. However, machine failures are common [4],
and we propose that it is both feasible and more efficient
to deal with failures in advance of computation. There-
fore, we propose spread-spectrum computation, which
uses techniques from forward error-correction to add a
controllable amount of redundancy to the inputs of an
algorithm.

The aim of this work is to enlarge the scope of internet-
scale distributed computing. Currently, such approaches
are limited to solving embarrassingly-parallel problems
– i.e. those in which the overall problem can trivially be
divided into a large number of parallel tasks, with no de-
pendencies between the tasks [1]. When the success of
a computation depends on volunteer-provided resources,
failure tolerance is critical: volunteered computers may
crash or go offline at any time, and the internet connec-
tion may fail. Fortunately, since there is no dependency

between the tasks, the simple failure-tolerance mecha-
nisms (retry or send-to-many) work perfectly well.

Unfortunately, not all algorithms are embarrassingly
parallel. An important class of problems can be solved
using data-parallel algorithms, in which many parallel
processors cooperate to solve a task by each processing
a different piece of the input data [9]. There are depen-
dencies between the processors at the beginning and end,
when the data is respectively distributed and collected,
and there may be dependencies during execution in order
to exchange intermediate data (e.g. a halo-swap). Now,
if a node fails, it could stall the entire computation.

A workable system must achieve three properties:

Failure tolerance Jobs in the system will run on
volunteer-provided computing resources, which
may fail or be reclaimed at any time. Therefore,
such failure must not impair the progress of any job.

Latency tolerance The volunteer-provided computing
resources will be heterogeneous, and will be con-
nected by heterogeneous network links. Therefore,
“stragglers” in the system must not cause a bottle-
neck for any job.

Decentralised management We aim to scale this sys-
tem to millions of processing nodes. Therefore, it
would not be feasible to manage nodes and schedule
jobs centrally: we need decentralised management
tools.

Here we concentrate on failure tolerance, and provide
brief descriptions of the mechanisms for providing la-
tency tolerance and decentralised management in Sub-
section 3.2.

We propose a spread-spectrum approach, because
spread-spectrum techniques have a long history of im-
proving robustness in communication [16] and – more
recently – in storage [7]. A typical spread-spectrum ap-
proach involves each principal independently spreading



0

100

200

300

400

500

600

700

800

2008/05/11 2008/05/12 2008/05/13 2008/05/14 2008/05/15

A
va

ila
bl

e
no

de
s

Date

All nodes
Load < 20
Load < 10
Load < 5

Figure 1: Time series of node availability.

its input across a pseudorandomly selected ensemble of
resources – for communication, these would be frequen-
cies; for storage, block addresses. The randomness can
provide robustness and security, but some redundancy
is required in case two principals randomly choose the
same resource.

Spread-spectrum computation is a combination of two
ideas: computation dispersal algorithms (CDAs) (Sub-
section 3.1) and distributed random scheduling (Subsec-
tion 3.2). In this paper, we concentrate more on the re-
dundancy provided by CDAs, but include a discussion of
scheduling for completeness. We also provide examples
of algorithms to which spread-spectrum computation can
be applied.

2 Node failure trace study

It is well accepted that large-scale distributed systems ex-
perience failures [4, 9]. While they are online, however,
the failing nodes provide a worthwhile computational re-
source. In this section, we present an analysis of data
from the CoMon project, which records the state of all
nodes on PlanetLab [11]. Although PlanetLab does not
exactly model our target network of idle desktop comput-
ers, it represents a large distributed system that is affected
by transient node failures and network outages.

In this paper, we are concerned about each node’s
availability, which CoMon detects by pinging all nodes
every five minutes. We also consider load: CoMon re-
ports the five-minute load average of each node. In our
system, when a node takes much longer to respond than
others, it is considered to have failed, and heavier-loaded
nodes will (modulo processor heterogeneity) tend to be
slower. In each of our analyses, we differentiate between
a node simply being online, and having a load average
below a certain threshold (5, 10 and 20, respectively).

We begin by looking at node availability for a period
of four days, from the 11th to the 14th of May 2008, inclu-
sive. On these dates, the PlanetLab network comprised

0

0.2

0.4

0.6

0.8

1

8007006005004003002001001

P(
N

od
e

is
av

ai
la

bl
e)

Rank of Node

All nodes
Load < 20
Load < 10
Load < 5

Figure 2: Rank distribution of node availability.

Number of available nodes
Always

available
Transiently
available

(Effective)

All 339 184 (158.7)
Load < 20 210 311 (244.5)
Load < 10 103 394 (257.9)
Load < 5 42 339 (164.2)

Table 1: Counts of available nodes. “Always avail-
able” nodes are nodes for which no failure was detected.
“Transiently available” nodes are those that are avail-
able some of the time, but have at least one failure. The
effective capacity of the transient nodes is obtained by
summing the fractional availability for each transiently-
available node.

809 nodes. Figure 1 shows how system-wide node avail-
ability changes over time. The first thing to note is that
the number of online nodes is fairly steady (µ = 497.7,
σ = 3.2). By comparison, looking only at nodes with a
load average less than 5, far fewer nodes are available,
and the availability shows diurnal variations (µ = 206.2,
σ = 19.3). These variations suggest that the optimal
amount of redundancy may be a function of the time of
day.

Now that we have established that some nodes do fail,
we must show that the set of failing nodes provides a use-
ful computational resource (when those nodes are tran-
siently online). Figure 2 shows a rank distribution of
node availability. For each series, we can see that some
nodes are always available (where P = 1), some nodes
are never available (P = 0), and some nodes are tran-
siently available (0 < P < 1) – these are the nodes that
our failure tolerance mechanism attempts to harness. The
interesting aspect of Figure 2 is therefore the area under
the sloping part of each series.

The benefit of failure tolerance is that it enables
the transiently-available nodes to participate usefully in
computation. We make the assumption that the effective



computational capacity of a node is directly proportional
to the fraction of the time that it is available, if we ignore
processor heterogeneity. The effective computational ca-
pacity, c, of a set of nodes, S, is defined as:

c(S) =
∑
n∈S

P (n is available)

Table 1 summarises the effective capacity for each sce-
nario that we considered. For example, we see that the
effective computational capacity of the 184 nodes that
are transiently online (with any load) is equivalent to
158.7 always-on computers. For nodes with a load av-
erage less than 10, this rises to 257.9 effective nodes,
which is 71% of the total system capacity.

This preliminary study confirms that the transiently-
available PlanetLab nodes comprise a substantial propor-
tion of PlanetLab’s total computational resource. A fur-
ther concern is the effect of load on each node: Rhea et
al. performed a more detailed study, and discovered that
the latency of some operations could vary by more than
two orders of magnitude [14]. Their solution of adding
redundancy to improve performance agrees with our in-
tuition about distributed random scheduling in §3.2.

3 Spread-spectrum computation

Spread-spectrum computation takes a spread-spectrum
approach to parallel computation. As stated in the intro-
duction, its three main goals are failure tolerance, latency
tolerance and decentralised management. These are ful-
filled using two complementary techniques: computation
dispersal algorithms (which provide failure tolerance),
and distributed random scheduling (which provides de-
centralised management and latency tolerance). In this
paper, we concentrate on the computation dispersal al-
gorithms (Subsection 3.1), but give a brief description of
distributed random scheduling (Subsection 3.2) for com-
pleteness.

3.1 Computation dispersal algorithms
Spread-spectrum computation uses a computation dis-
persal algorithm (CDA) to add redundancy to the inputs
of an algorithm. It does this by adding encoding and
decoding steps to an existing parallel algorithm (see Fig-
ure 3).

We can define a CDA by analogy with Rabin’s infor-
mation dispersal algorithm (IDA), which encodes a file
of length L into n pieces, each of length L/m, such
that any m pieces are sufficient to reconstruct the orig-
inal file [13]. In effect, any subset of the pieces with
length totalling the original length of the file can be used

to reconstruct the original file. An optimal CDA, then,
encodes a computational input of size L into n pieces,
each of size L/m, such that processing any m pieces is
sufficient to obtain the correct result.

Borrowing from earlier work on algorithm-based fault
tolerance [8], we can show that an optimal CDA exists
for the problem of matrix-vector multiplication. Given
A ∈ Rm×p and x ∈ Rp, we might calculate y = Ax
by distributing each row, aT

i , of A to a processing node
i (where 1 ≤ i ≤ m), which calculates the dot product
yi = aT

i x.
If we wished to tolerate a single node failure, our CDA

could transform A into A′ ∈ R(m+1)×p such that:

A′ =
[

A
rT

]
where rT = −

m∑
i=1

aT
i

It is clear that:

A′x = y′ =

 y′1
...

y′m+1

 =
[

y
rT x

]

To tolerate a single node failure, we distribute each of
the m + 1 rows of A′ to processing node i (where 1 ≤
i ≤ m + 1). If node j fails (where 1 ≤ j ≤ m), we can
compute the missing yj by summing together all other
yi values. Chen and Dongarra show that this approach
generalises to tolerate k failures, by adding k specially-
weighted checksum rows [3].

Obviously, if a CDA is to be useful, it must allow ef-
ficient encoding and decoding. Constructing rT requires
O(mp) additions, which is relatively expensive com-
pared to the cost of performing the matrix-vector multi-
plication. However, many algorithms make it possible to
amortise the encoding cost, by reusing the encoded ma-
trix (see §4 for examples). More pertinently though, the
k-failure-tolerant encoding procedure requires O(mk) =
O(n2) operations to create the k checksum rows [3].

We therefore propose to use low-density parity-check
(LDPC) codes for use in this CDA, as they enable encod-
ing and decoding in O(n) operations [15], which allows
scaling to much larger problem instances. An additional
benefit of LDPC codes for this CDA is that the checksum
rows retain the sparseness of the data rows, unlike the
single-row example, which would generate a dense rT ,
even for sparse A. One disadvantage is that the LDPC
code introduces some overhead: if we begin with m par-
tial inputs, we require mf (f ≥ 1) encoded partial out-
puts to obtain the correct result. However, f → 1 as
m → ∞ (and as m/n → 1), and Plank and Thomason



Pa
rt

iti
on

Pr
oc

es
s

D
ec

od
e

R
ed

uc
e

En
co

de
single 
input

m partial 
inputs

n encoded 
partial inputs

≥m encoded 
partial outputs

m partial 
outputs

combined 
output

Figure 3: The data flow in a data parallel algorithm when a CDA is used. The CDA is responsible for the “Encode”
and “Decode” steps.

have observed that the overhead can be made less than
5% (for m = 1000 and n = 1500) [12].

We have shown an example CDA for matrix-vector
multiplication, but does this approach generalise? The
checksum scheme adapts naturally to all linear transfor-
mations (i.e. those that satisfy the superposition prop-
erty), which includes many other matrix operations and
signal processing techniques. Huang and Abraham
adapted algorithms for matrix multiplication and LU de-
composition [8], which could lead to other CDAs. The
search for further CDAs is the subject of our ongoing re-
search.

3.2 Distributed random scheduling

Distributed random scheduling works in combination
with computation dispersal algorithms to provide effi-
cient, scalable and load-balanced scheduling across an
internet-scale pool of idle desktop computers. In an
internet-scale distributed system, it is not feasible to have
a central scheduler that allocates parallel jobs to process-
ing nodes. Any such scheduler would have to monitor
the state of all processing nodes, and keep this informa-
tion up-to-date. The use of redundancy gives us more
flexibility in our scheduling mechanism.

Under distributed random scheduling, when a submit-
ting node wishes to submit a job to the system, it se-
lects n processing nodes at random, and sends the en-
coded partial inputs to these nodes. This provides two
attractive properties. Firstly, if all submitters choose pro-
cessing nodes at random, the overall system load will
be balanced, which implies efficient resource utilisation.
Moreover, in a heterogeneous system using an m-out-
of-n CDA for failure tolerance, the performance bottle-
neck will be the (n−m + 1)th slowest node, rather than
the slowest node, which improves latency tolerance and
hence performance. This concurs with previous obser-

vations that individual “stragglers” in a distributed sys-
tem greatly affect the performance of global computa-
tion [4, 14]. The CDA allows our system to produce a
result after m responses, so the slowest (n − m) nodes
do not delay the result.

Obviously, if it is infeasible for a central node to main-
tain state information about all nodes, it is even more in-
feasible to expect each submitter to maintain such a list.
We can achieve random selection by structuring the pro-
cessing nodes as an expander graph, and performing a
random walk on the resulting graph [10].

4 Potential applications

The best applications for the techniques described above
will be those which require a large amount of data to be
processed, such that it is infeasible to store the entire data
set on a single processing node.

Initially, we are investigating large scale information
retrieval tasks, such as PageRank calculation [2] and la-
tent semantic indexing [5]. The PageRank of a collection
of web pages may be computed as the principal eigen-
vector of the modified web page adjacency matrix, while
latent semantic indexing involves calculating the singular
value decomposition of the term-document matrix.

Calculating the principal eigenvector of a matrix can
be achieved by power iteration [6]. The computationally-
intensive part of this calculation is a repeated matrix-
vector multiplication, for which we presented a CDA
in Subsection 3.1. When used with web graphs, which
form sparse matrices, the LDPC-based encoding scheme
would be particularly appropriate. The singular value de-
composition and full eigendecompositions can be calcu-
lated using Lanczos iteration [6], which is a more sophis-
ticated version of this algorithm, but which is still based
on iterative matrix-vector multiplication.

We are considering several other applications. The



above CDA could also apply to boundary value prob-
lems, which may be solved iteratively using the conju-
gate gradient method. An adapted version of the CDA
could also apply to multi-dimensional Fourier trans-
forms, which have various applications in image analysis
and molecular dynamics, amongst other areas.

5 Related work

In the volunteer-computing space, this work compares
most directly with BOINC [1] and Condor [17], which
represent different approaches to harnessing idle desk-
top computers. BOINC (on which projects such as
SETI@Home are based) uses a task-farming approach
to solving embarrassingly-parallel problems. Since ev-
ery task is independent, it deals with failures simply
by sending out multiple copies of each task to differ-
ent processing nodes. Condor monitors when nodes in
a local network become idle, and performs matchmak-
ing between submitters and idle nodes. Wide-area dis-
tribution is made possible by “flocking”. Condor sup-
ports process-level checkpointing for failure tolerance,
although it does not generate consistent distributed snap-
shots for nodes executing in parallel. Moreover, although
it has a rudimentary (failure intolerant) coscheduling fea-
ture, this is limited to the local network.

The data-parallel aspect of this work compares with
MapReduce [4] and Dryad [9]. These respectively use
functional programming and dataflow graph abstrac-
tions to process large-scale data sets. Both rely on re-
execution as a failure tolerance method, which wastes
wall-clock time, especially if tasks are long-lived. Fur-
thermore, they are designed to work in large data centres,
but not internet-scale distributed systems, so they rely on
a centralised scheduler.

Our proposed system builds on algorithm-based fault
tolerance (ABFT), which is intended for large-scale par-
allel computation [8]. ABFT introduced the idea of en-
coding the inputs to a parallel computation and com-
puting with the encoded data, and our example CDA is
based on the checksumming procedure that its authors
describe. The focus of ABFT research has shifted to net-
works of workstations, and more advanced codes have
been presented recently [3]. We intend to develop this
work further by experimenting with more-efficient low-
density codes, and deploying our system in a widely-
distributed setting.

6 Conclusion

We have presented spread-spectrum computation: a set
of novel techniques that aim to make data-parallel pro-
cessing feasible on idle desktop computers. We plan

to build and deploy our system in various widely-
distributed settings, in order to investigate its real-world
performance. In addition, we plan to study the failure
characteristics of large-scale distributed systems, in or-
der to model the appropriate redundancy parameters for
efficient use of the system. Together, these projects will
bring us to a point where idle-desktop computers can ef-
ficiently and dependably be used for data-parallel com-
putation.

Acknowledgments

Thanks are due to our colleagues Jon Crowcroft,
Theodore Hong, Tim Moreton, Henry Robinson,
Amitabha Roy and Mark Williamson for their comments
on earlier drafts of this paper. We would also like to
thank the anonymous reviewers for their constructive
comments and suggestions.

References
[1] ANDERSON, D. P. BOINC: A system for public-resource com-

puting and storage. In Grid ’04: Proceedings of the 5th inter-
national workshop on Grid Computing (Washington, DC, USA,
2004), IEEE Computer Society, pp. 4–10.

[2] BRIN, S., AND PAGE, L. The anatomy of a large-scale hypertex-
tual Web search engine. In WWW7: Proceedings of the 7th in-
ternational conference on the World Wide Web (Amsterdam, The
Netherlands, 1998), Elsevier Science Publishers B. V., pp. 107–
117.

[3] CHEN, Z., AND DONGARRA, J. Algorithm-based checkpoint-
free fault tolerance for parallel matrix computations on volatile
resources. In IPDPS ’06: Proceedings of the 20th International
Parallel & Distributed Processing Symposium (Washington, DC,
USA, 2006), IEEE Computer Society, p. 76.

[4] DEAN, J., AND GHEMAWAT, S. MapReduce: simplified data
processing on large clusters. In OSDI ’04: Proceedings of the
6th symposium on Operating Systems Design & Implementation
(Berkeley, CA, USA, 2004), USENIX Association, pp. 137–150.

[5] DEERWESTER, S., DUMAIS, S. T., FURNAS, G. W., LAN-
DAUER, T. K., AND HARSHMAN, R. Indexing by Latent Se-
mantic Analysis. Journal of the American Society for Information
Science 41, 6 (1990), 391–407.

[6] GOLUB, G. H., AND LOAN, C. F. V. Matrix Computations
(3rd ed.). Johns Hopkins University Press, Baltimore, MD, USA,
1996.

[7] HAND, S., AND ROSCOE, T. Spread spectrum storage with
Mnemosyne. In Future Directions in Distributed Computing
(Berlin, Germany, 2003), Springer-Verlag, pp. 148–152.

[8] HUANG, K.-H., AND ABRAHAM, J. A. Algorithm-based fault
tolerance for matrix operations. IEEE Transactions on Computers
33, 6 (1984), 518–528.

[9] ISARD, M., BUDIU, M., YU, Y., BIRRELL, A., AND FET-
TERLY, D. Dryad: distributed data-parallel programs from se-
quential building blocks. In EuroSys ’07: Proceedings of the
2nd European Conference on Computer Systems (New York, NY,
USA, 2007), ACM, pp. 59–72.



[10] LAW, C., AND SIU, K.-Y. Distributed construction of random
expander networks. In Infocom ’03: Proceedings of the 22nd
Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (Washington, DC, USA, 2003), vol. 3, IEEE
Computer Society, pp. 2133–2143.

[11] PARK, K., AND PAI, V. S. CoMon: A mostly-scalable mon-
itoring system for PlanetLab. Operating Systems Review 40, 1
(January 2006), 65–74.

[12] PLANK, J. S., AND THOMAN, M. G. A practical analysis of
low-density parity-check erasure codes for wide-area storage ap-
plications. In DSN ’04: Proceedings of the international con-
ference on Dependable Systems and Networks (Washington, DC,
USA, 2004), IEEE Computer Society, pp. 115–124.

[13] RABIN, M. O. Efficient dispersal of information for security,
load balancing, and fault tolerance. Journal of the ACM 36, 2
(1989), 335–348.

[14] RHEA, S., CHUN, B.-G., KUBIATOWICZ, J., AND SHENKER,
S. Fixing the embarrassing slowness of OpenDHT on Planet-
Lab. In WORLDS ’05: Proceedings of the 2nd Workshop on Real,
Large Distributed Systems (Berkeley, CA, USA, 2005), USENIX
Association.

[15] RICHARDSON, T. J., AND URBANKE, R. L. Efficient Encod-
ing of Low-Density Parity-Check Codes. IEEE Transactions on
Information Theory 47, 2 (2001), 638–656.

[16] TESLA, N. US Patent 723188: Method of Signalling, Mar. 1903.

[17] THAIN, D., TANNENBAUM, T., AND LIVNY, M. Distributed
computing in practice: the Condor experience. Concurrency:
Practice and Experience 17, 2–4 (2005), 323–356.


