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Abstract was disclosed within a third-party driver shipped with
all versions of Windows XP: secdrv.sys, developed by
Macrovision as part of SafeDisc [31]. This vulnerability
llows non-privileged users to elevate their privileges to
ocal System, leading to complete system compromise.
Driver safety has garnered a lot of merited atten-

Device drivers today lack two important properties:
guaranteed safety and cross-platform portability. We
present an approach to incrementally achieving thes%
properties in drivers, without requiring any changes in
the drivers or operating system kernels. We describ% A : .
RevENg, a tool for automatically reverse-engineering aon over the years. m|crokernels run drivers In user
binary driver and synthesizing a new, safe and portablgp.ace [14], virtual machine-based approaches !solate
driver that mimics the original one. The operating Sys_dr!vers from the OS kernel [2(.)’ 12, 26, 19.]’ micro-
tem kernel runs the trusted synthetic driver instead of théjnvers reduce the amount of driver code run in the ker-

original, thus avoiding giving untrusted driver code ker- ge.l [13;],.|and bNO_OkT ;:_an mitigate (;he co?setquen?es of
nel privileges. Initial results are promising: we reverse- river failure by 1Solaling user-mode applications from

engineered the basic functionality of network drivers inthe driver [30]. Many of these approaches are not end-all

Linux and Windows based solely on their binaries, andSO.IUtionS’ but mainly ‘”“?Tme_diate steps—_some requ_ire
we synthesized safe drivers for Linux. We hope RevEngﬂ_”_Ver source code modifications, others mtrodu_ce SIg-
will eventually persuade hardware vendors to provide fficant performancg overheads, etc. More radical ap-
verifiable formal specifications instead of binary drivers;pr(.)aches am for d.r!vers that are safe by co.nstructlon,
such specifications can be used to automatically syntheqs"ng.J domaln-sp_ecmc Ianguages [29’. 21, 28]; these too
size safe drivers for every desired platform. require changes in how d_nvers_are written and do not of-
fer yet a solution for existing drivers.

Besides being unsafe, drivers are also non-portable,

1 Introduction because of the close driver/kernel coupling; this hurts
both consumers and vendors. Consumers are constrained

As far as kernel-mode code goes, device drivers are quite one or two OSes if they want good device support,
buggy. On Linux, for instance, device drivers hadse  and they are often forced to upgrade to new versions if
to 7x higher bug density than the rest of the kernelthey want to benefit from new peripherals. Vendors suf-
code [8]. Most drivers originate either with hardware fer as well, because the cost of porting and supporting
manufacturers—sole holders of the secrets of a device’drivers on multiple OSes is often prohibitive, so they re-
internals—or part-time open-source contributors. Writ-lease drivers only for one or two major platforms, thus
ing reliable software and keeping abreast of the latestestricting the market reach of their products.
changes in OS interfaces is not the core competence of Portability, like safety, has also received due attention.
a hardware manufacturer, so writing drivers is typically Attempts like the Uniform Driver Interface [27] had lim-
outsourced to third-party companies, which are by nowited success, mainly because they required close coop-
largely commoditized and often do not have a qualityeration between hardware vendors. Others, like NDIS-
reputation to uphold. Not surprisingly, drivers causedwrapper [24], were targeted only at specific subsystems.
85% of crashes on Windows XP [25] and over one mil- In this paper we present a new approach to both the
lion crashes on Windows Vista [23]. safety and portability challenges: RevEng automatically

It is ironic then that we are comfortable running such extracts from binary device drivers the protocol for in-
code inside our kernels, especially if we are at all parateracting with hardware and then encodes it into a safe
noid about viruses, spyware, and other malware. Buggylriver that can be run in an unmodified kernel. Until
drivers not only crash systems, but also compromise sehardware vendors themselves start providing open spec-
curity. Last year, for example, a zero-day vulnerability ifications, reverse-engineering can provide a solution.



2 Reverse-Engineering Device Drivers RevENg snoops all interactions between the driver and
the virtual hardware, traces the program counters of in-
Reverse-engineering consists of distilling from the bi-structions executed by the driver, the register values in-
nary device driver its essence: the embedded protocalolved in function calls, and all memory accesses.
it uses to interact with hardware. This protocol en- RevEngthen mines the obtained traces for correlations
codes what the driver must do to perform tasks like sendbetween inputs provided to the driver and its actions.
ing or receiving packets, setting screen resolutions, etcConsider the following very simple example: a partic-
RevENg proceeds in two phases: First, it records traceglar register on the network card always has véluéb
of hardware I/0 interactions, memory accesses, and ex&vhen a packet is sent, regardless of packet size or desti-
cuted instructions. Second, it combines the traces with &ation; this value switches @x6b any time a packet is
static analysis of the driver’s binary to obtain the protoco received. RevEng concludes that sending a packet most
state machine. This knowledge is then re-encoded intikely requires depositingx5b in that particular register
a safe synthetic driver targeted at the same or differenénd receiving a packet requires valxegb.
OS. For each class of devices, RevEng relies on a driver \We supplement trace analysis with static analysis of
template that contains the platform-specific boilerplatethe driver’s binary. Besides constant writes, drivers may
for that class; the extracted state machine is then used tgso compute values for the registers, such as a packet
“specialize” the boilerplate with the device-specific ele- |ength. To reverse-engineer this computation, we find the
ments. Templates can be generated with tools like Winprogram slices [33] for those instructions that perform
Driver [16]. Figure 1 illustrates RevEng's functionality: hardware register writes; the slice of such an instruction
consists of all the instructions that affect its operands.
~ Hardware Original binary The program counter traces are used to narrow down the
interaction trace driver execution path followed by the driver through the slice.
RevEng then extracts the logic that computes the value
written to the registers. To identify the state (i.e., drive
variables) used in the computation, RevEng uses the cor-
responding memory trace.

RevENng also tracks calls to specific kernel APIs, in
order to infer when drivers run asynchronous code via
timers, threads, or interrupts. All such operations must
be registered with the kernel via specific APIs, to give
the kernel the address of the corresponding handler. By
recording these calls in the trace, RevEng has sufficient
information to identify the asynchronous properties of
Device drivers can be viewed as state machines that efibe original driver and reconstruct them in the synthe-
capsulate the protocol for communicating with hardware sized driver. Some asynchronous operations might not
RevENg's goal is to extract this state machine. The stateBave an obvious cause-effect relationship; for example, a
of the automaton are snapshots of some of the driverélriver might decide to switch from asynchronous 1/O to
heap and stack variables. The transition conditions caRolling long after the trigger event occurred. However,
be predicates on hardware registers or direct kernel invoby identifying the state that was updated by the trigger
cations of the driver entry points, i.e., the driver funoio  €vent and later used in deciding the switch to polling,
visible to the OS. Finally, the transition actions result in ReVEng is able to correlate the trigger events with tran-
the driver generating output values that get written to thesitions of the driver’s state machine.
hardware registers and the kernel.

The driver’s internal organization and specifics of the2_2 Synthesizing New Drivers
data structures are irrelevant to the protocol state ma-
chine. Network driverA may batch incoming packets To obtain the synthetic executable driver, the slices
before delivering them to the OS, while driv& may  obtained in the previous ste§2(1) are converted by
deliver each one upon arrival; yet, both drivers imple-RevEng into C code, similar to how a decompiler would
ment the same driver/hardware protocol, and the hardeo it [9]. Memory accesses captured in the trace are re-
ware cannot distinguish betweehand B. Of course, placed with symbolic names in the generated C code.
user-perceived performance may differ substantially.  Stack accesses are replaced by local variables. Heap ac-

To trace the binary device driver's states and transi-cesses are matched with the traced memory blocks pro-
tions, we use QEMU [3], an open-source virtual machinevided by the kernel or allocated by the driver. Instruction
monitor. The driver runs inside a virtual machine, andand memory traces help resolve pointer aliasing ques-

Safe, portable Hardware
driver specifications

Figure 1: Reverse-engineering drivers with RevEng.

2.1 Extracting the State Machine



tions and allow memory-mapped I/O to be distinguishedtypes of steering as part of a feedback loop to dynami-
from normal memory accesses [10]. cally reverse-engineer unexercised paths.

The result is a set of C code blocks that represent
the reverse-engineered state machine. Executing the§
RevEng-generated code blocks would result in the same

traces as those recorded while snooping on the origingye hroperties are of interest to RevEng: equivalence,

driver. The code blocks implement all device-specific aC-completeness, safety, liveness, and portability.

tions, thus providing the coupling between the driver and Equivalence: To the hardware, /O operations per-

the device. For ipstance, these code sequences indicai ey by the synthesized driver should be indistinguish-
how to send/receive network packets or how to reset the p|a from those performed by the original driver. In our

NIC for the network device under study. _current prototype, this generally holds, except we can-

The boilerplate that forms a driver template consists, ¢ yet reverse-engineer all error recovery paths. So,
of the high-level logic of a driver corresponding to that j,, generating certain errors, the hardware could tell the
particular class of devices along with the glue code thagq grivers apart. Note that equivalence is not the same

couples the driver to the kernel. For instance, a netyg completeness, i.e., the property that the synthesized
work driver must be able to initialize the network card, driver can do everything the original one did.

send packets, and receive packets. For a given operating compjetenessit is not always feasible to completely
system, these operations are invoked via specific ke, orse_engineer a driver. Fortunately, partial reverse-
functions and fpllow_a specific sequence. All this COdeengineering can be quite useful (e.g., having all 2D ac-
would be contained in the _netwprk driver template. Cur-.qjeration in a graphics driver but perhaps not the 3D
rently, all tgmplates are w.r|tten In C_' . - one). Nevertheless, a future version of RevEng will be
Synthesizing a new driver consists of “pasting” the 4pje o run the synthesized driver in parallel with the
reverse-engineered C code blocks into the driver temgjgina| one, the latter suitably sandboxed in a virtual
plate, to specialize the boilerplate into a functional €@riv - -hine. Requests that cannot be handled by the syn-
specific to the device in question. Currently, this spe+agjzed driver are relayed to the sandbox; tracing the
cialization is still done manually, but we hope RevENG 10 gy ecytion can be used to augment the synthesized driver
eventually do it automatically. _ progressively, until it becomes complete. The state of the
The reverse-engineering process occurs incrementallyyq dgrivers has to be kept synchronized; since state vari-
A given trace represents one particular execution pathyyjes have the same layout in both drivers, state can be
through the original driver code, and many basic b|°CkSepricitIy copied to the target stack and heap, and execu-

may not have been exerciged.. These result in Missgo transferred to the not-yet-reverse-engineered slock
ing blocks of the sate machine; RevEng annotates such g rajses the question of when is a synthetic driver

blocks with special markers (preprocessor macros) indi'ready to replace the original? From a subjective user's
cating that they correspoqd to existing functionality thatperspective, it is when all the desired functionality has
has not been reverse-engineered yet. For example:  peen reverse-engineered. Objectively, completeness can
be measured as coverage of the original’s basic blocks,

Properties of Synthesized Drivers

if (reg2 < 10) {

pktlen = reg2 + 64 + hdrlen ; functions, or code paths. We must also take into account
di sable() ; loop and array boundaries, where tracing one iteration
out EIO” b( PADR, pktlen ) or one access may not be enough. For the drivers we
} ol oo e0) reverse-engineered, a naive workload was sufficient to
NOT_EXPLORED ; obtain a useful network drive4 has more details).

Safety: The synthetic driver arises from merging a

As additional executions cover previously-unexploreddriver template with a reverse-engineered state machine.
basic blocks, the functionality is progressively dis- We expect the driver template, whether generated manu-
covered, and the macros are replaced with reverseally or by tools (e.g., WinDriver [16]), to be checked for
engineered code blocks. correctness using formal methods (e.g., with SLAM [2]).

It is also possible to steer the original driver down un-This is a worthwhile investment, because templates can
exercised paths. For instance, we can compute path coibe reused across drivers of the same class.
straints using symbolic execution [18] and solve themto The state machine is assumed safe by construction.
obtain input values that will take the driver down the de-RevEng uses recorded traces and any trace that has led
sired paths [4, 17]. RevEng does not support such steeto a safety violation (e.g., that resulted in a crash because
ing yet. The most difficult paths to exercise are errorof a bad pointer) are not used in the reverse-engineering
recovery paths, and we intend to use (virtual) hardwargrocess. As long as all “bad traces” can be excluded
fault injection to reach them. We want to employ both as non-safe, the resulting state machine will be safe.



RevEng must be trusted to generate correct code, mucsiderably longer{3 days) and was error-prone, primar-
the same way a compiler is trusted. Devices with pro-ily because of the programmer-unfriendly code gener-
grammable firmware might be sensitive to missing errorated by RevEng and due to the API differences between
recovery paths or certain timing characteristics. In genlinux and Windows kernels. All the integration errors
eral, however, hardware and its drivers are indulgent withwere in the hardware-specific portion of the driver and
respect to timing [34]. did not affect the safety of the driver from the point of
Liveness: Infinite loops and deadlocks in drivers view of the OS. We are currently working on generating
would cause the kernel to hang; RevEng ensures thdtiendlier code and automating the process.
reverse-engineered loops can never become infinite and Even low coverage turned out to result in a useful
deadlocks are not encountered. In our instruction tracegriver. With the 5-second workload we obtained a basic
loops appear as a sequence of duplicated loop bodies. Wdock coverage of 48% and 56% for the Linux and Win-
found that the Linux driver base and the Windows Driverdows driver, respectively. In Windows, many low-level
Kit [22] have only five types of loops: ones with constant functions achieved full coverage. However, more com-
number of iterations (typically used to initialize regis- plex drivers will likely require higher coverage, if we are
ters), polling loops, delay loops, data transfer loops, ando obtain useful synthetic drivers.
structure traversal loops. RevEng reverse-engineers the
;‘|rst three au.tomatlcally, although the constant-iteratio 5 Discussion
oops are still kept unrolled. Data transfer loops and

structure traversal loops are currently deferred to manua‘}ve believe that safe synthetic drivers provide a bet-
inspection, but we are working on automatically generq, way to run privileged code that interacts with hard-

ating these too. - ware: they reduce downtime and security vulnerabilities,
Portability: Driver templates are easy to generate for 5y can help kernels promise higher data integrity. An-
common classes of devices, because these_dewces t‘?ndc}fher advantage is portability: imagine “instantly port-
operate in the same manner, e.g., aI.I g.raphlc car_d dnveriﬁg” drivers from one platform to another, to the bene-
set up a framebuffer and perform similar operations OMit of consumers, who can use all hardware devices with

it. Templates are OS-specific. In some cases, it may bg,eir fayorite OS, and the benefit of vendors, who no
worthwhile generating more specialized templates for §,,0er have to invest in providing drivers for multiple

particular line of devices from the same manufacturer latforms. The time and effort savings can be used to
enabling q_uu:k_er support.of_new models. We.have not_ Y€huild better hardware. All these benefits can be had with-
worked with highly specialized custom devices, which out changes to any OS kernel. However, there are still a

might invalidate some of these assumptions. few open questions, which we address next.
When a new version of a driver is released, a future

version of RevEng will perform a binary diff to identify .
the added code paths. Suitable workload will then be>-1  When Is A Driver RevEng-able?

generated to exercise the modified code paths, similarI)[-O reverse-engineer a driver, the semantics of its inter-

to automatic patch-based exploit generation [6]. face with the external world must be sufficiently well un-
derstood to connect cause (e.g., the invocation of an entry
4 Preliminary Results point) and effect (e.g, a sequence of hardware 1/0).
Operations such asoct| can blur this connec-
We reverse-engineered the Linux NE2000 8390 networkion. For instance, user-mode applications are often
device driver and generated a synthetic driver that camsed to configure graphics cards; these applications is-
reliably initialize the network interface, set the MAC ad- suei oct | s to the device. A click in the configuration
dress, and send/receive packets. Performance overhe&dJI may therefore cause a sequenceott | sin away
is negligible both in terms of throughput and latency.that is entirely user-dependent. We intend to augment
For state machine extraction we used a 500 KB tracd&revEng with data flow analysis that will help track the
obtained with a 5-second workload consisting of send-input from the configuration change to the hardware reg-
ing and receiving packets of different sizes. Specializ-isters, such that we synthesize a driver that preserves the
ing the template was done manually and teakhours. i oct | -based interface. This would enable the reuse of
The stripped binary of the synthetic driver is 12 KB com- the original proprietary user-mode applications.
pared to 18 KB for the original driver; the size difference For some devices (e.g., that are not part of a commonly
is mostly due to the reduced functionality. used class of hardware), producing a template may seem
We also used RevEng to port the Windows NE2000to require more effort than simply writing a driver. Nev-
8029AS driver to Linux, using the same workload asertheless, mandatory boilerplate is quite large (e.g., on
above. Manual specialization of the template took con-Windows, power management support must be included



for all plug-and-play devices, regardless of whether theySecond, QEMU does not fully emulate error conditions,
need it or not), so separating driver code into templatdike packet transmission errors or seek errors on disk
vs. device-specific code is anyway a good idea. drives; to reproduce such conditions, we would have to
interface QEMU with real hardware. Third, QEMU’s
PCI emulation approach [32] is limited to port I/O and
interrupts; however, modern PCI hardware also needs
In addition to the hardware protocol, RevEng also ob-support for DMA and PCI-Express. DMA support can
tains a specification of the hardware, as encoded in thee added using IOMMUs, while PCI-Express support
original device driver. This hardware specification, oncewould require the emulation of a virtual chipset interface.
translated into a formal language, can be used to ver- Our current tracing infrastructure introduces a two-
ify the assumptions of the original driver implementation fold slowdown in the driver that is being traced, because
against the hardware’s actual specification. of the disk accesses for writing the trace; there is no im-
To recover the semantics of registers, RevEng recordpact on code running outside of the driver, since it is not
multiple traces while perturbing input parameters (e.g./nstrumented, and the synthesized driver’s performance
which mouse button is pressed, the size of data packetts not affected either@). However, the tracing slow-
screen resolution). The 1/O differences between tracegown could affect RevEng’s ability to reverse-engineer
are then correlated to the changing parameter, in a Wayme-sensitive drivers. ACQUiSitiOﬂ devices, like sound
similar to opcode reverse-engineering [15]. Our currentcards, have certain real-time requirements; if tracing is
technique requires refinement, though. While effectivetoo slow, the driver may end up executing mostly recov-
at recovering register semantics of simple devices, sucBry code, due to timeouts. In such cases, we can use hard-
as a PS/2 mouse, aligning traces to compare registers baare tracing solutions [7] instead of virtual machines.
comes challenging for complex drivers: the same reg- Many of these challenges arise from the fact that we
ister might have different meanings depending on constart by reverse-engineering binary device drivers. How-
text (as in the case of register banks), and the traces ce@Ver, we view reverse-engineering as a stopgap measure,
be polluted by unrelated /0. We are working both onand we hope that a successful RevEng will persuade
techniques for better filtering of traces and statistical ap hardware vendors to provide specifications in a standard-
proaches to trace correlation. ized formal hardware abstraction language (HAL) in-
stead of binary drivers. Some of them already provide
informal specifications in datasheets. Others may need to
5.3 Legal Aspects reconsider how they develop their hardware interfaces, to

Some parts of RevEng resemble decompilation, becauddevent competitors from inferring sensitive information
we translate original binary code into C. This may haveabouttheir chips. Once HAL specifications are available,
legal implications, if the binary is protected by intellec- ReVENg can generate safe, verified drivers for any plat-
tual property rights, patents, or has an otherwise restricform of interest.
tive license. It could also prevent the use of RevEng as
a way to generate synthetic drivers for subsequent rediss  Conclusion
tribution. Employing RevEng for private use, however,
should not be problematic; once RevEng is fully auto-We proposed a new approach to solving the problem of
mated, private use could be the preferred usage scenarigafety and portability of device drivers, without requir-
Projects connected to reverse-engineering of propriing access to source code or any modifications to hard-
etary software, like Wine [1] or ReactOS [11], have hadware, drivers, or existing operating systems. RevEng
legal problems in the past. We believe this type of chal-takes the original binary driver, executes it in a virtual
lenges can be mitigated if the extracted code, which wenachine, and traces its interaction with hardware. The
now use to specialize driver templates, is treated as &aces are then used to extract the hardware interaction
mere specification of the driver, not as raw code to injecprotocol embodied in the driver. While RevEng can pro-
into the template. This would ensure no original codevide safety and portability today, our hope is that eventu-
leaks from the original driver to the synthetic one—anally hardware vendors will migrate to a model in which
approach that conforms to the clean-room principle [5]. they release formal specifications of the hardware inter-
action protocols, instead of closed binary drivers. Once
5.4 Challenges of Reverse-Engineering they do., the world will be a be_tter pla}ce: operating sys-
tems will crash less, new devices will be supported on
RevENg's current reliance on QEMU introduces certainall platforms, and the OS playing field will become more
limitations. First, it is not possible to recover drivers level. Hardware obsolescence will slow down and there
unless an emulation of the corresponding device existswill be fewer forced upgrades and unjustified costs.

5.2 Extracting Hardware Specifications
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