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Abstract

Current weak consistency semantics provideworst-case
guarantees to clients. These guarantees fail to adequately
describe systems that provide varying levels of consis-
tency in the face of distinct failure modes, or that achieve
better than worst-case guarantees during normal execu-
tion. The inability to make precise statements about
consistency throughout a system’s execution represents a
lost opportunity to clearly understand client application
requirements and to optimize systems and services ap-
propriately. In this position paper, we motivate the need
for and introduce the concept ofconsistability—a uni-
fied metric of consistency and availability. Consistability
offers a means of describing, specifying, and discussing
how much consistency ausually consistent system pro-
vides, and how often it does so. We describe our ini-
tial results of applying consistability reasoning to a key-
value store we are developing and to other recent dis-
tributed systems. We also discuss the limitations of our
consistability definition.

1 Introduction

Internet applications tend to stress availability rather than
consistency, and so we believe it is important to be able
to describe the trade-offs present for such applications.
Towards that end, we introduce the notion ofconsista-
bility which provides a way of describing how the con-
sistency that a system provides may change during its
execution. Our inspiration for consistability comes from
the performability metric [20] that defined a unified met-
ric for examining the fraction of time a system provides
a given level of performance.Performability describes
how often a system operates above some performance
level. An example performability statement is that 90%
of the time the system processes at least 1000put re-
quests per second and 99% of the time it processes at
least 500. Performability captures the notion that a fault-

tolerant system which degrades gracefully will offer dif-
ferent levels of performance, at different times, depend-
ing on the system’s health. Performability also captures
the notion that the system may be considered unavail-
able, or to have failed, if a certain minimum level of per-
formance is not achieved. Our hope is that consistability
will allow us to make similar statements about systems
such as the following: The system offers linearizability
90% of the time, and eventual consistency (within two
hours) 99.9% of the time.

The tension between strong consistency, availability,
and partition-tolerance is well-known (e.g., [9]). How-
ever, it is possible to offer weak consistency with good
availability and partition-tolerance (e.g., [6, 7, 5]). Un-
fortunately, there is a dearth of language with which
to precisely describe such weakly consistent systems.
Whereas we can describe how performance and avail-
ability of a system degrade in the face of failures, we
cannot describe the consistency of a system that isusu-
ally consistent.

Consistency definitions provideworst-case guaran-
tees. Such guarantees fail to capture the possibility
that during failure-free periods the system canprovide
stronger guarantees. Beyond this, the normal language
of consistency does not allow us to describe the fact that
a system mayachieve better consistency than the worst-
case guarantee. We want to be able to describe and
understand a system that provides distinct consistency
classes throughout its execution, and that offers different
applications distinct, appropriate consistency guarantees.

Part of our motivation for defining consistability
comes from our experience in specifying and design-
ing a global-scalekey-value storage (KVS) system. By
key we mean some client-specified unique string, by
value we mean a client-specified binary object of arbi-
trary size, and bystore we mean it offers aput-get in-
terface. The design goals for the KVS, in order, are
as follows: low-cost, availability, reliability (including
disaster-tolerance), performance, and as strong consis-



tency as possible. To achieve disaster-tolerance, the KVS
must necessarily span multiple data centers. The design
goal of availability is in tension with the goals of disaster-
tolerance and strong consistency. Effectively, we want
the KVS to providebest effort consistency: i.e., strong
consistency in the face of most failures, and weaker con-
sistency during a network partition or other large corre-
lated failure.

The definition of consistability and approach to evalu-
ating consistability that we describe in this position paper
is an initial step towards developing a language capable
of precisely evaluating usually consistent systems. As a
metric, consistability offers an avenue by which to com-
pare and contrast different techniques for implementing
similar weak consistency guarantees. Consistability has
helped us understand the affect of failures on the distinct
consistency guarantees that the KVS can offer. This is es-
pecially useful to us since we intend the KVS to support
many distinct client applications, each with slightly dif-
ferent consistency requirements; consistability will allow
us to understand which applications can be supported
with what availability.

2 Related Work

We focus our discussion of related work on consistency
guarantees that we considered during the design of the
KVS. We discuss other additional related systems in the
case studies section§4 and in the discussion section§5.

Lamport’s definition ofatomic registers provides the
basis of most definitions ofstrong consistency [15].
Atomic registers guarantee that all reads and writes to
a single object can be ordered, in a manner consistent
with their relative orderings, such that reads always re-
turn the value of the latest completed write. Linearizabil-
ity [11] and transactions [10] define strong consistency
of operations that affect multiple objects. In this paper,
we limit our discussion of consistability to an individual
object. Lamport also definesregular and safe registers
that have weaker consistency [15]. Regular registers al-
low a read operation concurrent to write operations to re-
turn the value from any concurrent write, or the previous
completed write. Safe registers allow a read operation
concurrent to write operations to return any value.

There are many forms ofweak and eventual consis-
tency; we discuss some examples of each to provide
context for consistability. In the TACT project, Yu and
Vahdat propose three axis along which consistency can
be weakened to improve availability: numerical-error,
order-error, and staleness [25]. PRACTI [3] also of-
fers tunable consistency levels. Thebounded ignorance
techniques of Krishnakumar and Bernstein [14] permits
concurrent transactions to complete while being ignorant
of some bounded number of other concurrent transac-

tions. K-atomic registers, proposed by Aiyer et al. [1],
bound the number of distinct recently completed writes
that may be returned by a read operation. Malkhi et al.
proposed probabilistic quorums [19] with which Lee and
Welch have shown how to build aP -randomized regis-
ter [17] whose staleness follows probability distribution
functionP .

In eventually consistent systems, a write operation
may return before its value propagates throughout the
system; in such systems, once all transient failures have
been resolved, and no further writes are issued, replicas
converge to a consistent state [23]. Examples of research
on weak consistency in the presence of network parti-
tions include the following: Davidson et al. [6] survey
partition-aware database techniques, Babaoğlu et al. de-
veloped partition-aware systems [2], and Pleisch et al.
have clarified the partitionable group membership prob-
lem [22]. The definitions ofP -registers,K-registers,
andconits in TACT, do not explicitly guarantee best-case
consistency in well-conditioned executions. These defi-
nitions therefore lack the sense that as concurrency, or la-
tency, or the number of failures increase, the consistency
provided gracefully approaches the worst-case guaran-
tee.

3 Consistability

We define consistability for a single object in three steps.
First, we define consistency classes and failure scenar-
ios. Then we describe how to map failure scenarios to
consistency classes. Finally, we describe how to calcu-
late consistability given this mapping.

3.1 Consistency classes & failure scenarios

To define consistability, all of the possible consistency
classes achievable must be enumerated. LetC be the set
of all consistency classes the system can provide. Acon-
sistency class is a definition of some form of consistency,
for example, atomic/regular/safe [15], linearizable [11],
or some weaker variants (e.g., [25]).

The consistency classes inC can be partially or-
dered. For example, atomicity is stronger than regular-
ity [15], K-atomicity is weaker than atomicity [1], but
K-atomicity and regularity are not comparable. Figure 1
provides an illustrative example of a lattice of consis-
tency classes that includes the traditional register con-
sistency classes, the recentK-variants of those classes,
and some eventual consistency guarantees based on time
in seconds. In this example lattice, none of the consis-
tency classes for traditional andK registers are compara-
ble with any of the consistency classes for eventual guar-
antees.
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Figure 1: Lattice of consistency classes.

Let F be the set of all possible failure scenarios. A
failure scenario is a description of a specific failure pat-
tern; failure scenarios are, by definition, disjoint. Exam-
ples of failure scenarios include “no failures,” “all fail-
ures of a single server and no other failures,” “a network
partition and no other failures,” and “all failures of a sin-
gle server and a network partition.”

3.2 The mapping

To calculate consistability, every failure scenario must be
mapped to some subset of all of the consistency classes:

C : F → 2C

Given a failure scenario,f , the mapping,C (f ), indicates
the set of consistency classes achievable by the system
in f . If the system provides no service in a failure sce-
nario f , thenC (f ) = ∅. The ∅ corresponds to either
unavailability or inconsistency. The mappingC (f ) may
mapf to consistency classes that are not comparable. For
example, a system may provide both 2-Regular and 60s-
Eventual for some failure scenario. This mapping is an
example of combinatorial fault tolerance modeling [24]:
it maps all possible failures of interest to system behav-
iors.

We say that a consistency classc is maximal for a fail-
ure scenariof , if there is no consistency class inC (f )
that is stronger thanc. Based on the partial order among
the consistency classes, one could define the mapping
from failure scenarios to the set of maximal consistency
classes which are achievable. For such an alternative
mapping, if there is a total order among all consistency
classes inC then each failure scenario would map to ex-
actly one (maximal) consistency class.

3.3 Consistability defined

Consistability is the expected portion of time that a sys-
tem provides each consistency class. To provide such
an expectation, like reliability and performability met-
rics do, we need probability distributions over the failure
scenarios. LetFProb(f ) denote the probability that the
system is in a given failure scenario. We compute the

probability of providing a consistency class,CProb(c),
by summing the probabilities of each failure class which
maps to the consistency class:

∀c ∈ C ,CProb(c) =
∑

f∈F

FProb(f ) if c ∈ C (f ),
0 otherwise.

Because failure scenarios are disjoint,∑
f∈F FProb(f ) = 1. However,

∑
c∈C CProb(c) ≥ 1.

This is because the mapping from a failure scenario to a
consistency class can be one-to-many.

There is no need to include every possible consistency
class inC : only the ones that a client may care about,
that an application can effectively use, or that the system
may actually provide are of interest. OnceC is decided,
the system designer may be able to define a single ap-
propriate failure scenario for each consistency class. I.e.,
figuring out the appropriate members ofC andF may be
an iterative process. To account for correlated failures,
failure scenarios must be defined that include many dif-
ferent failures and the probability distribution over fail-
ure scenarios must capture this correlation.

We expect that the practice of mapping failure scenar-
ios to consistency classes will help designers better un-
derstand all of the capabilities of their distributed sys-
tems and protocols. Unfortunately, it requires signifi-
cant effort to produce an actual consistability measure
because it is difficult to determine the probability distri-
butions over all failure scenarios. This is similar to the
situation designers are in when they work with fault tol-
erance and reliability today: the former is easy to quan-
tify and reason about during design; whereas the latter is
difficult to evaluate and measure, and applies only nar-
rowly to a specific, actual system instance.

4 Case studies

In this section, we present a key-value store system that
we are building as a case study to illustrate the various
consistability concepts presented in the previous section.
We also discuss other prior systems that make interesting
consistability choices.

4.1 Key-value store: Design

Figure 2 illustrates the system model for our key-value
store (KVS). It shows three data centers (X, Y, Z) with
their respective storage and proxies. It also shows six
clients (a to f) that usually access the system through
their closest proxy. In this position paper we ignore the
design decisions about metadata (i.e., how clients deter-
mine which storage nodes host fragments for some key),
but we do discuss whether the metadata service is avail-
able or not.



Client

Proxy

Storage

a b

X

Y

Z

c d

fe

Figure 2: System model.

For the sake of availability, the KVS must allowget
andput operations during a network partition and handle
reconciliations when the network reconnects. To cost-
effectively achieve reliability, values are erasure-coded
across multiple data centers in such a manner so that
each data center has sufficient erasure-coded fragments
to recover the value. Theput operation offers best effort
consistency and disaster-tolerance. Once the metadata
service selects the storage nodes for a particular opera-
tion, that operation will not complete until it has written
to or timed out on all the selected nodes. Theget opera-
tion offers best effort availability: if it cannot retrievethe
latest version of the valueput into the system, it attempts
to retrieve prior versions until a value is returned (or all
prior versions have been tried). There is a clear tension
between the availability and disaster-tolerance require-
ments. Roughly speaking, we have designed a protocol
that is usually consistent, and only degrades to worst-
case consistency when specific failures occur.

4.2 Key-value store: Consistability

For the KVS, we consider the following failure scenar-
ios: (1) There are at mostm disks unavailable (and the
erasure code tolerates up tom disk failures). (2) More
thanm disks are unavailable. (3) A data center has failed
catastrophically. (4) The data centers are partitioned into
multiple groups. (5) The metadata service is unavailable.
For the sake of brevity, we do not discuss composite fail-
ure scenarios (e.g., failure scenarios (2) and (4) occurring
simultaneously).

Failure scenario (1) is effectively the “no failures” sce-
nario because the erasure code tolerates up tom disk
failures. Failure scenarios (1) and (3) map to the reg-
ular consistency class. In both cases, aget operation
concurrent to aput operation will return some value be-
ing put concurrently, or the most recent completedput

value. For case (1), theget operation will return either

the prior value or the value beingput concurrently, de-
pending on message ordering at each server. For case (3),
regularity is achieved because each data center has suffi-
cient erasure-coded fragments to recover a value and so
the most recentlyput value is available after such a catas-
trophe. Even though only regularity can be provided in
these failure scenarios, there are many executions that
will achieve atomicity. For example, if every client pref-
erentially selects the same node for metadata services,
then the operations will achieve atomicity.

Failure scenarios (2) and (4) map to the same consis-
tency class:K-regularity, aget returns one of theK
most recent valuesput [1]. In both scenarios, some re-
cently put values may be lost because too few erasure-
coded fragments are available forget to recover them.
Unfortunately, without bounding the number of new, or
concurrent,put operations,K = ∞. For failure scenario
(4), given a bound ofp incompleteput operations, andd
data centers, we can setK = p · d, as each data center
could be in its own partition.

Failure scenario (5) maps to the null set. In general,
mapping to the null set means that the system is ei-
ther unavailable or inconsistent. For failure scenario (5),
the system is simply unavailable since no operations can
complete.

We do not have probability distributions for the possi-
ble failure scenarios and so cannot compute the overall
consistability of the KVS system. Instead, our current
focus is on showing that for each of the failure scenar-
ios, the KVS protocol does indeed map to the consis-
tency class we have identified. We first use the TLC [16]
model-checker to verify that the consistency class se-
mantics are obeyed for small instances of the protocol,
and then use hand-proofs to prove that the consistency
class is satisfied. We have described the KVS protocol
along with some consistency classes and failure scenar-
ios in TLA+ and model-checked them using TLC. Our
success in model checking the specification has been lim-
ited by the size of the system. For the failure-free case
with a single data center, we have verified thatput and
get operations are atomic. However, verifying the ex-
tended specification for multiple data centers with dis-
tributed metadata service takes too long to check all pos-
sible states. We have used TLC to verify that failure
scenarios (1) and (3) map to regularity, and used hand-
proofing to prove it. For failure scenarios (2) and (4) we
hand-proved that the protocol only provides∞−regular
consistency class, unless the number of disconnectedput

operations are bounded. Further, we hand-proved that by
using failure detectors, or by restricting the number of
disconnectedput operations, the KVS protocol provides
K-regularity for an appropriately chosen value ofK.



4.3 Dynamo and PNUTS

There are other systems that try to offer best-effort con-
sistency and so provide better consistency when net-
works are mostly-connected and responsive than when
failures are present, or believed to be present. Unfortu-
nately, the worst-case nature of most weak consistency
guarantees discourages discussion of how much consis-
tency a system provides in the common case.

Dynamo [7] uses ahinted handoff mechanism to tol-
erate temporary node or network failures. If one of the
nodes responsible for storing an object (say A) is unavail-
able, data is stored at a different node (say B). B will later
attempt to deliver the object to A, when it sees that A has
recovered. In the meanwhile, if a reader attempts to read
the object from A, before A receives the updated version
from B, the reader can get an out-of-date value. We be-
lieve that the failure-free scenario in Dynamo maps to an
atomic consistency class. The failure scenario involving
a bounded number of node failures/unavailability maps
to regular consistency class. Finally, the failure sce-
nario involving a number of node failures that exceeds
the bound leads to unavailability.

PNUTS [5] explicitly exposes the consistency classes
it offers via an extensive storage interface:read-any,
read-critical, read-latest, write, and test-and-set-
write. In PNUTS, applications implicitly specify por-
tions of their consistability requirements via their use of
the storage interface. The failure scenarios that map to
each consistency class and that ensure the availability
of certain storage interfaces depends on how PNUTS is
configured and used.

4.4 Beyond one third faulty BFT

Two recent Byzantine fault tolerant (BFT) systems pro-
vide interesting consistability. Li and Mazieres [18] de-
veloped BFT2F, which is a BFT protocol that offers dif-
ferent guarantees depending on whether fewer than one
third of the replicas are faulty (linearizability), or if fewer
than two thirds of the replicas are faulty (fork∗ consis-
tency). Similarly, Chun et al. [4] developed Attested
Append-only Memory (A2M). A2M provides safety and
liveness if fewer than one third of the replicas are faulty,
but only safety if fewer than two thirds of the replicas are
faulty. Liveness in this sense could be thought of as per-
formability requirement. The set of failure scenarios are
the same for both of these systems, but the mapping to
consistency classes for a single failure scenario differs.

5 Discussion

An open problem with consistability is how to reason
about the consistency classes provided as the system

transitions between failure scenarios. It is simple to rea-
son about all operations that occur during a specific fail-
ure scenario because the consistency class remains con-
stant. If, for example, aput operation occurs during
some failure scenario involving a network partition, and
then aget operation occurs immediately after the net-
work merges, then which consistency class applies? If
the consistency classes are comparable, then the weaker
class should apply. If the consistency classes are not
comparable, then it is unclear what should happen.

Beyond understanding which consistency class applies
after a transition, we need to better understand when the
consistency class does in fact apply. We expect that a
system which transitions to a worse failure scenario im-
mediately switches to a consistency class which maps to
that failure scenario. However, we expect that a system
which transitions to a better failure scenario experiences
a transition period during which increasingly more ob-
jects achieve the better consistency class.

One of the benefits of consistability is that clients can
more precisely articulate their requirements. Consista-
bility simply complements any performability measure
(i.e., consistability is not a generalization of performabil-
ity). Given models of system performance in each fail-
ure scenario and a model of the workload, we believe it
is possible to develop a unified measure of performance,
consistency, and availability. By combining failure fre-
quency information with the consistability achieved by
a system, a client could write a service level agreement
(SLA) that would allow them to articulate the value they
place on achieving “more consistency, more often”. Un-
fortunately, both clients and servers need to be able to
verify that an SLA is being met. Ideally, a system can
tell a client which consistency class it provides, and po-
tentially, what consistency class it is currently achieving
(if it is offering better than worst-case consistency). We
refer to this ability asintrospection.

We believe that prior work onadaptive protocols may
provide some guidance on how to implement introspec-
tion. For example, Hiltunen et al. developed methods
for adaptive fault tolerance [13] and customizable failure
models [12]. The fail-awareness work of Mishra, Fet-
zer, and Cristian [8, 21] is also adaptive in nature since
servers trigger an exception that clients catch if the server
detects that it is not operating under normal conditions.
Introspection and adaptive protocols may complicate the
specification and evaluation of a system’s consistability.

6 Summary

In this position paper, we argued that there is a need for
a richer language with which to discuss the consistency
of usually consistent systems. Traditionally, understand-
ing of consistency is limited to theworst-case guaran-



tees provided to clients. We introduced the concept of
consistability to facilitate describing and understanding
systems that can provide or achieve better than worst-
case consistency under some conditions. Consistability
is based on mapping possible failure scenarios to consis-
tency classes that the system can provide during the fail-
ure scenario. Our motivation for enriching the language
with which to reason about consistency was our ongo-
ing effort to design a global-scale key-value store (KVS).
A key design goal is for the KVS is to offer best effort
consistency during failure-free periods and in the face of
network partitions, data center catastrophes, and corre-
lated failures. Consistability allows us to compare tech-
niques and discuss trade-offs more precisely. We used
the consistability definition to understand that mapping
of failure scenarios to consistency classes for the KVS
and other recent distributed systems such as Dynamo [7],
PNUTS [5], BFT2F [18], A2M [4]. Finally, we dis-
cussed open problems with consistability. For example,
understanding the mapping of failure scenario transitions
to consistency classes, and if it is possible, via introspec-
tion, to determine that the consistency class achieved ex-
ceeds the worst-case consistency class.
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