Accelerating The Cloud with Heterogeneous Computing

Sahil Suneja, Elliott Baron, Eyal de Lara, Ryan Johnson

GPGPU Computing

Data Parallel Tasks

Apply a fixed operation in parallel to each

element of a data array

Examples

Bioinformatics

Data Mining

Computational Finance

NOT Systems Tasks

High-latency memory copying

Game Changer – On-Chip GPUs

- Processors combining CPU/GPU on one die
- AMD Fusion APU, Intel Sandy/Ivy Bridge
- Share Main Memory
- Very Low Latency
- Energy Efficient

Accelerating The Cloud

- Use GPUs to accelerate Data Parallel Systems Tasks
 - Better Performance
 - Offload CPU for other tasks
 - No Cache Pollution
 - Better Energy Efficiency (Silberstein et al, SYSTOR 2011)
- Cloud Environment particularly attractive
 - Hybrid CPU/GPU will make it to the data center
 - GPU cores likely underutilized
 - Useful for Common Hypervisor Tasks

Data Parallel Cloud Operations

- Memory Scrubbing
- Batch Page Table Updates
- Memory Compression
- Virus Scanning
- Memory Hashing

Hardware Management

- Complications
 - Different Privilege Levels
 - Multiple Users
- Requirements
 - Performance Isolation
 - Memory Protection

Hardware Management

- Management Policies
 - VMM Only
 - Time Multiplexing
 - Space Multiplexing

Memory Access

- All Tasks mentioned assume GPU can Directly Access Main (CPU) Memory
 - Many require Write Access
- Currently, CPU <-> GPU copying required!
 - Even though both share Main Memory
- Makes some tasks infeasible on GPU, others less efficient

Case Study – Page Sharing

- "De-duplicate" Memory
- Hashing identifies sharing candidates
- Remove all, but one physical copy
- Heavy on CPU

Memory Hashing Evaluation

Discrete

Fusion

Conclusion/Summary

- Hybrid CPU/GPU Processors Are Here
- Get Full Benefit in Data Centres
 - Accelerate and Offload Administrative Tasks
- Need to Consider Effective Management and Remedy Memory Access Issues
- Memory Hashing Example Shows Promise
 - Over Order of Magnitude Faster

Extra Slides

Memory Hashing Evaluation

CPU Overhead

- Measure performance degradation of CPU-Heavy program
- Hashing via CPU = 50% Overhead
- Hashing via GPU = 25% Overhead
 - Without Memory Transfers = 11% Overhead

