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1 Introduction
Clusters of commodity servers have become a major
computing platform, powering not only some of today’s
most popular consumer applications—Internet services
such as search and social networks—but also a growing
number of scientific and enterprise workloads [2]. This
rise in cluster computing has even led some to declare
that “the datacenter is the new computer” [16, 24]. How-
ever, the tools for managing and programming this new
computer are still immature. This paper argues that, due
to the growing diversity of cluster applications and users,
the datacenter increasingly needs an operating system.1

We take a broad view of an operating system as both a
software layer that manages and abstracts hardware and
a package of tools, such as programming languages and
debuggers, that facilitate the use of a computer. Tradi-
tional OSes for a single computer play several key roles.
First, they enable resource sharing between programs
and users, allowing a computer to be used for multi-
ple tasks and to respond interactively to several users.
Second, they enable data sharing between programs,
through abstractions such as pipes and files, so that
users can combine independently written applications to
solve problems. Third, they provide programming ab-
stractions that simplify software development. Finally,
OSes include system-wide debugging and monitoring fa-
cilities. Together, these features have allowed single-
computer operating systems to foster a rich ecosystem of
interoperable applications that we now take for granted.

Much like the first computers, the first datacenters ran
a small number of applications written by expert users.
This situation is changing now, and we believe that dat-
acenters need an OS-like layer for the same reason com-
puters did: a rising diversity of applications and users.

On the application side, there is an increasing number
of cluster computing frameworks (e.g., MapReduce [10],
Dryad [17], Pregel [21]) and storage systems [12, 9, 14],
each suited for different use cases. Ideally, an organiza-
tion should be able to dynamically share resources be-
tween these applications, and to easily exchange data be-
tween them (e.g., have a job that combines MapReduce

1By datacenter OS, we mean a software stack providing functional-
ity for the overall datacenter that is analogous to what a traditional OS
provides on one machine. We are not calling for a new host OS to be
run in datacenters, though such a change may also prove beneficial.

and Pregel steps). However, this is currently difficult
because applications are written independently, with no
common interfaces for accessing resources and data.

In addition, clusters are serving increasing numbers of
concurrent users, which require responsive time-sharing.
For example, while MapReduce was initially used for a
small set of batch jobs, organizations like Facebook are
now using it to build data warehouses where hundreds of
users run near-interactive ad-hoc queries [29].

Finally, programming and debugging cluster applica-
tions remains difficult even for experts, and is even more
challenging for the growing number of non-expert users
(e.g., scientists) starting to leverage cloud computing.

While cluster users are well-aware of these problems,
current solutions are often ad-hoc. For example, in the
Hadoop stack [3], MapReduce acts as a common exe-
cution layer on which higher-level programming inter-
faces like Pig and Hive [22, 4] are built. The MapReduce
scheduler provides resource sharing, but this means that
only jobs that compile down to MapReduce can run on
the cluster. Unfortunately, MapReduce is too high level
of an abstraction to support all applications efficiently.2

Similarly, many open source cluster storage systems pro-
vide a plugin to let their data be read by MapReduce, but
this is done through a Java API specific to Hadoop.

Our goal in this paper, therefore, is to encourage re-
searchers to attack these problems from an operating sys-
tem perspective. To this end, we discuss the main chal-
lenges that need to be addressed by a datacenter OS (Sec-
tion 2), and how research in this area can complement
industry work (Section 3). Not only are the problems we
highlight relevant today, but we believe that work on a
datacenter OS can significantly impact the future cloud
software stack. If successful, a datacenter OS should en-
able the development of a rich ecosystem of interopera-
ble cluster applications, much like the desktop software
ecosystem, and greatly benefit cluster users.

2 Datacenter OS Functionality
This section discusses four key areas of functionality that
a datacenter OS needs to provide: resource sharing, data
sharing, programming abstractions, and debugging. To
avoid producing a laundry list of problems, we focus

2Indeed, the recently announced “next-generation Hadoop” design
from Yahoo! aims to support running non-MapReduce jobs as well [5].
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on cross-application concerns: issues involving inter-
action between applications, and useful shared abstrac-
tions. These are the core concerns that motivate a com-
mon, OS-like layer underlying all applications. We put
these ideas together in Section 2.5 to sketch a set of goals
that a successful datacenter OS would meet.

2.1 Resource Sharing

Datacenters already host a diverse array of applications
(storage systems, web applications, long-running ser-
vices, and batch analytics), and as new cluster program-
ming frameworks are developed, we expect the number
of applications to grow. For example, Google has aug-
mented its MapReduce framework with Pregel (a spe-
cialized framework for graph applications), Dremel (a
low-latency system for interactive data mining), and Per-
colator (an incremental indexing system). At the same
time, the number of cluster users is growing: for ex-
ample, Facebook’s Hadoop data warehouse runs near-
interactive SQL queries from hundreds of users [29].
Consequently, it is crucial for datacenter operators to be
able to multiplex resources efficiently both between users
of an application and across applications.

Unfortunately, cluster applications are currently devel-
oped as standalone programs that get launched on some
set of nodes and assume they have full control over those
nodes for their duration. The only option for sharing re-
sources between these applications is coarse-grained par-
titioning at the level of physical or virtual hosts. This ap-
proach becomes inefficient as the number of applications
grows and their demand becomes more dynamic (i.e., the
load on each application changes over time). The solu-
tion is clear: resource sharing needs to happen at a finer
granularity. Indeed, systems like Hadoop and Dryad al-
ready perform fine-grained sharing between their jobs, at
the level of “tasks” within a job [18, 29]. However, there
is no standard interface for fine-grained sharing across
different applications, making it difficult for organiza-
tions to use multiple cluster computing frameworks.

We have undertaken some initial work in this area by
designing Mesos [15], a system that enables fine-grained
sharing across applications. Such a system faces several
serious challenges: it must be flexible enough to sup-
port the placement and fault recovery needs of many ap-
plications, scalable to clusters running millions of tasks,
and highly reliable. Mesos takes a minimalist approach
to the problem by employing an application-controlled
scheduling model called resource offers: Mesos decides
which applications have priority for resources, but appli-
cations choose which resources to use and which tasks to
launch on them. We found that this approach performs
surprisingly well. We are not claiming that this is neces-
sarily how a datacenter OS should allocate resources, we
merely cite it as an example of cross-application sharing.

In addition to the issue of fine-grained sharing, we note
several other questions that deserve attention:
• Sharing the network: Greenberg et al. identify isolat-

ing traffic from different datacenter applications as a
serious concern [13]. Operators would like to be able
to colocate user-facing web applications and batch an-
alytics jobs in the same cluster, for example, but cur-
rent network management mechanisms fall short.

• Interdependent services: Many web applications are
composed of multiple interacting services. For exam-
ple, a front-end server in a search engine might query a
spell-checking service, a map service, etc. Most clus-
ter scheduling systems assume that applications are in-
dependent and do not heed these dependencies.

• Optimal scheduling: There are hard modeling and al-
gorithmic challenges in determining the “best” sched-
ule for a set of cluster applications with various re-
source and placement requirements. There are also
multiple optimization criteria, including throughput,
response time, and energy efficiency. While the com-
munity has designed schedulers that improve fairness
and data locality [18, 29], we currently lack models to
let us gauge how close these schedulers are to optimal.

• Role of virtualization: The largest datacenter oper-
ators, including Google, Microsoft, and Yahoo!, do
not appear to use virtualization due to concerns about
overhead. However, as virtualization overhead goes
down, it is natural to ask whether virtualization could
simplify scheduling (e.g., through VM migration).

2.2 Data Sharing

Datacenter applications need to share not only comput-
ing resources but also data. For example, it is natu-
ral to want to combine steps written in different paral-
lel programming frameworks in a workflow (e.g., build
a graph using MapReduce and compute PageRank on it
using Pregel), in the same way that Unix programs can
be grouped into pipelines. Enabling data sharing requires
two steps: finding the right abstractions for sharing data
between cluster applications, and defining standardized
interfaces to those abstractions that allow their imple-
mentations and clients to evolve independently.

Today, the most common abstraction used for data
sharing in clusters is distributed filesystems. This ap-
proach is simple, but it is not always efficient due to the
cost incurred by filesystems to achieve reliability (repli-
cating data across nodes and checkpointing it to disk).
For example, in iterative MapReduce computations, jobs
often spend a significant amount of time reading and
writing from the filesystem, even though each interme-
diate dataset is only used in the next job.

One example of a more efficient approach is to have
the storage system remember how to recompute each
block of data, in much the same way that a MapRe-
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duce system knows how to re-run a map task if it loses
its output. To this end, we have designed an abstraction
called resilient distributed datasets (RDDs) [30]. RDDs
are read-only partitioned collections of elements built by
transforming data in stable storage through a limited set
of operators, and they remember the transformations that
went into building them to allow efficient reconstruction
of lost blocks. As a result, they can be stored in mem-
ory in the common case, without requiring disk writes or
replication. We believe that RDDs are powerful enough
to express MapReduce, SQL and Pregel computations,
and could thus be used to efficiently share data between
these programming models. Again, we are not claiming
that RDDs are necessarily the right solution for a dat-
acenter OS, but are an example of how a new data ab-
straction can support a broad range of applications.

There are many other open questions in this area:
• Standardized interfaces: An important contribution of

a datacenter OS would be standard interfaces for clus-
ter storage abstractions, much like VFS. This is not
trivial even for distributed file systems, because these
systems are expected to not only provide access to data
but also give applications hints about where to access
it from to achieve the best performance. Contour [27]
is an interesting step in this direction.

• Streaming data: Distributed filesystems and RDDs are
best suited for “write-once” data, such as intermediate
results in batch computations. It is still an open ques-
tion to determine similar abstractions for streaming
data. Two promising but very different approaches are
distributed message queues [1], which are commonly
used in enterprise systems, and Google’s Percolator
system [25], which is based on triggers on BigTable.

• Performance isolation: Performance guarantees are
difficult to achieve in complex distributed storage sys-
tems such as key-value stores. As a result, many
datacenter operators use separate storage systems for
front-end web servers and back-end analytics, and
copy data from the former to the latter periodically.
The ability to safely run batch queries on live data
would greatly improve the timeliness of analytics, but
appears to require a far more careful design approach.

2.3 Programming Abstractions

One of the key roles of an OS is to provide abstractions
that hide the intricacies of hardware and simplify ap-
plication development. In the datacenter, the hardware
is more complex (nodes can fail, perform poorly, etc),
and applications are harder to develop. Programming ab-
stractions for datacenters remain an important problem.

We differentiate between two classes of programmers:
systems programmers that are writing low-level infras-
tructure such as MapReduce and BigTable, and produc-
tivity programmers that use this infrastructure to solve

problems. So far, a lot of effort has been invested in
productivity programming, in the form of parallel com-
puting frameworks [10, 17, 21, 25]. However, now that
several different computing frameworks have been built
from scratch, we believe it is also time to look for com-
mon abstractions to simplify systems programming.

Systems abstractions appear to be necessary because
numerous specialized cluster computing systems con-
tinue to be developed for problems where the general
frameworks are not a good fit. For example, Percolator
[25], Pregel [21] and GraphLab [20] are some recent spe-
cialized computing frameworks for web indexing, graph
processing and machine learning respectively. Similarly,
Facebook had to write a scalable and fault-tolerant back-
end from scratch for Facebook Chat [19], because a tra-
ditional three-tier web application architecture could not
support this use case. Ideally, a datacenter OS should
provide primitives to implement these systems signifi-
cantly faster. Some useful primitives might include:
• APIs for launching and monitoring tasks: We found

that even the minimal interface in Mesos, which al-
lows an application to start tasks and get notified when
they end, made it easier to prototype new program-
ming models, because it obviated the need for each
framework to implement a master and a slave daemon.

• Communication primitives: Many parallel applica-
tions have similar communication patterns. For exam-
ple, the all-to-all shuffle pattern in MapReduce is also
present in Pregel and in various distributed joins. In
our experience, these parallel transfers often become
bottlenecks. A datacenter OS is well suited to provide
efficient implementations of common patterns.

• Fault-tolerant distributed data structures, such as the
RDDs discussed earlier, to manage state (including
control state for applications needing master failover).

• Coordination primitives such as Chubby [8].

2.4 Debugging and Monitoring

Figuring out what a massively parallel application is do-
ing remains one of the hardest challenges in cluster com-
puting. Horror stories abound about how minor program-
ming errors, unusual load patterns, and bit flips brought
down major systems. In general, debugging tools that
work on a single machine are very difficult to use at scale
due to the much larger volume of events.

In addition to correctness debugging, performance de-
bugging is also critical in the datacenter. Much of the
complexity in datacenter applications resides in control
plane logic and data structures, such as the task sched-
uler in a computing framework or the metadata node(s)
in a storage system. These components need to scale up
to support large jobs, many concurrent users, and large
numbers of objects. Often, the load on them also shifts
as the application is is picked up for new use cases.
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Finally, both correctness and performance debugging
are becoming harder as the datacenter software stack
grows in complexity. For example, when a Pig job run-
ning over data in HBase (a BigTable-like key-value store)
performs poorly or outputs the wrong result, is the prob-
lem in the user’s code, in Pig, in the MapReduce frame-
work underlying Pig, in HBase, or in the HDFS file sys-
tem that HBase runs over?

We believe that debugging is an area where re-
searchers should explore clean-slate approaches. For ex-
ample, how much easier would debugging become if the
entire software stack implemented a tracing interface like
X-Trace [11]? Alternatively, would it be possible to build
a useful replay debugger for datacenters if deterministic
OSes [7, 6] or languages were used throughout? While it
may seem that there is too much legacy datacenter soft-
ware for this approach to have impact, datacenter oper-
ators are writing new software and reimplementing old
systems quite frequently due to changing workloads. At
the very least, this type of work would identify the limits
of debuggability in large distributed systems and let us
know how far we are from them with current tools.

2.5 Putting it All Together

Although we have discussed the functions of a datacenter
OS in isolation so far, we emphasize that we ultimately
envision a platform that combines these functions. Such
a platform would greatly improve the usability and pro-
grammability of datacenters while laying the foundation
for an ecosystem of interoperable cluster applications.

To make this vision concrete, a good first step towards
a datacenter OS might strive to meet the following goals:
1. Support a software stack similar to today’s open

source MapReduce and storage systems, while gain-
ing cross-application benefits that are difficult to
achieve today, such as cross-stack replay debugging.

2. Enable the implementation of new programming
frameworks within a matter of weeks.

3. Share data and resources efficiently between both the
existing stack and new applications written by users.

4. Allow users to understand cluster behavior without
ever having to log into a remote machine.

3 Role of the Research Community
Given that most systems researchers lack access to the
largest datacenters, it will be harder for them to work
on a datacenter OS than on OSes for other platforms.
Nonetheless, we believe that datacenters are a suffi-
ciently important platform for researchers to pay atten-
tion to, and that there are several ways in which re-
searchers can complement the work going on in industry:

Focus on paradigms, not performance: While it is
tempting to do research into improving the performance

of cloud systems (due to ease of evaluation), the indus-
try is already investing many resources into performance.
Instead, researchers are better suited to identify the ab-
stractions to put into a datacenter OS, which industry
teams have less liberty to take a long-term view on given
their need to focus on shorter-term business goals.

Explore clean-slate approaches: Some problems in
datacenters, like software reliability and debugging, are
nearly intractable under the current software stack. How-
ever, if researchers show that, for example, restricting the
programming language makes it much easier to debug
cluster applications or to make guarantees about their
performance, there is a chance that practitioners will pay
attention, as a lot of datacenter software is yet to be writ-
ten (there is little legacy software) and these problems are
very costly. Practitioners have already adopted a func-
tional programming model (MapReduce) for its benefits.

Bring cluster computing to non-experts: One of the
most exciting things about datacenter technology is that
it is increasingly being applied to “big data” problems
in the sciences. With cloud computing, scientists can
readily acquire the hardware to run large parallel com-
putations; the main thing missing is the right software.
These non-expert cluster users have very different needs
from those in large corporations: they are not backed by
an operations team that will configure their systems and
tune their programs. Instead, they need cluster software
that configures itself correctly out of the box, rarely fails,
and can be debugged without intimate knowledge of sev-
eral interacting distributed systems. These are difficult
but worthwhile challenges for the community to pursue.

4 Related Work
A datacenter OS can leverage many insights from dis-
tributed operating systems, high-performance comput-
ing, and grid computing. Nonetheless, several factors
differentiate the modern datacenter environment from
these settings. First, failures occur more regularly in
commodity clusters than in most previous platforms [16].
Second, there is a strong focus on data-intensive parallel
applications instead of compute-intensive ones [10]. Fi-
nally, datacenters host a far more heterogeneous mix of
applications than many previous platforms, ranging from
latency-sensitive web services to batch jobs. This makes
resource sharing and isolation challenging [13].

The closest research to our vision is on distributed op-
erating systems like Amoeba [26] and Sprite [23]. These
systems were designed unify collections of workstations
by providing a single system image in which processes,
files and other objects are distributed transparently across
machines. However, distributed OSes were mainly de-
signed to run timesharing workloads consisting of single-
process tasks such as email clients and compilers, rather
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than data-intensive parallel applications. Although par-
allel applications were also supported, these OSes pro-
vided few parallel programming abstractions beyond dis-
tributed file systems, threads and RPC. In addition, be-
cause task placement and fault recovery are so impor-
tant in datacenters, we believe that transparency is less
needed in a datacenter OS. For example, in Mesos, we
give applications control over their scheduling.

More recently, fos [28] was proposed as an operating
system for clouds and multicore CPUs in which OS ser-
vices are inherently distributed. Like distributed OSes,
fos aims to provide a single system image. The main
focus in fos has been on designing scalable OS services
(e.g., file systems or name servers) rather than exposing
new abstractions to cluster applications. This work is
complementary to the type of research we solicit. We
encourage the community to go beyond scaling up exist-
ing OS services and design new programming primitives,
data abstractions and resource schedulers for clusters.

Finally, software platforms such as the Hadoop stack,
LAMP, Amazon Web Services, Windows Azure, and
Google’s GFS / BigTable / MapReduce stack [12, 9, 10]
form today’s de facto datacenter OS. These platforms are
gradually evolving to cope with the increased diversity of
datacenter users and workloads (for example, substan-
tial effort was put into Hadoop scheduling for multi-user
clusters), but datacenter applications are still generally
hard to develop and do not interoperate easily. We envi-
sion a future software stack in which new cluster storage
systems, data processing frameworks and services are
significantly easier to build and can plug into an ecosys-
tem of interoperable tools using standardized interfaces.

5 Conclusion
Datacenters have become a major computing platform,
powering not only popular Internet services but also a
growing number of scientific and enterprise applications.
We argued that, as the use of this new platform grows,
datacenters increasingly need an operating system-like
software stack for the same reasons that single comput-
ers did: resource sharing between applications and users,
data sharing, and abstraction. This kind of software stack
is already emerging in an ad-hoc manner, but now is the
right time for researchers to take a long-term approach to
these problems and have a lasting impact on the software
infrastructure for this new computing platform.
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