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Abstract

The success of cloud computing leads to large, central-
ized collections of virtual machine (VM) images. The
ability to retrospect (examine the historical state of) these
images at a high semantic level can be valuable in many
aspects of IT management such as debugging and trou-
bleshooting, software quality control, legal establishment
of data or code provenance, and cyber forensics such as
malware tracking and licensing violations. In this paper,
we explore the privacy implications of VM retrospection.
We argue that retrospection will worsen current concerns
about privacy in cloud computing. We develop privacy-
sensitive requirements for the design of a retrospection
mechanism, and then show how they can be met in a func-
tional prototype.

1 Executable Content as Searchable Data

We normally think of VM images as executable content,
but the practice of archiving VM snapshots in cloud com-
puting suggests that it may also be valuable to view them
as “big data.” Snapshots of a VM image over time rep-
resent historical provenance that can be relevant to de-
bugging, troubleshooting, and forensics. We use the term
VM retrospection for this ability to pose and answer deep
questions about VM images. In contrast to VM introspec-
tion [5], which examines active VM state during execu-
tion, retrospection focuses on passive VM state.

For example, consider a developer who periodically
snapshots his VM. When a colleague encounters a mis-
configuration bug that has plagued the developer in the
past, he is able to search through the VM history to re-
produce the bug and to recapitulate its fix. A different ex-
ample involves a graphic arts company that is accused of
copyright infringement. By searching archived VM his-
tory of the company’s employees, the plaintiff is able to
show how they transformed the original photograph into
the disputed product. Other use cases of VM retrospection
can be found in a recent position paper [11].

This paper focuses on the privacy implications of VM
retrospection. We argue that retrospection will worsen
current concerns about privacy in cloud computing. We
develop privacy-sensitive requirements for the design of a
retrospection mechanism, and then show how they can be
met in a functional prototype.

2 Honoring the Principle of Least Privilege

A dominant concern of retrospection is the need to be ex-
tremely sensitive to issues of privacy. There is already
enormous public concern about the potential for compro-
mise of personal privacy in cloud computing. The concen-
tration of VM images in a cloud, rather than the dispersal
of that state over myriad personal computers (many inac-
cessible behind firewalls), simplifies the task of exploring
that state for good or evil. Just a small sampling of the
huge volume of recent discourse on this topic [2, 3, 7]
shows the level of public concern. Microsoft recently re-
quested the United States Congress to pass legislation on
privacy in cloud computing [12]. In this highly charged at-
mosphere, creating a VM retrospection capability is sure
to cause alarm. It is therefore essential that the high-level
architecture and method of operation of the mechanism be
clearly and unambiguously biased in favor of privacy.

The deep concerns about privacy suggest that a good
retrospection mechanism is unlikely to be obtained
through the most obvious implementation strategy. That
strategy would be to leverage the well-understood world
of Web search exemplified by Google and Bing, and to
use search engine software such as MapReduce to period-
ically crawl VM images in a cloud and index their con-
tent. Such an approach would inflame privacy advocates
because of the power that it would give to cloud owners
and their search partners. There would be fear of abuse of
this power. There would be serious concerns about unau-
thorized searches by cloud employees on already-built in-
dexes. There would also be great concern over frequent
exposure of data for index creation. These issues have not
surfaced in the context of Web search because the data
in question is, by definition, “published” by their owners.
In contrast, VM images in a cloud are not “published” by
their owners—they are given for safe-keeping to the cloud
operator, much as one places valuables for safe-keeping in
a bank’s vault. Since perception matters as much as real-
ity in matters of trust, these privacy-related concerns will
be difficult to overcome.

A good retrospection mechanism should be fine-
grained and selective in its application. It should involve
more heavyweight actions than an index lookup, and there
should be an opportunity to inspect and/or audit the com-
putations involved in a search. The mechanism should not
require any component (such as a search engine for index
creation) to have cloud-wide access to the complete con-



tents of all VM images. Rather, search processing should
be performed only as needed, honoring the principle of
least privilege [10]. Further, the mechanism should sup-
port specification of access control policies regarding who
can perform retrospection, in what detail, and over what
subset of VM images and files within them.

3 Other Requirements for Retrospection

While concern for privacy is the first and most impor-
tant requirement of a retrospection mechanism, there are
a number of other requirements that also need to be taken
into account. We examine these next.

Out of an abundance of caution, a VM image owner
may encrypt sensitive files but omit their decryption keys
from the image. Those files may be decrypted only as
needed during the execution of the image, possibly obtain-
ing the keys from runtime user interaction or from a third-
party key escrow server that is independent of the cloud.
The ability to retrospect such user-encrypted VM content
(with user cooperation) emerges as a second requirement.
This can be extended to retrospection without user coop-
eration (e.g., under a search warrant) if key escrow is man-
dated and enforced. As discussed in Section 5, our archi-
tecture gives the user control over the placement of the
search engine relative to the cloud that stores VM images.
This is a tradeoff between trust and efficiency.

A third requirement for the retrospection mechanism is
that it allow deep content probing into VM images. Su-
perficial exploration of metadata such as image owner-
ship, modification time, or type of guest operating sys-
tem won’t find “buried skeletons.” Even one level deeper
is not sufficient: for example, the ability to interpret the
file system structure of a virtual disk is necessary, but not
sufficient. Just knowing the directory structure and file at-
tributes won’t do. One needs to be able to explore the con-
tents of individual files within that file system and to inter-
pret their contents in an application-specific manner. This
need for deep content interpretation distinguishes retro-
spection from previous VM research. That large body of
work has focused on low-level aspects of VM execution,
management, or monitoring and has treated the guest en-
vironment as a black box. In contrast, retrospection fo-
cuses on deep examination of guest contents.

The fourth requirement follows from the third: the abil-
ity to use proprietary software in retrospection. Often, a
cloud operator may not possess licenses for the propri-
etary software needed to interpret some files within VM
images stored in the cloud. The transitive closure of all
the licenses needed to fully interpret all VM images in a
cloud may be substantial. In some cases, the software may
be a trade secret of the VM image owner, and simply not
available to the cloud operator at any price.

In combination, these requirements strengthen the con-
clusion we drew earlier on the basis of privacy concerns: a

good retrospection mechanism is unlikely to emerge from
a “crawl the cloud and index everything” strategy.

4 Design Principles & Search Model

These considerations lead to the following principles for
the design of a good VM retrospection mechanism:

e Principle 1: A search computation should only be

performed on demand for a specific query, and its
scope should be restricted to the smallest relevant
subset of VM images and files within them.
This is in contrast to performing search computations
en masse for index creation in anticipation of future
queries. This is essentially the principle of least priv-
ilege, as applied to VM retrospection.

e Principle 2: Control of policy for retrospection
should reside with VM owners, not cloud operators.
The role of cloud operators should be limited to au-
thentication, enforcement of access control policies,
and auditing of search computations. This design
principle is the cornerstone of personal privacy in ret-
rospection. It gives users confidence that cloud oper-
ators cannot subvert their privacy preferences. It also
aligns well with future extensions to cloud comput-
ing that support portability of VM images: regardless
of which cloud a VM image is stored on, its owner
can be confident that he controls its retrospection.
This design principle also encourages the emergence
of standardized access control mechanisms for VM
retrospection that are supported by all clouds.

e Principle 3: There should be as few constraints as
possible on the generality of search computations.
Since file contents on virtual disks can vary over
an extremely wide range, from simple text files to
highly structured data that can only be parsed by
a proprietary application, the range of supported
search computations needs to reflect this diversity of
data. A design that tightly constrains code for search
computations (e.g., requiring it to be written in a spe-
cific language) is unlikely to prove satisfactory. It
should be possible to create search computations that
reflect a high semantic level of interpretation of data.

These design principles have strongly influenced the
search model of Nanuk, our prototype for VM retrospec-
tion. This interactive search model allows creation of cus-
tomized interfaces for querying different types of content
in VM images. A user can view early search results as
soon as they are available. Then, based on these early re-
sults, he may abort search computations that are still in
progress and proceed to refine the query. Melnik et al [8]
have shown the importance of iterative refinement for ex-
amining large non-VM datasets.

In fulfillment of Principle 1 (least privilege), Nanuk
performs search computations only after a specific query
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Number of VMs 103
Total files 1.5 x 107
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Total bytes in files 948 GB
Dedup disk usage 489 GB

Figure 1: File-Granularity Deduplication

is posed; however, metadata and other exposed data may
be indexed before the query according to user policy. In
fulfillment of Principle 2 (privacy control), Nanuk sup-
ports search of user-encrypted data. In further fulfillment
of Principles 1 and 2, Nanuk allows structured metadata
to be used for narrowing the scope of search computa-
tions. Such scoping also improves system responsiveness
and interactivity. For example, an enterprise may main-
tain a coarse-grained audit trail of accesses to a collection
of highly sensitive VM images in a private cloud. The
audit trail may be implemented as a relational database
outside the cloud. Retrospection must support searches
that span both the structured data of the audit trail and the
unstructured file contents within VM images. In fulfill-
ment of Principle 3 (flexibility), Nanuk allows queries to
be expressed as executable code on the raw data, rather
than being restricted by a declarative query language such
as SQL or limited to predetermined indexes. Searches can
be performed on the directory structure (i.e., file or direc-
tory names and attributes) as well as the file contents of
VM disk images.

5 Nanuk Architecture & Implementation

Nanuk builds on discard-based search, which was intro-
duced in 2004 by Huston et al [6] for non-text data such
as photographs. Consistent with Principle 1, this approach
performs search computations only after a specific query
is posed. The domain-specific code that performs early
discard on servers is called a searchlet. It is typically com-
posed of individual components called filters. For exam-
ple, an image search application may provide filters for
face detection, color detection and texture detection. Fil-
ter code is submitted by the application via a client-side
API and is distributed by the runtime system to all of the
servers involved in the search task. Each server has a per-
sistent cache of the filter code it has received.

The large size of VMs (typically many GB or tens of
GB) is a challenge for Nanuk. Discard-based search in-
volves runtime disk I/O to read the contents of each VM
image, and processing overhead to apply a searchlet to
this large amount of data. For a search of large scope, the
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Figure 2: Nanuk Architecture

total runtime I/O and processing can be intolerably large.
Nanuk exploits similarity of data content across VM im-
ages as a performance optimization. A file that recurs in
many VM images only needs to be examined once in any
search. Note that this benefit is in addition to the well-
known storage savings achievable through deduplication.

Nanuk exploits data similarity at the granularity of
individual files within the virtual disks of VM images,
rather than at block level. Due to the different sizes of
VM images, different software installation histories, and
different execution histories, the mapping of identical
files to blocks may be different in different VM images.
Similarity at the file level is then lost at the block level.
Nanuk deconstructs and stores VM images along the
lines described by Reimer et al [9]. The deconstruction
is performed when a VM image is initially deposited
into a cloud. Modifications to VM images are efficiently
tracked using copy-on-write techniques at whole-file
granularity. On-demand reconstruction of a full VM
image from its constituent files is efficient.

Our preliminary results indicate that whole-file dedu-
plication is effective in Nanuk. Figure 1 shows the data
characteristics of a collection of 103 VM images in our
prototype cloud: 65 Windows XP VMs (each loaded with
different applications) from the VCL cloud at North Car-
olina State University [13], and 38 Linux VMs (different
distributions loaded with unique research datasets) from
Carnegie Mellon University. Out of a total of 15 million
files occupying 948 GB, there were only 6.9 million dis-
tinct files requiring 489 GB of disk space.

Figure 2 shows the Nanuk architecture. The file-level
contents of deconstructed VM images, addressed by the
cryptographic hashes of files, are stored in the compo-
nent labelled “VM Image Store.” During deconstruc-
tion, which happens only once for each VM image, a
considerable amount of meta-data is generated. This in-
cludes standard file system meta-data plus contextual in-
formation about the VM images in which the files occur.
Since this meta-data can be valuable for narrowing the
scope of a discard-based search, it is persistently stored



in MySQL. Code components called data retrievers pro-
vide the search engine with access methods to the data.

As mentioned earlier, VM retrospection may involve
composite queries that combine indexed search on struc-
tured data (such as an audit trail) with discard-based
search of unindexed file contents. The box labelled
“Scope Server” in Figure 2 is the bridge between the in-
dexed and unindexed worlds. A user must authenticate
to the scope server at the start of a search session. The
structured part of a composite query (called a “scope re-
quest”) is first processed by the scope server on MySQL.
The result is encoded into a cryptographically signed to-
ken called a scope cookie, which is essentially a capability
for the subset of files in the VM image store that are within
scope for the upcoming discard-based search.

Figure 2 is best understood by following the message
flows that occur during a search. We first describe retro-
spection of unencrypted data. A user defines the scope
of a Nanuk search using a Web browser (labeled “Client
GUI” in Figure 2) (1). The scope server performs ac-
cess control by contacting MySQL (1.5,2.5), then con-
structs a scope cookie and returns it to the client (2). The
client then presents the cookie to the compute servers (3).
The compute servers validate the cookie and pass it along
to the data retriever(s) (4). A data retriever transforms
the scope request into a SQL query, then presents it to
MySQL (5) to identify the list of files that are within
scope, and returns the result (6) to the compute servers (7).
The distribution of search computations across compute
servers happens implicitly at this point. The compute
servers perform early-discard on files within scope, us-
ing a data retriever to obtain the files from the VM image
store (8,9,10,11). If a file is not discarded, a low-fidelity
version (i.e., “thumbnail”) is returned to the client (12).
Its full-fidelity version can be obtained on demand.

The placement of compute servers and data retrievers in
Figure 2 represents a tradeoff between efficiency and trust.
A paranoid user can choose to place these entities on a dif-
ferent cloud from the one that stores his VM images. The
latter cloud then never sees his files in decrypted form.
More typically, a user will have sufficient trust in the cloud
that stores his VM images to colocate the compute servers
and data retrievers. This is much more efficient because it
avoids data transfer between clouds. This placement deci-
sion does not have to be made a priori, but can be deferred
to the point at which the search is performed.

We are exploring three distinct architectures for retro-
specting user-encrypted data: (1) one in which users trust
the cloud, (2) one in which users trust the cloud and a key
escrow service, and (3) one in which users trust no third
party with encryption keys. As a simple initial implemen-
tation, we allow the user to provide decryption keys in the
scoping step (i.e., directly to the scope server as part of
step (1) in Figure 2). This takes the form of a list of 3-
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The last colum shows the number of images processed by the
servers, the number discarded, and the number shown to the user.

Figure 3: Trace tasks and user results

tuples: < pathname, encryption method, key >. This list
is used by data retrievers to decrypt files before they are
presented to compute servers (i.e., just before step (11)).
The compute servers never see encrypted data. The data
retrievers flush keys after decrypting the associated files.

We are working to extend this mechanism to be less
verbose and cumbersome for searches of large scope. This
requires striking a balance between usability, privacy and
performance. At one extreme is a single encryption key
for an entire VM image. The other extreme (our ini-
tial choice) is a key per file within a VM image. A hi-
erachical file system within a VM image offers natural
directory-level or subtree-level aggregation possibilities
for intermediate points of this spectrum. This would re-
quire augmenting the 3-tuples mentioned above with an
element denoting the granularity of the decryption key:
< granularity, pathname, encryption method, key >,
with possible granularity values of “VM image,” “sub-
tree,” or “file.” We also plan to investigate use of an exter-
nal key escrow service. Use of such a service could im-
prove usability and simplify conformance with enterprise-
wide data security and audit policies. Instead of providing
a list of 3-tuples or 4-tuples in step (1), the user would now
need to provide sufficient information for later use of the
key escrow service by data retrievers during step (11). De-
pending on the latency and throughput of the escrow ser-
vice, the data retrievers may need to prefetch keys during
discard-based search in order to avoid stalls. In addition,
we are exploring the option of giving users direct control
of the search infrastructure in the cloud for their searches
such that they never reveal keys to any other party. This
final path maintains privacy while providing a service that
scales with the scope of searches.

6 Status and Preliminary Evaluation

At present, Nanuk is a proof-of-concept prototype. Nanuk
supports three applications: (a) HyperFind, which
enables users to interactively search photographs in
common formats such as JPEG, TIFF and BMP; (b)
ShingleFind, which searches for files whose content
approximately matches an example text using the tech-



Trace 1 Trace 2 Trace 3
Servers | Native Nanuk | Native Nanuk | Native Nanuk
1 988 948 1284 1325 1265 1274
2 549 549 678 680 743 743
4 334 334 375 376 480 483
6 260 261 275 274 396 393
8 225 231 226 225 355 356

Each data point is the mean of three runs. All standard deviations are less than 6% of the mean.

Figure 4: Task completion time (Seconds)

nique of w-shingling [1]; and (c) ClamFind, which
searches for viruses and potential vulnerabilities in files
using the ClamAV engine [4].

Many improvements to the performance and scalability
of Nanuk are yet to be implemented. For space, and be-
cause optimizations are currently being implemented, we
omit early results from, for example: an examination of
Nanuk’s ability to exploit server parallelism, an investiga-
tion of its limits on scalability with respect to number of
VM images stored, its performance sensitivity to storage
technologies and storage layout, and its sensitivity to net-
work bandwidth. However, even in Nanuk’s early state,
we are able to answer one important question: Can users
retrospect VM images as effectively as they can search
server files? In other words, what is the impact of the
architecture shown in Figure 2 on the interactive response
seen by a user during a search?

To answer this question, the HyperFind application
was used to capture and replay the three traces summa-
rized in Figure 3. For each task, the user was given a
time limit of 20 minutes. The search could be targeted at
photographs spread over the local file systems of a col-
lection of 65 Windows XP VM images in Nanuk (labeled
“Nanuk” in our results), or they could be targeted at the
same set of photos spread over the local file systems of
the compute servers shown in Figure 2 (labeled “Native”
in our results). In both cases the hardware was identical:
The compute servers were Dell Vostro 220’s, each with
an Intel Core 2 Duo 3 GHz processor, 3 GB of memory,
and a 7200 RPM SATA drive. A single physical machine
hosted the VM image store, the MySQL database, and
the data retriever. This machine had two Quad Core Intel
Xeon 2.66 GHz processors, 32 GB of memory, and a fibre
channel RAIDS with 12 10K RPM drives. The client was
a 2.66 GHz Intel Core 2 Duo Apple iMac with 4 GB of
memory. All network connections were Gigabit Ethernet.

For each trace, Figure 4 presents the time for task com-
pletion. For all traces, as the number of compute servers
increases, the task completion time decreases. This is be-
cause more computational resources are being devoted to
the search. For each trace and number of compute servers,
there is at most a small increase in the task completion
times on Nanuk, relative to the native case. The worst
case difference is about 3%. In most cases, the times
are identical within bounds of experimental error. Fig-
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Figure 5: Traces 1, 2 and 3 object interarrival time CDFs

ures Sa, 5b, and 5c show the CDFs of observed result in-
terarrival times for Traces 1, 2, and 3. The curves for the
native and Nanuk cases are close, confirming that interac-
tive user experience is virtually indistinguishable between
the two cases. These results confirm a user can hardly tell
the difference between searching local files on servers or
retrospecting data within VM images.



7 Conclusion

In this paper, we motivated four key requirements that
must be satisfied by a mechanism for VM retrospection.
From these requirements, we derived a set of design prin-
ciples for a retrospection system. Foremost among these
principles is respect for user privacy, achieved by honor-
ing the principle of least privilege. Guided by these princi-
ples, we have designed and implemented a prototype sys-
tem for retrospection providing us with early validation
and feedback.
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