
TransMR: Data-Centric Programming Beyond Data Parallelism

Naresh Rapolu, Karthik Kambatla, Suresh Jagannathan, Ananth Grama

{nrapolu, kkambatl, suresh, ayg}@cs.purdue.edu

Dept. of Computer Science, Purdue University

Abstract

MapReduce and related data-centric programming mod-

els have proven to be effective for a variety of large-scale

distributed computations, in particular, those that mani-

fest data parallelism. The fault-tolerance model under-

lying these programming environments relies on deter-

ministic replay, which makes data-sharing (side-effects)

across computations harder to support. This signifi-

cantly limits the application scope of MapReduce and

related models. This paper: (i) investigates data shar-

ing (side-effects) in programming models operating on

distributed key-value stores, specifically, the inconsisten-

cies between the fault recovery mechanisms in execu-

tion and storage layers; (ii) defines semantics for a novel

programming model, TransMR (Transactional MapRe-

duce), which addresses these inconsistencies; and (iii)

demonstrates broad application scope and enhanced per-

formance through data-sharing across computations for

a prototype implementation of the proposed semantics.

1 Introduction

Data-centric programming models like MapReduce [7]

and Dryad [8] have received considerable attention over

the past few years. The success of these models can be at-

tributed to the simplicity of the underlying programming

models, support for fault tolerance, and scalable per-

formance. MapReduce adopts deterministic replay for

fault-tolerance — compute elements that fail are simply

re-executed. In the absence of side-effects, re-executed

compute elements produce the same outputs, thus pro-

viding clearly specified semantics.

Fault-tolerance through deterministic replay, however,

does not work in the presence of side-effects (e.g., writes

to persistent storage or communication over the network)

or non-deterministic operations (e.g., using a random

number generator). Consider a map function writing to

the underlying distributed file system. If this instance is

replayed (in case of a fault), the re-execution is oblivious

of the previous write and hence rewrites the data. Both

of these writes are, however, visible to external processes

leading to non-deterministic behavior. For this reason,

side-effects are not well-supported within the MapRe-

duce framework.

The application scope of MapReduce, and related

models can be extended significantly by allowing com-

munication/ data-sharing across computations. Data-

sharing through side-effects on shared address space

(e.g., a shared disk-resident key-value store) enables

speculation and task-parallelism in applications. Con-

sider an illustrative example of finding the minimal span-

ning tree of a large graph using Boruvka’s algorithm.

Each iteration (operating on distinct nodes) coalesces a

node and its closest neighbor. Iterations in which node-

coalescing does not cause conflicts, can be executed in

parallel. However, these conflicts can be detected only

at runtime, since it depends on the input graph. This

form of parallelism is known as speculative-parallelism

or amorphous data-parallelism [13]. Exploiting this form

of parallelism requires communication across computa-

tions to detect and resolve potential conflicts. Further,

communication through mutable shared-data helps de-

velop scalable online and streaming applications, such

as online aggregation, which need immediate change-

propagation.

Towards this goal, we propose effective mechanisms

for supporting side-effects over a shared address space.

As a model, we use a distributed key-value store

(Bigtable [4]) as the underlying storage for MapReduce

— the input, output, and side-effects are stored in this

fault-tolerant key-value store. Bridging the disparate

fault-tolerance mechanisms adopted by the storage (per-

sistence through replication) and computation (determin-

istic replay) layers presents significant technical chal-

lenges relating to definition of semantics, efficient im-

plementations, and application integration.

In this paper, we propose semantics for transactional

execution of computations (map/reduce functions) over

distributed key value stores, using primitives adapted

from Software Transactional Memory (STM) literature.

By restricting side-effects only to the key-value store, we

derive effective mechanisms for avoiding the consistency

problems associated with deterministic replay. In our

model, results of one computation (writes to the global

key-value store) become atomically visible to other com-

putations, and to other concurrent jobs, upon success-

ful completion of the computation. Though we discuss

our semantics in the context of MapReduce and HBase,

our proposed semantics apply more generally to all data-

centric models over shared address spaces. We sup-

port our claims of performance and enhanced applica-

tion scope in the context of diverse speculative-parallel

applications such as Boruvka’s minimum spanning tree

algorithm and maximum flow calculation using Push-

Relabel algorithm. Note that these algorithms cannot be

expressed in the current MapReduce framework.

2 TransMR Programming Model

…

N1 N2 Nn

Distributed

Execution Layer

Distributed

Key-Value Store

…

GS

CU

LS

CU

LS
…

GS

CU

LS

CU

LS
…

GS

CU

LS

CU

LS

Figure 1: System Architecture

The TransMR (Transactional MapReduce) program-

ming model defines the semantics for transactional ex-

ecution of computations over shared address spaces. The

system architecture, shown in Figure 1, describes in-

teractions between various components. The compu-

tation and storage layers span a cluster of nodes. We

propose the use of distributed key-value store for the

shared global store (GS). The contents of the global store

(GS) are accessible to all computation units (CU), al-

beit through a private local store (LS). Reads/writes from

within a CU are served from/to its local store (write

buffer). If the local store does not have the data corre-

sponding to a read, it fetches the (key, value) pair from

the global store. All writes are buffered in LS.

Upon execution of a computation unit CUi, its write

buffer (present in its local store) is validated against the

global store for any concurrent accesses of the same

data by other CUs. In the absence of such conflicts,

the buffered writes are safely written to the global store.

However, in case of conflicts, the computation unit (CUi)

is re-executed. Software Transactional memory (STM)

systems achieve this behavior by defining transactional

execution scope through TMBEGIN and TMEND state-

ments. In the TransMRmodel, each map/reduce function

is treated as a computation unit, resulting in their trans-

actional execution. The model supports serializability as

the consistency guarantee during validation and commit

of conflicting CU transactions.

Semantics. Figure 2a describes the syntax of our pro-

posed model. Each computation unit has a private local

store(Σ) in addition to the shared global store(Γ). We de-

fine lookup functions (mapping keys to values), σ and γ,
for local and global store lookups, respectively. For each

computation unit, σ is empty to begin with; subsequent

reads/ writes add mappings. A computation unit is de-

fined as a sequence of operations — read/ write from/ to

LocalStore := {Σ1, ...,Σm} (1)

GlobalStore := {Γ} (2)

σ ∈ Σ = L → Z (3)

γ ∈ Γ = L → Z (4)

Fn := {fm, fr} (5)

f ∈ Fn := Atomic{Op∗} (6)

Op := Get k|Put (k, v)|Other(7)

b ∈ Boolean := {True, False} (8)

k, v ∈ V alues := {b, UnObservable} (9)

l := [v1, ..., vn] (10)

(a) Syntax

l, σ =⇒ σ(l) (LOCAL)

l, γ =⇒ γ(l) (GLOBAL)

map fm l̄, γ =⇒ l̄′′, γ′′ fold fr l̄
′′, γ′′ =⇒ l̄′, γ′

TMR fm fr l̄, γ =⇒ l̄′, γ′

(TMR)

if (k /∈ domain(σ)) then σ′ = σ[k 7→ γ(k)]
else σ′ = σ
k, σ′ =⇒ v

Get k, σ, γ =⇒ v, σ′, γ
(GET)

σ′ = σ[k 7→ v]

Put (k, v), σ, γ =⇒ True, σ′, γ
(PUT)

Other, σ, γ =⇒ UnObservable, σ, γ
(OTHER)

Op1, σ, γ =⇒ v1, σ
′

1
, γ

Op2, σ1, γ =⇒ v2, σ
′

2
, γ

...
Opn, σn−1, γ =⇒ vn, σ

′

n, γ
∀ki ∈ domain(σ) m = |σ|,

γ′ = γ[k1 7→ σ(k1), ..., ki 7→ σ(ki), ...km 7→ σ(km)]

Atomic(Op1, Op2, ..., Opn), γ =⇒ vn, γ′

(FN)

(b) Semantics

Figure 2: Transactional MapReduce: Operational Se-

mantics

the store (Get /Put) or a thread local operation (Other)

with no side-effects.

The operational semantics, shown in Figure 2b, cap-

ture the behavior of the model. The semantics use map,

fold, if-then-else constructs, which carry their usual

functional definitions. A Transactional MapReduce job

(TMR) takes an input list, along with map/reduce func-

tions. The job involves applying the computation units

(map/reduce functions) on appropriate elements in the

input list atomically. The possible constituent operations

(Get, Put, and Other) are executed in the context of both

local and global stores. A Put(k, v) operation modi-

fies the local store adding the new key-value pair, (k, v),
to the map. A Get(k) operation first copies the value

from global store to local store if it does not already ex-

ist (k /∈ domain(σ)), and subsequently returns the value.
Upon successful completion of all operations in the com-

putation, the local store is copied to the global store

atomically through a two-phase commit protocol. The

functional definitions ofmap and fold capture the seri-

alized application of functions to list items. In practice,

validation protocols are used to achieve this serialization.

Our implementation for MapReduce over Bigtable uses

optimistic concurrency control to guarantee serializabil-

ity among concurrent transactional executions of compu-

tation units.

3 Design of TransMR Framework

The transactional semantics mentioned above are general

enough to be realized using conventional MapReduce-

based execution environments (Hadoop1, Dryad, Pig,

etc.) operating on typical key-value stores (HBase2,

Cassandra, etc.). This section discusses various design

considerations and our implementation of the proposed

programming model. The TransMR framework uses

Hadoop and HBase as the execution and storage en-

gines, respectively. The framework treats map/reduce

functions as computation units (CU) executing over the

global store, HBase. The map and reduce functions

are executed transactionally and upon successful com-

pletion, their outputs are stored in HBase. These out-

puts are visible to other map/ reduce computations of the

same MapReduce job, and also to other jobs. As long

as the key of a map function output forms the key of

HBase table, all values with the same key are versioned

using timestamps and stored together. They are implic-

itly sorted using insertion sort. Thus, a reduce function

can directly read its input from HBase, through a scan of

all the versioned values for any particular key, avoiding

the expensive shuffle phase in Hadoop.

Concurrency Control. The validation-and-commit

phase of the CU transaction uses optimistic concurrency

control [9]. At the start of its validate-and-commit phase,

a transaction increments atomic counters on those GS

nodes hosting keys involved in that transaction. The

read/write sets of a transaction Ti , are validated against

the sets of those transactions that committed their writes,

between the start of Ti and the time it increased the

atomic counter; the start of Ti is noted by saving the state

of the atomic counters at the beginning of the transaction.

1Hadoop. http://hadoop.apache.org
2HBase. http://hbase.apache.org

In our implementation, the choice of optimistic con-

currency control (optimistic reads and write-buffering),

as opposed to pessimistic locking, must be noted. This

choice is motivated by the nature of clients in data-

centric models. Typically, a client can execute at any

node (potentially, the slowest) in a heterogeneous dis-

tributed environment. Furthermore, the duration of a

transaction may be potentially long. In such a scenario,

pessimistic locking of rows prevents parallel execution

of other transactions with data dependencies. In case of

crash failures, these transactions must wait for the sys-

tem to release all the locks held by the failed transaction.

Thus, in fault-prone environments, pessimistic locking

could impact the performance significantly. In optimistic

concurrency control, reads do not require locks (eager

reads) and writes are buffered (lazy writes). During com-

mits, only those concurrent transactions that have con-

flicts are considered [6]. As no locks are acquired, the

possibility of a deadlock is avoided.

Fault Tolerance Model and its Implications on CAP.

The client (the process executing the computation units)

may be fault-prone and also fault-tolerant in itself. This

fault-prone nature is directly implied by the general char-

acteristics of MapReduce based execution environments

— run on commodity clusters or virtual machines in

the cloud and susceptible to hardware/software faults.

The client’s fault-tolerant nature implies that, even if the

client fails during its execution, its replay mechanism

makes the client recover and process all its records. Since

the availability of the client is itself in question, expect-

ing high availability from the storage servers is unreason-

able. Further, MapReduce based applications demand

strict consistency of data to ensure correctness of the al-

gorithm’s execution. The above two considerations mo-

tivate our choice of Consistency(C) over Availability(A),

while accounting for Network Partitions(P) inside a dat-

acenter, during execution of distributed transactions (i.e.,

choosing C and P in the CAP Theorem [2]). For the du-

ration of the network partition, the system does not al-

low affected distributed transactions to succeed. Thus,

by weakening availability, the framework assures strict

consistency of data. In the wake of crash failures, the

leases held by compute nodes and storage nodes time-

out, leading to replay-based recovery measures for com-

pute nodes and replica-based recovery for storage nodes.

Prototype Implementation. The prototype was im-

plemented by modifying and integrating various parts

of Hadoop and transactional HBase. It primarily in-

volved integrating their disparate fault-tolerance mecha-

nisms during execution followed by validation of the CU

transaction. Consider the following known corner case

in the two-phase-commit protocol: a participant crashes

after sending its own vote, but before receiving the com-

mit/abort decision from the coordinator. Upon recov-

ery, the participant faces ambiguity over committing the

logged read/write sets of the successful validation phase.

In our prototype, to resolve this ambiguity, the transac-

tion manager(coordinator)writes its decision to Abort or

Commit in the Global CU log (a table in HBase), be-

fore sending the decision to the nodes involved in the

commit. The entry in the Global CU log can be identi-

fied by a unique transaction-id. The recovering storage

node uses this id to look up the final decision and com-

plete the write-ahead log, which is later used to regain

the consistent state of the failed node. Further, the entry

in the Global CU log is duplicated to be accessible by

using the unique computation-unit-id; this helps Hadoop

verify the successful execution of a map/reduce function

and thereby avert re-execution of it, due to faults or spec-

ulative execution. Thus, the Global CU log forms a key

element in dealing with arbitrary failures of computation

and storage, by integrating their disparate fault-tolerance

mechanisms.

4 Evaluation

The TransMR programming model allows speculative

parallel execution of tasks with potential data dependen-

cies. We demonstrate results on two such applications

in this section — Boruvka’s minimum spanning tree al-

gorithm, and Preflow Push-Relabel maximum flow com-

putations. We run our experiments on 16 Amazon EC23

extra large instances (c1.xlarge; each instance has 8

cores and 7 GB RAM).

Boruvka’s Minimum Spanning Tree (MST). The se-

quential version of Boruvka’s MST algorithm iterates

over nodes in the graph. Each iteration — operating on

a node (u) — involves finding the node v closest to u’s
component, adding the edge between these two nodes to

the minimal spanning tree, and coalescing u and v. The
process is initiated with as many components as nodes

(each node forming a component); every iteration coa-

lesces two components. The resulting component gives

the minimal spanning tree of the input graph.

Parallelizing these iterations involves detecting run-

time conflicts in case two distinct nodes (u1, u2) attempt

to coalesce the same node v. Such a formulation is in-

feasible in traditional MapReduce. In the the TransMR

formulation of Borvuka’s algorithm, we store the input

graph as well as coalescing information, as different col-

umn families in HBase. Each row corresponds to one

graph node, the adjacency list, and the node-id of its par-

ent in the component tree. Each map function, with a

single row being its input, parses the adjacency list of a

node u, and the adjacency lists of other nodes in its com-

ponent (obtained by traversing its component tree) to find

the closest node v. It then coalesces u’s component tree

3Amazon EC2. http://aws.amazon.com/ec2/

with v’s component tree by making one the parent of the

other. The algorithm does not need a reduce phase. In-

stantiations of the same map function on different nodes

in the graph might conflict when they both try to coa-

lesce the same component; in this case, the consistency

guarantee — serializability among conflicting instantia-

tions — provided by the runtime, is necessary and suffi-

cient for the correctness of algorithm’s execution. From

a programmer’s perspective, the algorithm fits within the

regular MapReduce programming model, except that the

system needs to handle runtime data-dependencies; the

TransMR programmingmodel provides this guarantee to

the programmer.

For evaluation, we run Boruvka’s algorithm on a 100

thousand node graph with an average degree of 50 gener-

ated using the forest fire model of iGraph4. The sequen-

tial implementation is the same program run on a sin-

gle node without any speculative parallelism (all maps

executed sequentially). Figure 3a plots the average ex-

ecution time and the number of aborts due to conflicts

against the number of machines used. Due to the large

number of vertices, the average number of conflicts de-

tected amount to less than 0.5 percent of total execu-

tions. We observe upto 3.73 times speedup on 16 nodes.

In the initial stages of the algorithm, almost half of the

nodes can coalesce with their nearest neighbors without

conflicts, leading to abundant parallelism. The available

parallelism reduces significantly as the computation pro-

gresses. Considering the algorithm’s inherent sequential

nature due to dependencies, the observed performance

gains are significant.

Preflow Push-Relabel. The Preflow Push-Relabel algo-

rithm computes the maximum flow possible through a

flow network. The algorithm maintains a preflow — a

flow function with the possibility of excess at the vertices

— terminating when there is no positive excess. The

Push operation increases the flow on a residual edge,

and a height function on the vertices identifies the resid-

ual edges that can be pushed. When there are no more

Push operations to be executed, a Relabel operation in-

creases the height of the vertices, which have excess pre-

flows. This sequence of operations continues until there

are no more excesses on any of the vertices other than

the source. It is evident that the same operation Push or

Relabel cannot be applied to neighboring nodes concur-

rently. Conflicting executions must be detected at run-

time, and hence traditional MapReduce cannot exploit

this parallelism. A trivial concurrent implementation is

to lock the entire neighborhood of a node before oper-

ating on it. This involves significant serialization over-

head. An alternate approach is to speculatively execute

the operations on all the nodes; detect and resolve con-

4iGraph. http://igraph.sourceforge.net

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16
 0

 50

 100

 150

 200

 250
T

im
e

 (
m

in
s
)

#
 A

b
o

rt
s

Computing Nodes

Execution Time
Number of Aborts

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 4 8 16
 0

 50

 100

 150

 200

 250
T

im
e

 (
m

in
s
)

#
 A

b
o

rt
s

Computing Nodes

Execution Time
Number of Aborts

(a) Boruvka’s MST

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 2 4 8 16
 0

 1000

 2000

 3000

 4000

 5000

 6000

T
im

e
 (

m
in

s
)

#
 A

b
o

rt
s

Computing Nodes

Execution Time
Number of Aborts

 15

 20

 25

 30

 35

 40

 45

 50

 55

1 2 4 8 16
 0

 1000

 2000

 3000

 4000

 5000

 6000

T
im

e
 (

m
in

s
)

#
 A

b
o

rt
s

Computing Nodes

Execution Time
Number of Aborts

(b) Preflow Push-Relabel

Figure 3: TransMR: Application Performance

flicts at runtime by serializing their execution. The lat-

ter approach is adopted by the TransMR programming

model.

In the TransMR formulation, each map function oper-

ates on one node whose adjacency list is stored as one

row in an HBase table. Depending on the neighborhood

constraints, the function executes a Push or a Relabel

operation on the node. A Relabel operation simply in-

volves increasing the height of the node, if it is less than

all the neighboring nodes. In a Push operation, a residual

edge is chosen from the node’s adjacency list and its ca-

pacity is updated. Data corresponding to the other vertex

connected by the edge, its values of excess, and resid-

ual capacity are updated, and both of the updated nodes

(rows) are atomically committed. During the transac-

tional commit, concurrent map-transactions are checked

for reads or writes to the two rows being updated. If a

conflict is detected, the transaction which is later in the

commit-pending-queue is aborted and the corresponding

map function is re-executed from the beginning; this en-

sures serializability. The programmer merely specifies

concurrent transactions (maps) and not consider conflict

detection or resolution, thus adding no additional com-

plexity to programs. The job is iteratively executed until

there are no feasible Push or Relabel operations.

The input flow network is generated using the Wash-

ington network generator5. The network is a 1000 x 1000
grid with the source connected to all the nodes in the

first column and the sink connected to all the nodes in

the last column. Every node in a column randomly con-

nects to three other nodes in the next column. The edge

weights are randomly generated. The sequential imple-

mentation is the same program run on a single node with-

out any speculative parallelism — a single map task ex-

ecuting all the map functions sequentially. Note that the

algorithm can only be executed sequentially in the regu-

lar MapReduce setup, without any transactional support.

Figure 3b shows the average times and associated aborts

over a window of 40 iterations of Push or Relabel oper-

ations on the feasible nodes. On the 16 node cluster, the

number of aborts (re-executions) amount to about 4% of

the total executions. Further, we observe 4.5x speedup

on 16 nodes. As before, speculative execution enables a

meaningful performance gain, as compared to the base-

line case where no parallelism could be exploited.

5 Discussion and Related Work

Applicability. While our evaluation describes only two

applications, the TransMR framework is applicable to

all applications exhibiting speculative-parallelism [13].

Furthermore, applications suited to transactional mem-

ory systems (concurrent threadsmodifying a shared data-

structure) and pipelined workflows, such as those present

in the STAMP benchmark suite [3], can be easily formu-

lated in the TransMR programming model. The model

also suits producer-consumer based online applications

needing immediate access to mutable shared data. The

model trivially allows regular data-parallel applications;

however, the involved setup costs for transactional sup-

port might lead to minor overheads. By implicitly ex-

ecuting each computation transactionally instead of ex-

plicit scope definitions (begin, end statements), TransMR

model offers increased applicability without increasing

the programming complexity. As in any data-centric pro-

gramming model, the programmer only needs to specify

the operation on the specific data-element without being

concerned about its runtime interaction with other oper-

ations.

Performance Improvement. Distributed transactions

constitute the primary overhead in the TransMR model.

It should be noted that the number of keys involved in

a distributed transaction is typically small, because the

read-write sets of computations (map/reduce functions),

where the keys come from, are small. The performance

of TransMR framework can be significantly improved

by using locality-enhancing storage schemes, leading to

5Washington max flow network generator.

http://www.avglab.com/andrew/CATS/maxflow/synthetic.htm

localization of distributed transactions. To further miti-

gate the overhead of distributed transactions, application-

specific optimizations such as relaxing consistency guar-

antees from serializability to snapshot isolation, as used

in Percolator [12] or reducing the transaction scope to a

subset of data-items, as used in Megastore [1], can be

employed. While realizing these optimizations consti-

tutes our future work, the primary goal of this paper is

to advocate the transactional programmingmodel and its

benefits.

Related Work. The TransMR model supports transac-

tional execution of distributed computations through the

notion of a mutable shared state. Spark [15] and Pic-

colo [14] propose the use of shared state for distributed

computations to achieve different goals. Spark uses read-

only shared data to build working-sets for concurrent

map/reduce function invocations. Piccolo proposes the

use of mutable in-memory tables to store data shared by

concurrent threads. Piccolo’s fault-tolerance and recov-

ery model based on periodic, user-assisted checkpointing

through distributed snapshots makes it hard to realize (ef-

ficient) transactional execution. Specifically, when any

of the nodes fail, all of them have to be halted and rolled

back to a consistent snapshot; unless checkpointing is

executed at high frequency, it is hard to reason about the

transactional behavior of processes and the consequent

effect-propagation through shared state.

Google proposed Pregel [10] for large-scale graph-

processing, based on the bulk-synchronous parallel

(BSP) programming model. Pregel (or BSP) does not

support transactions and hence disallows speculative ex-

ecution. Realizing Boruvka’sMST application in Pregel,

consequently, would involve algorithmically identify-

ing and executing the non-conflicting operations at each

stage. To avoid conflicting operations, the algorithm

should be executed as a series of iterations (called steps

in Pregel). Each iteration needs to compute the set of

non-conflicting operations and execute them. Comput-

ing the set of non-conflicting operations is itself quite in-

volved – making the program significantly more sophis-

ticated.

In recent years, several systems have been proposed

to increase the applicability of MapReduce. MapRe-

duce Online [5] streams the data between map and re-

duce phases supporting pipelined execution, continu-

ous queries, and online aggregation. Dryad [8] sup-

ports acyclic tasks and CIEL [11] adds support for

dynamic task graphs particularly useful for dynamic-

programming based applications. While these efforts

have similar goals of increasing applicability, they do not

address applications with multiple computational units

accessing shared data-structures in a faulty environment.

6 Conclusion

In this paper, we propose TransMR programming model

to enable data-sharing in data-centric programmingmod-

els for enhanced applicability. We define the semantics

for transactional execution of MapReduce computations

over shared address space. Through a prototype imple-

mentation of the proposed semantics, we demonstrate

the applicability of the TransMR programming model in

the context of applications exhibiting speculative paral-

lelism.

References

[1] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin, J. Larson,

J.-M. Leon, Y. Li, A. Lloyd, and V. Yushprakh. Megastore: Pro-

viding scalable, highly available storage for interactive services.

CIDR’11, 2011.

[2] E. A. Brewer. Towards robust distributed systems (abstract).

PODC, 2000.

[3] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun. STAMP:

Stanford transactional applications for multi-processing. IISWC,

2008.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A

distributed storage system for structured data. OSDI, 2006.

[5] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,

and R. Sears. Mapreduce online. NSDI, 2010.

[6] O. S. D. Dice and N. Shavit. Transactional locking ii. In DISC,

2006.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data process-

ing on large clusters. OSDI, 2004.

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: dis-

tributed data-parallel programs from sequential building blocks.

Eurosys, 2007.

[9] H. T. Kung and J. T. Robinson. On optimistic methods for concur-

rency control. ACM Trans. Database Syst., 6(2):213–226, 1981.

[10] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,

N. Leiser, and G. Czajkowski. Pregel: a system for large-scale

graph processing. In SIGMOD, 2010.

[11] D. G. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Mad-

havapeddy, and S. Hand. Ciel: a universal execution engine for

distributed data-flow computing. In NSDI, 2011.

[12] D. Peng and F. Dabek. Large-scale incremental processing using

distributed transactions and notifications. In OSDI, 2010.

[13] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, A. Hassaan,

R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-

Lojo, D. Prountzos, and X. Sui. The tao of parallelism in algo-

rithms. In PLDI, 2011.

[14] R. Power and J. Li. Piccolo: building fast, distributed programs

with partitioned tables. In OSDI, 2010.

[15] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Sto-

ica. Spark: Cluster computing with working sets. HotCloud,

2010.

	Introduction
	TransMR Programming Model
	Design of TransMR Framework
	Evaluation
	Discussion and Related Work
	Conclusion

