Modeling the Parallel Execution of Black-Box Services

Gideon Mann
Google Inc.
New York, NY 10011

Sudipto Guha
University of Pennsylvania
Philadelphia, PA 19104

Abstract

Services running in a data center frequently rely on
RPCs to child services (e.g. storage, cache, authentica-
tion), and their latency depends crucially on latencies of
those RPCs. However, even though service latency of-
ten comes exclusively from the time spent inside remote
calls, it is difficult to determine parent latency since mul-
tithreading and asynchronous RPCs lead to complex and
non-linear dependencies between service and RPC laten-
cies. In this paper, we present a model that can be used
to estimate parent latency given RPC latencies, where the
parallel dependencies among of child services are mod-
eled by an “execution flow”, a direct acyclic graph. The
model is learned from samples collected by a distributed
tracing tool. Experiments demonstrate that these models
are better able to predict top-level parent latency from
child latency than state-of-the-art baselines such as lin-
ear regression and critical path analysis.

1 Introduction

In a modern datacenter front-end services are built on top
of a rich ecosystem of lower level services (e.g. storage)
typically accessed via RPCs. The latency of a front-end
service has non-linear dependencies on the child services
it relies upon, not in the least because of many services
are multi-threaded and gain significant efficiency by ex-
ecuting calls to children services in parallel. This pa-
per describes a method for learning a model for the par-
allelism of children services for a given service. This
in turn enables performance bottleneck detection and
“what-if” analysis. To the best of our knowledge no ex-
isting tool is able to perform this type of diagnosis, we
give the overview of related work in Section 2.

In this paper we introduce a directed acyclic graph
model to predict overall latency of black-box systems
(Sections 3 and 4). This model, an “execution flow”, en-
codes all feasible critical paths in a service. We demon-

Mark Sandler
Google Inc.
New York, NY 10011

Darja Krushevskaja
Rutgers University
New Brunwick, NJ 08901

Eyal Even-dar
Final Inc.
Herzliya-Pituach, Israel 46733

strate that execution flows can be learned from the call
traces provided by a distributed tracing system and pre-
diction accuracy based on flows is better than other state-
of-the-art models, such as linear regression and criti-
cal path analysis (Section 5). We believe that execution
flows capture a sweet spot in the analysis space in term of
clarity, expressiveness, and prediction power. The added
benefit of our model is that we do not need to analyze the
underlying source code to build flows, but instead induce
them by observing RPCs.

2 Related Work

Path profiling [3] is non-trivial even in a non-distributed
setting. In a distributed setting, the network weather ser-
vice [14] is one of the first tools to perform analysis with
statistical learning techniques. It allows forecasting of
service latency based on past latencies (not on the ob-
served child latencies, as in this work). Since then, anal-
ysis using statistical techniques has became a prominent
tool in debugging complex programs [7].

Stardust [12] is an early distributed profilers and col-
lects execution traces for a service and sub-services.
Similarly, Dapper [11] and X-Trace [5] are lightweight
annotation-based tools that collect application-level RPC
information by providing a few modules that are com-
monly linked in all services. Aguilera [1] and Magpie [4]
perform more careful profiling but assume a nested call
structure. In real systems, because of asynchronous calls
and multithreading, this nested structure assumption is
frequently violated.

In contrast, Pip [9] allows developers to encode ar-
bitrary parallelism, but relies on explicit validators that
check correspondence to a valid or invalid execution
path. Similarly, work by Urgaonkar et al. [13] and De-
jun et al. [6] address multi-tier systems and adds support
for some amount of concurrency. However these models
assume that each service follows a fixed M -tiered setup
with limited variation.

!
N
=

User
request

-
w
N
l!

return

Figure 1: (top) The trace (call tree) of a service with
relatively large stack. Note that it is impossible to tell
the ordering of methods 9 through and 17 that are all
called from service 8. (bottom) Induced execution flow
(defined in Section 4) for service 8 describing its calls
to children services (9 - 17). Unlike the above figure,
edges indicate temporal dependencies, e.g service 11
starts only after services 9 and 10 have returned. We use
a virtual node marked as “S” to denote a synchronization
point.

Another line of work, which relies on latency models
to diagnose performance problem is by Sambasivan et al
[10]. They showed very interesting experimental results
on applying simple latency models to detect performance
problems. In contrast in this paper we concentrate on
latency models and show their comparative accuracy.

3 Latency Analysis

A service is an arbitrary, potentially multi-threaded, pro-
gram, running in a data center that can issue RPCs to
children services. To avoid confusion we will refer to
the issuing service as parent. The goal of this work is to
build a model for the parent latency given the latencies
of its children. Unlike [14], the value of the model isn’t
the raw predictions per se, but rather to gain a deeper un-
derstanding of a service which can be later used in eval-
uation of what-if scenarios and root cause analysis.

A distributed profiling tool collects a set of traces,
where each trace is an augmented call tree for a service
invocation. Each node in the call tree represents a RPC
to a child service that generally would be running on a
different machine or even in a different data center. Each
node contains metadata about the service and the context

of the request, such as the method name of service exe-
cuted, size of request and response, and timing informa-
tion. Figure 1 (top) depicts a trace where a user request
initiated a sequence of calls. An edge in the graph indi-
cates that one service called the other, e.g. parent service
1 calls children services 2,3, and 4.

Formally, for a particular invocation Z of a par-
ent service we assume the set of children services
mi,ms ... my. We define the following functions on a
particular trace: Lz(m;) the latency of method m;, and
Pz(m;) the preprocessing that the service had to do be-
fore RPC m; can be called. The preprocessing time for
RPC m; is estimated as the time difference before the
latest RPC that finishes before m; and the start of m;.
During training, the system has access to the actual par-
ent latency L7 and learns an estimator Lz over Lz(m;)
and Pz(m;).

The most simple models for the overall service la-
tency are: (1) purely sequential children: L; =
> m, Lz(m;i) + Pr(m;) (2) purely parallel children:
Ly = max,,,(Lz(m;) + Pr(m;)). If either of these
models worked well then further analysis would be un-
necessary. However, our experiments show that both of
these methods have very poor accuracy indicating that
there is indeed non-trivial internal flow structure, that
controls the latency (see Table 1 in Section 5).

3.1 Linear Regression

The latency prediction problem can also be formulated
as a classical regression problem: predict the latency of a
parent service given latencies of children services. As a
baseline model, we use the least squared error criterion to
find the best model parameters w: L= Yo wilz(m;).
Note that the linear regression model itself encodes no
information regarding relative order or dependencies be-
tween children services. Further, as opposed to our ap-
proach, it fails to generalize to detect the case when the
services that were never been a performance bottleneck,
suddenly become one, yet experiments show that it is a
useful baseline.

3.2 Critical Paths

A critical path is defined as a subset of RPC calls to chil-
dren services, such that decreasing the latency of any
of the calls decreases the overall latency. Essentially,
the critical path represents the blocking relationships be-
tween a sequence of siblings in a call tree.

To build a critical path model we use the following
greedy search. Given a collection of calls {m;} for a
partial trace Z, we find the RPC m;, that is the last to
end before the service returns and include it in the path.

Then we iterate, by finding the RPC m;, that is the last
to finish before m;, ;.

To use critical paths for prediction, for each particular
service we collect all observed critical paths during the
training. During the testing phase, for each trace Z, with
latency function Lz defined on method set M we locate
the set of critical paths C found during training, and com-
pute Lz = maxceca Yo, cc Pr(mi) + Lz(m;) as an
estimate of the parent latency.

For complex services, critical path analysis becomes
brittle. For instance, consider a service that calls many
different children services in parallel, waits for them to
finish, and then issues another large batch of parallel
calls. The critical path in this case would be the two calls
that took the longest in each batch, but it can be easily
seen that the total number of potential critical paths can
grow exponentially. Thus as services grow in size, criti-
cal paths become inadequate for understanding the total
latency.

4 Execution Flows

For a trace Z, we construct an invocation graph Gz =
(M, Ez) that encodes the relative order of the methods
as they were executed in that particular trace. Note that
since an invocation representa RPCs originating from a
single machine. Therefore, despite the fact that clocks
across machines are not synchronized, the individual in-
vocations do in fact have reasonably synchronized times-
tamps.

An edge (m;,m;) € E7 iff method m; finished be-
fore method m;'. A invocation graph may have more
edges than dictated by the service, since it is possible
that method m; finishes before method m; during that
trace, but they actually are run in parallel and are not de-
pendent on one another. These spurious constraints are
resolved via gathering multiple traces.

For service S (or a collection of traces) the execution
flow is a graph Gs = (M, Ez) similar to the invocation
graph. In an execution flow, there is an edge from node
m, to node m; if and only if method m; finishes before
method m; starts in all traces for that service (i.e. m; is
blocked by m;). Figure 1 (bottom) illustrates execution
flow of parent service 8 in the call tree above it.

Given an execution flow and latencies for each child
service, we can predict the total latency by finding the
longest blocking path through the graph — the effective
critical path. In this manner, the execution flows com-
pactly encode exponentially many possible critical paths,

!'Similarly, every node m; has an edge from start node to m; and
if the service waits for method m; to finish before returning, there is an
edge from m; to return. Additionally, we omit all edges implied by
the transitive closure since they do not introduce any new dependencies.

even those that have never been observed. Often a partic-
ular service might have several different execution flows
corresponding to different input or different internal ser-
vice state such as cache miss might cause a service to
follow a different execution path.

Aggregate Flows

In this setting, we collect all invocation graphs and find
the maximal graph G that is consistent with each of these
distinct invocation graphs, where consistency is defined
as follows: a GG, is consistent with Gy, if £, C FEj, and
the maximal graph is simply Nz FEz. In this manner, if
a service S requires two methods to be in a particular
order, they will be in order in all instances and thus the
algorithm can uncover the parallelism invariants.

Since the invocation graph is acyclic, at prediction
time we perform topological sorting on all the nodes in
the graph, so that if there is an edge from m; to m;
then ¢ < j. Then we compute ¢; completion time for
method m; using dynamic programming. We iterate over
all nodes to compute its completion time:

c(ml) = Pz(ml) + Lz(mi) + max

j,s.t.(mj,m;)EE C(mj).

The total time for the method is completion time of re-
turn node: Lz = c(return).

Nearest-Neighbor Flow

A more robust estimator is to cluster traces together only
if they have identical invocation graphs.? This can ame-
liorate modeling errors® and learning errors from noise
in the underlying data collection and incorrect traces.

In this setting, we simplistically model each flow’s la-
tency using a normal distribution whose mean and vari-
ance are estimated from the observed traces, so ﬁs ~
N(L(M),5(M)). This allows us to apply nearest
neighbor by choose the nearest flow according to the
metric:

(Lz(mi) — Ly(mi))?
dz(F) =
2 ot
Given a flow, we then use the dynamic program above
to estimate parent latency. From a statistical perspective,
if the underlying latencies follow the Gaussian distribu-
tion*, the flow which minimizes dz(F) has the highest

2Note that two instances may have two identical invocation graphs
and completely different critical paths.

3E.g. when services violate the model assumptions such as having
logical barriers where = of out y calls must return for timeouts or for
replicated writes.

4We note that a gaussian distribution is likely to be incorrect for this
data. Log-gaussian or a non-parametric approach might be better, we
leave these experiments for future work.

probability of generating the latencies that we have ob-
served.

5 Experimental Results

We compare the error of the algorithms, via a sample of
all traces that were collected in a large datacenter (thou-
sands of machines) over the course of two hours’. We
collected traces from across all services running in that
data center. In the data we use we accommodate clock
skew, packet loss, and other hardware errors present in
deployed systems. The data from the first hour was used
for training of our latency predictors. The data from the
second hour formed the test dataset. For testing, for each
service invocation we measured how well the algorithms
were able to reconstruct the total latency of the call given
the RPC latencies.

In our sample, we ignored all parent services with
fewer than five child services — these services are too
simple in structure to benefit from our analysis. We com-
pare six approaches for predicting total latency: (1) pure
serial execution, (2) pure parallel execution, (3) linear
regression, (4) best critical path, (5) aggregate flows,
(6) nearest neighbor flows.

The graph on Figure 2 (left) plots the ratio of es-
timated/actual latencies for different methods, where
all traces are ordered by that ratio in the increasing or-
der. In essence, by looking at intersection points of
each curve and lines y = a and y = 3, we can com-
pute the fraction of RPCs that have the error factor in
the range [«, 3] for each of the methods. Similarly, the
graph in Figure 2 (right) plots the discrepancy (defined

ax(estimated,actual .
as max(estimatedactual) y 04 aflows to find the fraction
min(estimated,actual)

of all predictions that are within multiplicative factor of
« of the true value. The latter graph depicts error sym-
metrically so that it is easier to visualize the cumulative
estimation error. We summarize these graphs in Table 1.

The most notable conclusions to be taken from Table 1
and Figure 2 is that the nearest neighbor flow algo-
rithm is the most effective at predicting parent service
latency. As expected, serial and parallel approaches
provide very crude approximations for lower and upper
bounds on the total latency. The parallel approximation
sometimes overestimates the latency due to times when
the method returns without waiting for some children
services to complete (e.g. a service may return before
a write finishes).

The second conclusion is that the error from many of
the other approaches is asymmetric. The aggregated ex-
ecution flow tends to underestimate the latency which

SFor confidentiality reasons beyond our control, we are forbidden
from disclosing the exact number of services, average service size and
traces collected during this time period.

50% 90% 95% 99%
Serial 043 1144 62.05 00
Parallel 0.60 457 2196 00
Aggregate Flw 0.00 1.11 3.60 102.18
Critical Path 0.00 085 1.81 3740
Linear Regression 0.02 0.58 1.22 28.74
Nearest Neighbor Flw | 0.00 036 0.73 4.39

Table 1: Relative errors for different approaches and dif-
ferent percentiles. Nearest Neighbor is best overall, and
99% of all its predictions have relative error less than
4.39 times true true latency.

is expected, since the flow contains minimum number
of temporal dependencies, and thus it produces a very
optimistic estimate of the parent latency. Similarly best
critical path tends to overestimates the latency because
a certain path might be a critical path in one instance but
not in another.

Finally, linear regression performed surprisingly well
provided that it does not infer any information about in-
ternal structure of the service. However it minimizes the
prediction error and so “probabilistically” represents the
true underlying latency. Even though the performance
gains are slight, we believe that execution flows are more
useful than linear models since (1) they have a reason-
able model of the underlying process, (2) they are simple,
and (3) they can be transparently understood by system
developers. Furthermore, we expect future experiments
will validate their utility.

6 Conclusions and Future Work

This paper has presented several approaches to predict
latency of a service given child service latencies. Our ex-
perimental results indicate that the nearest neighbor flow
based approac has superior accuracy when compared to
other approaches and also (as opposed to linear regres-
sion) provides useful visualization of the service flow.
However the main utility of latency models is not in the
prediction of latency per se, but in enabling a new kind
of diagnostic and forecasting applications. A few appli-
cations and future work include:

e Measuring the impact of a change Using the
flow models, we can explore the impact of subtle
changes, such as decreasing inner-cluster network
or a change in a low-level method, on the latency on
user-visible requests that are several software soft-
ware layers removed. The models can further sug-
gest whether or not a certain optimization or recon-
figuration are worth implementing.

10?

10" n
$ 3
£ g
3 4
= “
(1] o
£ 10° c
= .2
-% - - Aggregate Flow f - - Aggregate Flow
o — Nearest Neighbor Flow % — Nearest Neighbor Flow

0% Serial = B Serial

NS R Parallel 02 [Parallel
: - - Longest Critical Path 3 - - Longest Critical Path
Linear Regression Linear Regression
107 0.0 .
10° 10* 102

All RPCs ordered by the ratio of estimated/true latency Ratio between estimated and true latency

Figure 2: Distribution of estimation errors across all parent services. x-axis is normalized to represent traffic fraction.
A perfect estimator would be the line y = 1 on both graphs. (left) The y-axis is the log-scaled ratio between estimated
and actual latencies. The part of the curve below y = 1 are underestimated latencies, and the above it are overestimated.
(right) The z-axis contains the log-scaled relative error between estimated and actual latencies (always > 1). To
interpret, at © = 1.3 Nearest Neighbor Flow =~ 90%, showing that 90% of all predictions have relative error less than
0.3.

e Service allocation Executions flows could facilitate
research on meeting SLAs [2, 8] by allowing service
owners to estimate viable SLAs given SLAs they
have for the child methods, or what would be an
optimal SLA with various software stacks, given the
budget.

Root cause analysis and change detection In
highly distributed multi-tiered services change is
a constant. Often service owners who run identi-
cal services in two different locations in two dif-
ferent data centers see extremely different behav-
ior. Flows provide a mechanism to estimate which
of the underlying factors (potentially nested within
each other) are responsible for the difference in be-
havior.

References

[1] AGUILERA, M. K., MocuL, J. C., WIENER, J. L.,
REYNOLDS, P., AND MUTHITACHAROEN, A. Performance de-
bugging for distributed systems of black boxes. In SOSP (2003),
ACM, pp. 74-89.

[2] APPLEBY, K., FAKHOURI, S., FONG, L., GOLDSZMIDT, G.,
KALANTAR, M., KRISHNAKUMAR, S., PAZEL, D., PERSHING,
J., AND ROCHWERGER, B. Oceano - sla based management of
a computing utility. In Symposium on Integrated Network Man-

agement (2001).

[3] BALL, T., AND LARUS, J. R. Efficient path profiling. In MICRO

(1996), TEEE, pp. 46-57.

[4] BARHAM, P., ISAACS, R., MORTIER, R., AND NARAYANAN,
D. Magpie: online modelling and performance-aware systems.

In HotOS-1X (2003), USENIX.

(3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

FONSECA, R., PORTER, G., KATZ, R. H., SHENKER, S., AND
STOICA, 1. X-trace: A pervasive network tracing framework. In
NSDI (2007), USENIX, pp. 271-284.

JIANG, D., PIERRE, G., AND CHI, C.-H. Autonomous resource
provisioning for multi-service web applications. In WWW (2010),
ACM, pp. 471-480.

LIBLIT, B. R. Cooperative Bug Isolation. PhD thesis, University
of California, Berkeley, Dec. 2004.

RANJAN, S., ROLIA, J., Fu, H., AND KNIGHTLY, E. Qos-
driven server migration for internet data centers. In Workshop on
QoS (2002), IEEE.

REYNOLDS, P., KILLIAN, C., WIENER, J., MOGUL, J., SHAH,
M., AND VAHDAT, A. Pip: Detecting the unexpected in dis-
tributed systems. In NSDI (2006), pp. 115-128.

SAMBASIVAN, R., ZHEN., A., RosAa, M. D., KREVAT, E.,
WHITMAN, S., STROUCKEN, M., WANG, W., L, , AND
GANGER, G. Diagnosing performance changes by comparing
request flows. In NSDI (2011), USENIX.

SIGELMAN, B., BARROSO, L., BURROWS, M., STEPHENSON,
P., PLAKAL, M., BEAVER, D., JASPAN, S., AND SHANBHAG,
C. Dapper, a Large-Scale Distributed Systems Tracing Infras-
tructure. Tech. rep., Google Inc, 2010.

THERESKA, E., SALMON, B., STRUNK, J., WACHS, M.,
ABD-EL-MALEK, M., LOPEZ, J., AND GANGER, G. Star-
dust:tracking activity in a distributed storage system. In SIG-
METRICS (2006), ACM.

URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M.,
AND TANTAWI, A. An analytical model for multi-tier internet
services and its applications. In ACM SIGMETRICS (2005).

WOLSKI, R. Dynamically forecasting network performance us-
ing the network weather service. Cluster Computing 1 (January
1998), 119-132.

