
Heterogeneity-Aware Resource Allocation and Scheduling in the Cloud

Gunho Lee†, Byung-Gon Chun‡, Randy H. Katz†

†University of California, Berkeley, ‡Yahoo! Research

Abstract
Data analytics are key applications running in the

cloud computing environment. To improve performance
and cost-effectiveness of a data analytics cluster in the
cloud, the data analytics system should account for het-
erogeneity of the environment and workloads. In addi-
tion, it also needs to provide fairness among jobs when
multiple jobs share the cluster. In this paper, we rethink
resource allocation and job scheduling on a data analyt-
ics system in the cloud to embrace the heterogeneity of
the underlying platforms and workloads. To that end, we
suggest an architecture to allocate resources to a data an-
alytics cluster in the cloud, and propose a metric of share
in a heterogeneous cluster to realize a scheduling scheme
that achieves high performance and fairness.

1 Introduction

As the number and the scale of Internet services in-
creases, more services are run in the cloud computing
environment. Many of these services require large data
processing to serve customers. They also generate a huge
amount of data to be analyzed, to monitor and improve
the quality. To minimize the response time of data pro-
cessing queries, it is desirable to store and process data
in the same cluster to exploit data locality.

Since capital and operational costs are primary consid-
erations, we want to minimze the size of the cluster while
meeting the performance requirements or the deadlines
of queries. The resource demands for data analytics job
fluctuate over time. The cloud computing environment
provides dynamic provisioning [5]. Thus we can allocate
just enough machines to store the data and add or re-
move machines according to the workload demands. We
can either use the remaining machines for other purposes
or not pay for them at all.

Data analytics workloads have heterogeneous re-
source demands because some workloads may be CPU-
intensive whereas others are I/O-intensive. Some of them

might be able to use special hardware like GPUs to
achieve dramatic performance gains [9].

It is also likely that the computing environment is het-
erogeneous. The cloud consist of generations of servers
with different capacities and performance; therefore, var-
ious configurations of machines will be available. For ex-
ample, some machines are more suitable to store large
data whereas others run faster computations. As the per-
formance of a job depends on where it runs, we need
to track job affinity or determine which type of machine
offers the most suitable cost-performance trade-off for a
job.

Accounting for heterogeneity properties in the cloud
becomes more difficult when the cluster is shared among
multiple jobs because the most suitable type of machine
depends on the job. The data analytics system must pro-
vide fairness among jobs. For example, when multiple
jobs are running and accessing the same set of data, some
machines will offer the best performance for a job while
not for the others. Other machines may show poor per-
formance for all the jobs, but they may still be avail-
able (e.g., storage-oriented machines to store data). A
key question is how to schedule jobs on these machines
so that each receives its “fair” share of resources to make
progress while providing good performance.

In this paper, we consider resource allocation and job
scheduling problem of the data analytics cluster in the
cloud. Given the fluctuating resource demands of data
analytics workloads, we must scale the cluster according
to demands. To that end, we suggest a resource alloca-
tion strategy that (1) divides machines into two pools -
core nodes and accelerator nodes - and (2) dynamically
adjusts the size of each pool to reduce cost or improve
utilization.

In addition, to provide good performance while guar-
enteeing fairness in shared heterogeneous cluster, we
propose progress share as a new fairness metric to re-
define the share of a job in heterogeneous environment.
We also show how to adapt it to a data analytics system.

1



Analytics Engine
(MapReduce)

Cloud Driver

Core 
Node

Core 
Node

Core 
Node

Storage (HDFS)

Accelerator
Node

Job

Figure 1: Data Analytic Cloud Architecture

To present use case, we use Hadoop as the data analyt-
ics system and Amazon EC2 as the cloud environment.
However, the idea of exploiting heterogeneity to improve
efficiency and fairness may be applied to other systems
running in other environments.

Hadoop [3] is a widely-used data analytics sys-
tem, which consists of Hadoop Distributed File System
(HDFS) as a storage layer and and Hadoop MapReduce
as an analytics engine. A file in HDFS is divided into
blocks, and replicas of each block are stored on nodes in
the cluster. On top of HDFS, Hadoop MapReduce is used
to process data. Users submit jobs that consist of a map
function and a reduce function to Hadoop MapReduce,
then map and reduce tasks are launched on slots hosted
on participating nodes process data stored in HDFS and
aggregate results.

Amazon EC2 is a public cloud service that enables
users to lease virtual machines. Amazon charges per hour
and per machine for this public cloud service without re-
quiring any long-term commitments. Users can choose
the spec of their virtual machines from 11 instance types
tagged with different prices. Some of instance types
available are shown in Table 1.

This paper is organized as follows. We first describe
a resource allocation strategy for a data analytics clus-
ter in the cloud in Section 2. In Section 3, we present
a scheduling scheme in heterogeneous and shared envi-
ronments. We illustrate the benefits of our approach with
case studies in Section 4 and conclude with future work
in Section 5.

2 Resource Allocation

In this section, we will examine the resource allocation
strategy to make data analytics in the cloud efficient.
By “efficient”, we mean minizing the size of the clus-
ter while meeting the performance requirements. In this

way, we can improve overall data center utilization by
letting the remaining machines utilized by other appli-
cations, or reduce cost by not paying for redundant ma-
chines. To that end, we propose an architecture to build a
data analytics system in the cloud as seen in Figure 1.

In this architecture, participating nodes are grouped
into one of two pools: (1) long-living core nodes to host
both data and computations, and (2) accelerator nodes
that are added to the cluster temporarily when addi-
tional computing power is needed. An analytic engine
(e.g., Hadoop MapReduce) runs on nodes in both pools
whereas a storage system (e.g., HDFS) is deployed only
on core nodes. This approach is similar to the previ-
ous work of Chohan et al. [6], in which spot instances
(cheaper but may be terminated without notice) of Ama-
zon EC2 are added to processing nodes to speed up
Hadoop jobs. The cloud driver manages nodes allocated
to the analytic cloud and decides when to add/remove
what type of nodes to/from which pool, and how many.

Users submit a job to the cloud driver with a few hints
about the job characteristics, including memory require-
ment, ability to use special features like GPUs, and the
deadline, if available. Many production queries are rou-
tinely processed, so the cloud driver keeps the history of
query executions to estimate the submission rate of these
queries and update the hints provided. It also monitors
the storage system to estimate the incoming data rate. In
this way, the cloud driver predict the resource require-
ments to process queries and to store data.

The cloud driver is responsible for allocating resources
to the cluster. The number of core nodes is determined
primarily based on the required storage size. In addition,
the cloud driver refers to the history to see if more nodes
should be added to the core pool to accommodate the
production queries. When many production queries with
tight deadlines are anticipated or a large ad-hoc query is
submitted, the cloud driver will add nodes to the acceler-
ator pool temporarily to handle them rather than allocat-
ing too many core nodes that will be underutilized.

When adding nodes, the cloud driver also makes a
decision on which resource container (e.g., virtual ma-
chine) to use. As an illustration, we examine the case
when we use Amazon EC2 [1] for the cloud.

If we consider only the cost for the storage, using
m1.large instances is the cheapest. However, these in-
stances also have the least computing power among in-
stance types available , so we might need more nodes to
accommodate the production queries. In this case, using
other instance types such as c1.medium can be more ef-
ficient in terms of the whole expense. Moreover, some
jobs may run significantly faster on nodes of a particu-
lar instance type (e.g., cg1.4xlarge instances with GPUs).
Hence, it is important to know the job/instance type re-
lationship (which we call job affinity) to find a good mix

2



Instance Type $/Hour Disk(GB) $/GB/mon Core CU $/CU Mem(GB) GB/Core I/O
m1.small 0.085 160 0.38 1 1 61.20 1.7 1.70 moderate
m1.large 0.340 850 0.29 2 4 61.20 7.5 3.75 high

m2.2xlarge 1.000 850 0.80 4 13 55.38 34.2 8.55 high
c1.medium 0.170 350 0.35 2 5 24.48 1.7 0.85 moderate
cc1.4xlarge 1.600 1690 0.68 8 33.5 34.39 23 2.88 very high
cg1.4xlarge 2.100 1690 0.89 8 33.5 45.13 23 2.88 very high

Table 1: Example of EC2 Instances. CU represents Compute Unit.

B B A B B 

A B B B A 

B B B A B 

A B A 

B A B A B B 

A B B B B A 

0

0.5

1

1 2 3 4 5 6

P
ro

gr
e

ss
 S

h
ar

e

Time

Job B

Job A

Figure 2: Scheduling based on slot share

B B B B B B 

B B B B B B 

B B B B B 

B A B 

A A A A B 

A A A A A 

0

0.5

1

1 2 3 4

P
ro

gr
e

ss
 S

h
ar

e

Time

Job B

Job A

Figure 3: Scheduling based on progress share

of different instances that minimize the cost to maintain
the cluster.

We quantize job affinity using the relative speed of
each instance type for a particular job, which we call
computing rate(CR). CR(i, j) is the computing rate
of instance type i for job j. If CR(i1, j) is twice of
CR(i2, j), a task of job j runs twice faster on i1 than on
i2, or finishes in a half of time. By using the computing
rate information and the cost of each instance type, the
cloud driver can make a decision on which instance type
to use. CR is determined during the calibration phase of
a job execution, which is described in Section 4.

3 Scheduling

Once the cloud driver allocates a set of resource units
such as virtual machines, the analytics engine uses the
resources that are heterogeneous and shared among mul-

tiple jobs. In this section, we consider issues in job
scheduling on a shared, heterogeneous cluster, to provide
good performance while guarenteeing fairness.

3.1 Share and Fairness
In a shared cluster, providing fairness is one of the im-
portant features that the analytics engine should support.
There are many ways to define fairness, but one method
might be having each job receive equal (or weighted)
share of computing resources at any given moment. In
that sense, Hadoop Fair Scheduler [4] takes the number
of slots assigned to a job as a metric of share, and it pro-
vides fairness by having each job assigned the same num-
ber of slots.

In a heterogeneous cluster, the number of slots might
not be an appropriate metric of the share because all the
slots are not the same. Moreover, even on the same slot,
the computation speed varies depending on jobs. The
performance variance on different resources is also im-
portant to consider to improve overall performance of the
data analytics cluster; assigning a job to unpreferred slots
will not only make the job run slow, but also may prevent
other jobs that prefer the slot from utilizing it.

To realize fair and effective job scheduling in
shared and heterogeneous cluster, we introduce Progress
Share(PS) that captures the contribution of each resource
to the progress of a job. We also show how to adopt it
using the Hadoop MapReduce as an example analytics
engine.

3.1.1 Progress Share

Conceptually, progress share refers to how much
progress each job is making with assigned resources (or
slots in Hadoop) compared to the case of running the job
on the entire cluster without sharing; therefore, it is be-
tween 0 (no progress at all) and 1 (all available resources
are occupied). The computing rate (CR) is used to calcu-
late the progress share of a job.

Specifically, given that CR(s, j) is the computing rate
of slot s for job j, the progress share PS(j) of job j is
defined as follows:

PS(j) =

∑
s′∈Sj

CR(s′, j)∑
s′′∈S CR(s′′, j)

(1)

3



where Sj is a set of slots running tasks of job j and S
is the set of all slots. The sum of the progress share for
all jobs indicates the effectiveness of the resource assign-
ment. If it is below 1, there is an alternative assignment
that makes the sum above or equal to 1.

For example, suppose that two jobs, A and B, run on
a cluster that consists of two different types of nodes,
N1 and N2, where there are two slots of N1 and four
slots of N2. In addition, assume that a task of job A runs
three times faster on a slot of N1 than N2, whereas job
B runs on N1 as fast as N2. Figure 2 is an example of
scheduling when the number of assigned slots is used as
a share metric. Gray and white cells represent the slots of
N1 and N2, respectively. The letter in each cell indicates
the job occupying the slot. The graph below shows how
the progress share of each job changes over time. (It is
drawn only to the point at which there are enough tasks to
schedule.) Even though each job occupies the same num-
ber (three) of slots at all times, the progress share of job
A often falls below its fair share (0.5) because many tasks
of job A run on slots of N2 , which is not suitable for the
job. As seen in Figure 3, a progress share-based schedul-
ing guarantees that each job receives its fair share. It also
reduces the job finishing time, thereby improving overall
performance.

3.1.2 Scheduler

To calculate the ProgressShare of each job, the analyt-
ics engine scheduler should be aware of the per-slot com-
puting rate(CR). To that end, each job goes through two
phases: calibration and normal. When a job is submit-
ted, it starts with the calibration phase. In this phase, at
least one map task is launched on each type of node. By
measuring the completion time of these tasks, the sched-
uler can determine the CR. Once the scheduler knows
the CR, the job enters the normal phase.

During the normal phase, the scheduler works similar
to the Hadoop fair scheduler. When a slot becomes avail-
able, a job of which the share is less than its minimum
or fair share is selected. However, if there is another job
with a significantly higher computing rate on the slot,
the scheduler chooses that job to improve overall per-
formance. This is similar to the “delay scheduling” [10]
mechanism in Hadoop fair scheduler.

By using progress share, the scheduler can make an
appropriate decision. As a result, the cluster is better uti-
lized (i.e., the sum of the progress share≥ 1). In addition,
each job receives a fair amount of computing resources.

4 Case Study

In this section, we examine two case studies to illustrate
the potential benefits of our system in Amazon EC2.

6

7

8

9

10

11

12

13

0 1 2 3 4

C
o

st
 (

$
 p

e
r 

4
 h

o
u

rs
)

Speed (normalized)

5 m1

9 m1

5 m1 + 4 m1

5 m1 + 4 c1

5 m1 + 6 c1

5 m1 + 8 c1

5 m1 + 12 c1

5 m1 + 15 c1

Figure 4: Cost and speed of various configuration

0

50

100

2 cc1 1 cc1 + 1 cg1 1 cc1 + 1 cg1 
(progress share)

C
o

m
p

et
io

n
 T

im
e

 (
m

in
)

Cluster Configuration

Crypt

Sort

Figure 5: Accelerable jobs and the progress share

Resource Allocation and Accelerator Nodes First,
we consider a case in which a number of production
queries are issued every 4 hours. We chose 5 jobs from
the gridmix2 benchmark [2] as production queries and
ran them on the clusters with various configurations.

Figure 4 shows the cost to maintain the cluster dur-
ing one round of the production queries (4 hours) and
the relative speed of processing the queries. In this fig-
ure 4, “9m1” means using 9 m1.large instances as core
nodes, “5m1+4c1” represents a cluster with 5 m1.large
core nodes and 4 c1.medium accelerator nodes, and so
on. In this experiment, the capacity of the 5m1 configu-
ration was overloaded by the queries; thus it took more
than 4 hours. With three of the accelerator-rich config-
urations (5m1+8c1, 5m1+12c1, and 5m1+15c1), it took
less than 2 hours, so accelerator nodes in these config-
urations were released after the queries were done. The
other configurations completed the queries in between 2
and 3 hours.

Note that c1.medium instances provide higher perfor-
mance per cost because they have faster CPUs at lower
prices than do m1.large (see Table 1). However, they are
equipped with less memory; therefore, they might be of
no use for jobs that require a large amount of mem-
ory. The graph also points out that using more acceler-
ators can cost less, while allowing jobs to be completed
faster. Because the cluster with 6 accelerator nodes of
c1.medium instance can finish all jobs less than 2 hours,

4



we need to pay for only 2 hours’ usage of accelerator
nodes. On the other hand, it takes more than 2 hours
with 4 c1.medium accelerators, which requires paying
charges for 3 hours. In this case study, we observed that
there are a number of ways to allocate resources with
cost-performance trade-offs. Making the right decision
maintains the cluster cost effectively.

Job Affinity and Progress Share The second case is
when there is significant job affinity. We used a GPU-
accelarable dictionary-based cryptographic attack job
(Crypto), and a sort job (Sort) for this case. We prepared
a small cluster consisting of two nodes and used the fair
scheduler.

The first bars in Figure 5 show the completion time
of each job when the two nodes are all cc1.4xlarge in-
stances. For the second bars, we replaced a node with
a cg1.4xlarge instance that is identical to cc1.4xlarge
except for the GPUs with which it is equipped. Here,
we can observe a significant performance gain of us-
ing GPUs. This suggests the benefit of having a hetero-
geneous cluster. However, just having a heterogeneous
cluster does not lead to an optimal usage; the scheduler
will assign tasks randomly without being aware of job
affinity. The last bars show the results with a hardware-
aware scheduler that adopts progress share. By prioritiz-
ing to the Crypto job to the nodes with GPUs, the job was
completed much earlier. It is worth noting that even the
sort job finished earlier compared to other cases because
the Sort receives more than half of slots at any moment.
Assigning a fraction of a cg1.xlarge node to Crypto con-
tributes a significant amount towards its progress share,
which in turn makes the Sort job receive more resources
to match its progress share to Crypto’s. Even if Sort re-
ceives more slots than Crypto, we argue that it is more
fair than giving the same number of slots to each job
(as the current Hadoop does) because Crypto already
receives significantly preferred resources, which quick-
ens its progress. In this case study, we can see that the
scheduling algorithm of the analytics engine plays an
important role to improve performance while providing
fairness.

5 Conclusion

The cloud environment provides heterogeneous hard-
ware and resource demands; therefore, it is important
to exploit these features to make a data analytics clus-
ter in the cloud efficient. In this paper, we presented a
system architecture to allocate resources to such a clus-
ter in a cost-effective manner, and discussed a schedul-
ing scheme that provides good performance and fair-
ness simultaneously in heterogeneous cluster, by adopt-
ing progress share as a share metric.

Beyond data analytics systems, many systems running

in the cloud involve multilevel scheduling - resource al-
location at infrastructure level and job scheduling at ap-
plication level. Mesos [8] takes this approach to provide
resource sharing and isolation across distributed applica-
tions. It adopts Dominent Resource Fairness(DRF) [7] as
an example of resource allocation policy and leaves ap-
plication level scheduling to each application. We plan to
experiment with PS in a framework to be constructed on
top of Mesos.

References

[1] Amazon ec2. http://aws.amazon.com/
ec2.

[2] Gridmix. http://hadoop.apache.org/
mapreduce/docs/current/gridmix.
html.

[3] Hadoop. http://hadoop.apache.org.
[4] Hadoop fair scheduler. http://hadoop.

apache.org/common/docs/r0.20.1/
fair_scheduler.html.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson,
A. Rabkin, I. Stoica, and M. Zaharia. Above the
clouds: A berkeley view of cloud computing. Tech-
nical Report UCB/EECS-2009-28, EECS Depart-
ment, University of California, Berkeley, Feb 2009.

[6] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder,
A. Tantawi, and C. Krintz. See spot run: Using spot
instances for mapreduce workflows. In HotCloud,
2010.

[7] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwin-
ski, S. Shenker, and I. Stoica. Dominant resource
fairness: Fair allocation of multiple resource types.
In NSDI, 2011.

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,
A. D. Joseph, R. Katz, S. Shenker, and I. Stoica.
Mesos: A platform for fine-grained resource shar-
ing in the data center. In NSDI, 2011.

[9] J. Polo, D. Carrera, Y. Becerra, V. Beltran, and J. T.
andEduard Ayguad. Performance management of
accelerated mapreduce workloads in heterogeneous
clusters. In 39th International Conference on Par-
allel Processing (ICPP2010), 2010.

[10] M. Zaharia et al. Delay scheduling: A simple tech-
nique for achieving locality and fairness in cluster
scheduling. In EuroSys, 2010.

5


