
The HybrEx Model for Confidentiality and Privacy in Cloud
Computing

Steven Y. Ko†, Kyungho Jeon†, Ramsés Morales∗
†University at Buffalo, The State University of New York and ∗Xerox Research Center Webster

Abstract
This paper proposes a new execution model for con-
fidentiality and privacy in cloud computing, called the
HybrEx (Hybrid Execution) model. The HybrEx model
provides a seamless way for an organization to utilize
their own infrastructure for sensitive, private data and
computation, while integrating public clouds for non-
sensitive, public data and computation. We outline how
to realize this model in one specific execution environ-
ment, MapReduce over Bigtable.

1 Introduction
Cloud computing allows large organizations to tap into
a virtually infinite pool of resources with the ability to
control cost. Cloud providers give this power to their
customers by offering a pay-as-you-go pricing model as
well as elasticity and availability of computing and stor-
age resources. Due to this benefit, cloud computing has
quickly gained popularity in recent years.

Yet many organizations have not widely adapted the
use of clouds due to the concerns of confidentiality and
privacy. For example, a recent survey collected re-
sponses from more than 500 IT executives from around
the world, and reports that IT executives prefer their ex-
isting internal infrastructure (i.e., their private cloud)
over a third-party cloud (i.e., a public cloud) due to se-
curity threats and lack of control over their data and sys-
tems that handle it [12]. For industries such as finance
and healthcare, explicit regulations regarding data pro-
tection — Payment Card Industry Data Security Stan-
dard (PCI DSS) [13] and Health Insurance Portability
and Accountability Act (HIPAA) [9] — severely limit
the potential use of public clouds.

These concerns are well-founded. Researchers have
shown that an outside attacker can extract unauthorized
information in Amazon EC2 [15]. Other researchers dis-
covered a vulnerability that allows user impersonation
in Google Apps [1]. Encryption can only provide a lim-
ited guarantee, since any computation on encrypted data
either involves decrypting the data or has yet to be prac-
tical even with fully homomorphic encryption [7].

One line of research to resolve these issues is to make
public clouds more secure [17, 20]. However, a public

Public	
  Cloud	
  Private	
  Cloud	
  

HybrEx	
  Storage	
  

HybrEx	
  Execu6on	
  Framework	
  

Internet	
  

App	
  

Disk	
  

Fig. 1: The Architecture of the HybrEx Model

cloud is a shared platform managed by a third-party with
potential security risks such as insider attacks and soft-
ware vulnerabilities. These risks are difficult to elimi-
nate as evidenced by the examples mentioned above as
well as the history of security breaches and patches in
general — after all, this is precisely the reason why or-
ganizations are hesitant to adapt the use of public clouds.

Recognizing this difficulty, we argue for an alterna-
tive that treats public clouds as an inherently insecure
environment instead of trying to make them more se-
cure; we propose an execution model that utilizes pub-
lic clouds only for safe operations while integrating an
organization’s private cloud. We refer to this as the
HybrEx (Hybrid Execution) model.

More specifically, our HybrEx model utilizes public
clouds only for an organization’s non-sensitive data and
computation classified as public, i.e., when the organiza-
tion declares that there is no privacy and confidentiality
risk in exporting the data and performing computation
on it using public clouds. For the organization’s sensi-
tive, private data and computation, the HybrEx model
utilizes their private cloud. Moreover, when an applica-
tion requires access to both the private and public data,
the application itself also gets partitioned and runs in
both the private and public clouds. Figure 1 depicts the
architecture with a HybrEx execution framework that
partitions and runs applications, as well as a HybrEx
storage that manages private and public data separately.

The main benefit of the HybrEx model is integra-
tion with safety, i.e., the ability to add more computing
and storage resources from public clouds to a private
cloud without the concerns for confidentiality and pri-
vacy. By partitioning data and computation, the HybrEx
model side-steps the question of trustworthiness of pub-

1



Cloud	
  2	
  Cloud	
  1	
  

Map	
  

Reduce	
  

(a) Map Hybrid

Cloud	
  2	
  

Cloud	
  1	
  

Map	
  

Reduce	
  

(b) Horizontal Partitioning

Cloud	
  2	
  Cloud	
  1	
  

Map	
  

Reduce	
  

(c) Vertical Partitioning

Cloud	
  2	
  Cloud	
  1	
  

Map	
  

Reduce	
  

(d) Hybrid

Fig. 2: Execution Categories for HybrEx MapReduce

lic clouds and provides the same level of confidentiality
and privacy guarantees as the traditional local comput-
ing provides. Businesses are already looking into the in-
tegration of private and public clouds mainly for capac-
ity and performance, i.e., to elastically scale out from
their private cloud to public clouds [14]; the HybrEx
model can give an additional benefit of confidentiality
and privacy to these businesses.

In order to concretely explore this general direction,
we first focus our effort on how to realize the HybrEx
model in one specific execution environment, Map-
Reduce over Bigtable, using Hadoop MapReduce and
HBase. We have chosen this execution environment
for two reasons. First, MapReduce [4] is arguably the
most popular execution environment in cloud comput-
ing. Second, MapReduce’s massively parallel nature of
execution, combined with the semi-structured data man-
agement of Bigtable [2], allows clean and well-defined
partitioning between private and public clouds.

Using partitioning for secure computing is not a new
idea [3, 21, 22]. However, realizing it in the HybrEx
model and MapReduce brings its own set of challenges.
First, we need to be able to partition data and compu-
tation. Second, utilizing both private and public clouds
for a single (partitioned) MapReduce job means running
the job over the wide-area Internet. Due to the all-to-
all communication pattern in MapReduce as well as its
master-slave architecture, providing reasonable perfor-
mance over the wide-area can be challenging. Finally,
while partitioning provides confidentiality and privacy
for private data and computation, it does not ensure in-
tegrity of public data and computation. Section 3 out-
lines these challenges and our research directions.

The HybrEx model enables new kinds of applications
utilizing both private and public clouds. We discuss this
in the context of MapReduce in the next section.

2 Execution Categories
MapReduce presents a unique opportunity to realize the
HybrEx model since a MapReduce job is sub-divided
into tasks that run massively in parallel. We present four
categories (Figure 2) showing how HybrEx MapReduce
enables new kinds of applications that utilize both pri-
vate and public clouds. These categories highlight both
the integration and safety aspects of the HybrEx model.

Map Hybrid Many MapReduce applications analyze
private and public data sets; a number of public data
sets are available for domains such as forensic analysis,
spam detection, and genome analysis, via well-known
repositories, e.g., Amazon AWS Public Data Sets and
CDC WONDER. Using these data sets, organizations
can analyze both their own data sets and public data
sets together for comparison or accuracy improvements.
Since these applications process both private and public
data sets, it is difficult to execute them in a public cloud
without compromising on confidentiality and privacy.

HybrEx MapReduce enables this type of applications
to safely utilize a public cloud by executing the Map
phase in both private and public clouds while executing
the Reduce phase in only one of the clouds. We refer to
this category as Map hybrid, depicted in Figure 2(a).

We illustrate this with an example called Cloud-
Burst [18], a bioinformatics MapReduce application.
Simply put, it implements an algorithm that compares
genome sequences, which serves as a basis for other bi-
ological analyses such as comparing a patient’s genome
to a reference human genome for medical purposes.
CloudBurst’s input consists of (potentially) private data
called target genomes (e.g., patients’ genomes) and pub-
lic data called reference genomes (e.g., human reference
genomes available from a public repository).

CloudBurst uses the same algorithm to process both
the reference genomes and the target genomes in the
Map phase. Thus, HybrEx MapReduce can safely uti-
lize the public cloud for the reference genomes while
utilizing the private cloud for the target genomes during
the Map phase. On the other hand, the Reduce phase of
CloudBurst produces (potentially) private outputs, e.g.,
a genome comparison result for a patient. Thus, we can
utilize only the private cloud for the Reduce phase.

Horizontal Partitioning There are two popular usage
cases for the current public clouds. The first case is
long-term archiving of an organization’s data, where the
organization encrypts their private data before storing it
on a public cloud. The second case is exporting and im-
porting data for running periodic MapReduce jobs in a
public cloud. This is in fact a common usage case in
Amazon Elastic MapReduce [19]; an organization first
exports its data to a public cloud, runs a MapReduce job

2



in the public cloud, and (optionally) imports the result
back to its own private storage.

Since HybrEx MapReduce seamlessly integrates pri-
vate and public clouds, it can automate these usage cases
by utilizing different clouds for different phases. We re-
fer to this category as horizontal partitioning, depicted
in Figure 2(b). For example, in the long-term archiving
case, HybrEx MapReduce can run Map tasks that en-
crypt private data in the private cloud, transfer encrypted
data to the public cloud via the Shuffle phase, and run
Reduce tasks that store the data in the public cloud.

Vertical Partitioning In 2007, the New York Times
transformed its scanned images of the public domain ar-
ticles to PDF files using MapReduce running in Amazon
EC2. 1 Each original article comprised of many small
TIFF images, and a MapReduce job “glued” these im-
ages together to produce one PDF file per article. How-
ever, they only transformed public domain articles; if an
organization wants to process private and public docu-
ments at the same time, it becomes difficult to do so in a
public cloud due to confidentiality and privacy.

HybrEx MapReduce enables this type of applications
to safely utilize a public cloud by executing a Map-
Reduce job in both private and public clouds while
avoiding any inter-cloud shuffling of intermediate data.
Although this type of partitioning is technically akin to
running two separate jobs in private and public clouds,
HybeEx MapReduce supports this naturally without the
overhead of separate management of jobs and data.
We refer to this category as vertical partitioning. Fig-
ure 2(c) depicts this category.

In vertical partitioning, HybrEx MapReduce workers
in the public cloud execute Map and Reduce tasks using
public data as the input, shuffle intermediate data among
them, and store the result in the public cloud. Workers
in the private cloud do the same with private data. In
general, HybrEx MapReduce can run a MapReduce job
this way when the job can process private and public
data in isolation. Many applications belong to this cate-
gory such as separate indexing of private and public web
pages of an organization, pattern search (grep), etc.

Hybrid Many organizations are looking into ways to
integrate public clouds for performance reasons or due
to resource limitations in their private cloud [14]. These
organizations mainly utilize their private cloud even
for storing and processing public data, but occasionally
want to scale out to a public cloud. HybrEx MapReduce
can achieve this by utilizing both private and public
clouds in all three phases of MapReduce as shown in
Figure 2(d). We refer to this simply as hybrid.

1http://open.blogs.nytimes.com/2007/11/01/
self-service-prorated-super-computing-fun/

Beyond Pure MapReduce For general applications,
the pure MapReduce programming paradigm is limit-
ing as there are only two primitives to play with. Thus,
we are exploring ways to overcome this limitation. The
first is an optional phase in between Map and Shuffle
called the Sanitize phase. Using this phase, HybrEx
MapReduce could allow programmers to explicitly sani-
tize intermediate data for more flexible utilization of pri-
vate and public clouds.

We are also exploring the applicability of HybrEx in
Pig 2 and Hive 3. Both systems are based on Map-
Reduce, but allow more flexbility and generality in pro-
gramming. We believe that supporting these systems
will likely result in wider applicability of HybrEx.

3 Research Challenges and Directions
We need to overcome three main challenges to imple-
ment the HybrEx model — data partitioning, system
partitioning, and integrity — and achieve integration
with safety. The following outlines these challenges and
our research directions.

3.1 Data Partitioning

Since the HybrEx model proposes the use of partition-
ing for confidentiality and privacy, it raises an immedi-
ate question of how to partition data. We address this
question by using two labels, the private label and the
public label. HybrEx Bigtable and HybrEx MapReduce
recognize these labels and determine data and compu-
tation placement accordingly. This use of labels is in-
spired by previous information flow control techniques
used in programming languages such as Jif [11] and sys-
tems such as Asbestos [5]. While these approaches use
labels to control and track how information flows among
system components, we only need to use labels to deter-
mine the placement of data and computation.

We assume that organizations have policies to de-
termine data sensitivity; we hypothesize that in many
cases, organizations can perform labeling programmati-
cally at the time of importing data into HybrEx Bigtable
by running a MapReduce job. For example, if an orga-
nization has a file-naming convention that indicates the
sensitivity of a document, it can run a MapReduce job
that labels data according to file names.

3.2 System Partitioning

Since the HybrEx model utilizes both private and public
clouds, any system that implements the HybrEx model
has to partition its components, i.e., it needs to place
some components in the public cloud and others in the
private cloud. This naturally raises two sub-questions
— i) how to keep public components from accessing

2http://pig.apache.org/
3http://hive.apache.org/

3



Private	
  Cloud	
  

Internet	
  

Tablet	
  Server	
  

Public	
  Cloud	
   Chubby	
  

Master	
  

Shadow	
  Chubby	
  

Shadow	
  Master	
  

Fig. 3: The Architecture of HybrEx Bigtable

unauthorized information (e.g., private data), and ii)
how to reduce the wide-area communication overhead
if the communications between private and public com-
ponents are necessary and become a bottleneck. We dis-
cuss how we are addressing these issues in HybrEx Big-
table and HybrEx MapReduce.

HybrEx Bigtable In order to concretely discuss the
two questions of system partitioning for Bigtable, we
briefly introduce its three main components — the mas-
ter, tablet servers, and Chubby. The master is respon-
sible for the overall management of the system. Tablet
servers manage stored data and handle read and write
requests. Chubby provides meta data consistency and
reliability.

With these components, we can rephrase the two
questions of system partitioning as follows. First, when
utilizing both private and public clouds, we need to
place tablet servers in both clouds as they directly handle
data. Thus, we must keep public tablet servers from han-
dling private data. Second, we avoid placing the mas-
ter and Chubby in the public cloud as we need to trust
them for overall correctness. However, the master, tablet
servers, and Chubby communicate with each other fre-
quently for correct functioning of the system. Thus, we
need to reduce the wide-area communication overhead
between public tablet servers, the master, and Chubby.

In order to address these issues, we introduce two
new components that we refer to as the shadow mas-
ter and the shadow Chubby as shown in Figure 3. These
components are public counterparts to the master and
Chubby that run in the public cloud. Each shadow com-
ponent is a restricted version of its private counterpart,
and does not have any access to information regarding
private data. Moreover, we only allow tablet servers
in the public cloud to communicate with these shadow
components. An immediate benefit of this architecture
is the ability to avoid the master-slave wide-area com-
munications, as it mostly localizes the communications
among system components; the components in the pri-
vate cloud do not communicate with the components in
the public cloud for the most part, and vice versa.

HybrEx MapReduce Since both Bigtable and Map-
Reduce have a similar master-slave architecture, we ap-
ply the same general approach to system partitioning;

Private	
  Cloud	
  

Internet	
  

Shuffle	
  Proxy	
  

Public	
  Cloud	
   Master	
  

Shadow	
  Master	
  

Worker	
  

Fig. 4: The Architecture of HybrEx MapReduce

we partition the main components of the original Map-
Reduce, the master and the workers. The master has
its restricted public counterpart, the shadow master, and
we place the workers in both private and public clouds as
shown in Figure 4. As in HybrEx Bigtable, this architec-
ture avoids the master-slave wide-area communications.

However, MapReduce has a critical difference from
Bigtable in terms of wide-area communication overhead
as some MapReduce jobs require shuffling of intermedi-
ate data over the wide-area as shown in Section 2. Thus,
we introduce a new component called shuffle proxies
that transfer intermediate data over the wide-area on be-
half of the workers. This is different from the original
MapReduce that allows the workers to directly transfer
intermediate data among them.

Shuffle proxies give us the benefit of having a separate
architectural component where we can apply optimiza-
tion techniques to reduce the wide-area overhead. We
are exploring techniques such as caching, aggregation,
compression, and deduplication of intermediate data.

We recognize that using a public cloud in addition to
a private cloud gives more computing power, which can
lead to better performance despite the wide-area over-
head. For example, in a small-scale experiment involv-
ing 5 local machines in Buffalo and 5 Emulab machines
in Utah, the execution time of Hadoop sorting 20GB of
input data turns out to be faster over the wide-area (702
sec with all 10 machines over the wide-area vs. 937 sec
with 5 local machines). However, overhead reduction is
still important to benefit a broad range of applications
and system configurations.

3.3 Integrity

The last question is how to provide integrity for data and
computation in the public cloud, as our basic assumption
is that it is not safe to trust the public cloud. To address
the question of data integrity, HybrEx Bigtable keeps the
hashes of the public data in the private cloud. HybrEx
Bigtable can verify the integrity either when there is a
request for the public data or proactively by sampling.

For computation integrity, HybrEx MapReduce
checks the integrity of the results from the public cloud
in two modes that provide different levels of fidelity.
The first mode is full integrity checking, where the pri-
vate cloud re-executes every Map and Reduce task that

4



the public cloud has executed. HybrEx MapReduce pro-
vides this mainly as a means to enable auditing at a later
time, e.g., when an organization wants to verify the cor-
rectness of past computations from the public cloud.

Obviously, the overhead of doing the full integrity
checking can be costly. Thus, HybrEx MapReduce pro-
vides quick integrity checking, where the private cloud
selectively checks the integrity of the results from the
public cloud. HybrEx MapReduce provides this mainly
to check the integrity at runtime for probabilistic detec-
tion of suspicious activities in the public cloud. For
this purpose, we store data items that we call inspec-
tion points in the private cloud. Inspection points can be
either new synthetic data items that we add to the pub-
lic data or existing public data items selected randomly
for the purpose of verification. For example, for a Map-
Reduce job that counts words in a public document, we
can either add new unique words to the document or se-
lect existing words at random from the document, and
store them in the private cloud. We can verify that the
result from the public cloud contains the accurate counts
of these words by running the same job in the private
cloud with the inspection points. The frequency, over-
head, and effectiveness of inspection points are our cur-
rent subjects of investigation.

4 Related Work
In addition to the previous work on cloud security,
partitioning, and information flow control discussed in
Section 1 and 3, the recent line of work on hybrid
clouds, cloud accountability, security and privacy in
MapReduce, and untrusted public clouds is closely re-
lated. Notably, CloudNet [20] proposes a VPN-like
network to provide secure and seamless resource inte-
gration between private and public clouds. The work
on accountable virtual machines (AVM) [8] proposes
an accountability scheme for virtualized environments.
Since the AVM approach is basically VM logging-and-
replaying, it is effectively the same as our full integrity
checking, potentially with more overhead. Airavat [16]
provides security and privacy guarantees in MapReduce
by mandatory access control and differential privacy.
Recent works such as Depot [10] and SPORC [6] also
assume public clouds as an untrusted environment.

5 Conclusions and Future Work
In this paper, we start from the position that it is funda-
mentally difficult to secure public clouds, and then out-
line an execution model called the HybrEx model that
uses partitioning of data and computation as a way to
provide confidentiality and privacy. We discuss how we
can realize this model in one specific execution environ-
ment, MapReduce over Bigtable.

We are currently implementing HybrEx MapReduce

and HybrEx Bigtable. Moving forward, we believe
that the HybrEx model could be useful for other exe-
cution environments such as VM-based hybrid clouds
and smartphones interacting with clouds. We plan to
explore the feasibility of applying the HybrEx model in
these environments.

References
[1] A. Armando et al. Formal Analysis of SAML 2.0 Web Browser

Single Sign-On: Breaking the SAML-based Single Sign-On for
Google Apps. In ACM FMSE, 2008.

[2] F. Chang et al. Bigtable: A Distributed Storage System for Struc-
tured Data. In USENIX OSDI, 2006.

[3] S. Chong et al. Secure Web Applications via Automatic Parti-
tioning. In ACM SOSP, 2007.

[4] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In USENIX OSDI, 2004.

[5] P. Efstathopoulos et al. Labels and Event Processes in the As-
bestos Operating System. In ACM SOSP, 2005.

[6] A. J. Feldman et al. SPORC: Group Collaboration using Un-
trusted Cloud Resources. In USENIX OSDI, 2010.

[7] C. Gentry. Fully Homomorphic Encryption Using Ideal Lattices.
In ACM STOC, 2009.

[8] A. Haeberlen et al. Accountable Virtual Machines. In USENIX
OSDI, 2010.

[9] Health Insurance Portability and Accountability Act of 1996
(HIPAA), Public Law 104-191.

[10] P. Mahajan et al. Depot: Cloud Storage with Minimal Trust. In
USENIX OSDI, 2010.

[11] A. C. Myers and B. Liskov. A Decentralized Model for Infor-
mation Flow Control. In ACM SOSP, 1997.

[12] Survey: Cloud Computing ‘No Hype’, But Fear of
Security and Control Slowing Adoption. http:
//www.circleid.com/posts/20090226_cloud_
computing_hype_security.

[13] PCI DSS v2.0. https://www.
pcisecuritystandards.org/documents/pci_
dss_v2.pdf, 2010.

[14] Forecast for 2010: The Rise of Hybrid
Clouds. http://gigaom.com/2010/01/01/
on-the-rise-of-hybrid-clouds, 2010.

[15] T. Ristenpart et al. Hey, You, Get Off of My Cloud: Exploring
Information Leakage in Third-Party Compute Clouds. In ACM
CCS, 2009.

[16] I. Roy et al. Airavat: Security and Privacy for MapReduce. In
USENIX NSDI, 2010.

[17] N. Santos et al. Towards Trusted Cloud Computing. In USENIX
HotCloud, 2009.

[18] M. C. Schatz. CloudBurst: Highly Sensitive Read Mapping with
MapReduce. Bioinformatics, 25(11):1363–1369, 2009.

[19] P. Sirota. Keynote: Making Hadoop Enterprise Ready with
Amazon Elastic MapReduce. Hadoop Summit, 2010.

[20] T. Wood et al. The Case for Enterprise-Ready Virtual Private
Clouds. In USENIX HotCloud, 2009.

[21] S. Zdancewic et al. Untrusted Hosts and Confidentiality: Secure
Program Partitioning. In ACM SOSP, 2001.

[22] L. Zheng et al. Using Replication and Partitioning to Build Se-
cure Distributed Systems. In IEEE Oakland, 2003.

5


