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Abstract
Managing resources at large scale while providing per-

formance isolation and efficient use of underlying hard-
ware is a key challenge for any cloud management soft-
ware. Most virtual machine (VM) resource management
systems like VMware DRS clusters, Microsoft PRO and
Eucalyptus, do not currently scale to the number of hosts
and VMs supported by cloud service providers. In addi-
tion to scale, other challenges include heterogeneity of
systems, compatibility constraints between virtual ma-
chines and underlying hardware, islands of resources cre-
ated due to storage and network connectivity and limited
scale of storage resources.

In this paper, we shed light on some of the key issues
in building cloud-scale resource management systems,
based on five years of research and shipping cluster re-
source management products. Furthermore, we discuss
various techniques to provide large scale resource man-
agement, along with the pros and cons of each technique.
We hope to motivate future research in this area to de-
velop practical solutions to these issues.

1 Introduction

Managing compute and IO resources at large scale in
both public and private clouds is quite challenging. The
success of any cloud management software critically de-
pends on the flexibility, scale and efficiency with which it
can utilize the underlying hardware resources while pro-
viding necessary performance isolation [5, 8, 11]. Cus-
tomers expect cloud service providers to deliver quality
of service (QoS) controls for tenant VMs. Thus, resource
management at cloud scale requires the management plat-
form to provide a rich set of resource controls that balance
the QoS of tenants with overall resource efficiencies of
datacenters.

For public clouds, some systems (e.g., Amazon EC2)
provide largely a one-to-one mapping between virtual and

physical CPU and memory resources. This leads to poor
consolidation ratios and customers are unable to exploit
the benefits from statistical multiplexing that they enjoy
in private clouds. Some recent studies [4] have done a
cost comparison of public vs. private clouds and have
come up with a mantra of don’t move to the cloud, but
virtualize.

For private clouds, resource management solutions like
VMware DRS [2] and Microsoft PRO [1] have led to
better performance isolation, higher utilization of un-
derlying hardware resources via over-commitment and
overall lower cost of ownership. Unfortunately, the rich
set of controls provided by these solutions does not eas-
ily scale to cloud environments. As part of a team,
we have worked on VMware’s shipping Distributed Re-
source Scheduler (DRS) product and are in the process
of prototyping and evaluating a scaled version of DRS.
In doing so, we have faced a set of challenges and have
explored various alternatives for solving them.

In this position paper, we first describe a resource
model that provides a rich but needed set of resource
controls for supporting high consolidation ratios, service
guarantees, and performance isolation. We also outline
how these controls are enforced while providing efficient
utilization of underlying resources in our current small
scale implementation. Then, we discuss some of the key
issues and challenges in scaling and designing a resource
management solution for a cloud environment. These is-
sues include scale, heterogeneity of resources, handling
compatibility constraints and resource islands due to stor-
age and network connectivity.

Finally, we discuss three different approaches to de-
signing a scalable solution along with pros and cons of
each. These approaches include hierarchical-scaling, flat-
scaling and statistical-scaling. Our hope is that this paper
will motivate future research in this area to tackle some
of these relevant issues in designing practical resource
management solutions.
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2 Resource Management Operations

There are many ways to provide resource management
controls in a cloud environment. We pick VMware’s
Distributed Resource Scheduler (DRS) as an example
because it has a rich set of controls that are needed for
efficient multi-resource management while providing dif-
ferentiated QoS to groups of VMs, albeit at a small scale
compared to typical cloud deployments. Currently DRS
supports 32 hosts and roughly 3000 VMs in a manage-
ment domain called a cluster, as shown in Figure 1. In
this section, we first describe the resource management
services provided by DRS, then discuss the importance
of such services in the cloud setting, and finally provide
a brief description of load balancing approach used in
DRS.

In a large scale environment, having rich resource man-
agement controls alleviates the noisy-neighbor problem
for tenants if, like DRS, the underlying management in-
frastructure natively supports automated enforcement and
guarantees. At the same time, such controls support the
cloud service provider over-committing the hardware re-
sources safely, allowing better efficiency from statistical
multiplexing of resources without sacrificing the exposed
guarantees.

2.1 Basic Resource Controls in DRS
VMware ESX and DRS provide resource controls which
allow administrators and users to express allocations in
terms of either absolute VM service rates or relative VM
importance. The same control knobs are provided for cpu
and memory allocations at both the host and cluster levels.
Similar controls are under development for I/O resources
and have been validated by a research prototype [7]. Note
that VMware’s Distributed Power Management product
(DPM) powers on/off hosts while respecting these con-
trols.
Reservation: A reservation is used to specify a minimum
guaranteed amount of resources, i.e., a lower bound that
applies even when a system is heavily over-committed.
Reservations are expressed in absolute units, such as
megahertz (MHz) for cpu, and megabytes (MB) for mem-
ory. Admission control during VM power on ensures that
the sum of reservations for a resource does not exceed
total capacity.
Limit: A limit is used to specify an upper bound on
consumption, even when a system is under-committed.
A VM is prevented from consuming more than its limit,
even if that leaves some resources idle. Like reservations,
limits are expressed in concrete absolute units, such as
MHz and MB.
Shares: Shares are used to specify relative importance,
and are expressed as abstract numeric values. A VM is
entitled to consume resources proportional to its share al-
location; it is guaranteed a minimum resource fraction
equal to its fraction of the total shares in the system.
Shares represent relative resource rights that depend on
the total number of shares contending for a resource.

Reservations and limits play an important role in the
cloud. Without these guarantees, users would suffer from
performance unpredictability, unless the cloud provider
takes the non-work-conserving approach of simply stati-
cally partitioning the physical hardware, which leads to
the inefficiency of over-provisioning. This was the main
reason for providing these controls for enterprise work-
loads running on top of VMware ESX and VMware DRS.

2.2 Resource Pools
In addition to the basic resource controls presented ear-
lier, administrators and users can specify flexible resource
management policies for groups of VMs. This is facili-
tated by introducing the concept of a logical resource
pool – a container that can be used to specify an aggregate
resource allocation for a set of VMs. A resource pool is a
named object with associated settings for each managed
resource – the same familiar shares, reservation, and limit
controls used for VMs. Admission control is performed
at the pool level; the sum of the reservations for a pool’s



children must not exceed the pool’s own reservation.
Separate, per-pool allocations provide both isolation

between pools, and sharing within pools. For example,
if some VMs within a pool are idle, their unused alloca-
tion will be reallocated preferentially to other VMs within
the same pool. Resource pools may be configured in a
flexible hierarchical organization as shown in Figure 2;
each pool has an enclosing parent pool, and children that
may be VMs or sub-pools. Resource pools are useful
in dividing large capacity into logically grouped users.
Organizational administrators can use resource pool hier-
archies to mirror human organizational structures, and to
support delegated administration.

The resource pool construct is well-suited to the cloud
setting as organizational administrators typically buy ca-
pacity in bulk from providers and run several VMs. It is
missing in several large scale cloud providers although
it has been useful for thousands of enterprise customers
using VMware DRS and VMware ESX, each managing
the resource needs of thousands of VMs.

2.3 DRS Load Balancing
DRS performs three key resource-related operations: (1)
It computes the amount of resources that each VM should
get based on the reservation, limit and shares settings for
VMs as well as resource pool nodes, (2) It does initial
placement of VMs on to hosts, so that a user doesn’t
have to make a manual placement decision, and (3) It
recommends and performs live VM migrations to do load
balancing across hosts in a dynamic environment where
the VMs’ resource demands may change over a period of
time.

DRS manages a cluster of distributed hosts, provid-
ing the illusion that the entire cluster is a single huge
“uber-host” with the aggregate capacity of all individual
hosts. To implement this illusion, DRS breaks up the user-
specified resource pool hierarchy into per host resource
pool hierarchies with appropriate host-level resource pool
settings. Once the VMs are placed on a host, the local
schedulers on each ESX host allocate resources to VMs
fairly based on host-level resource pool and VM resource
settings. DRS is invoked every 5 minutes by default, but
can also be invoked on demand.

To describe DRS load-balancing, it is important to first
clarify what DRS uses as its load metric. In particular, it
does not use host utilization. In DRS, load reflects VM
importance, as captured by the concept of dynamic enti-
tlement. Dynamic entitlement is computed based on the
resource controls and actual demand for CPU and mem-
ory resources for each VM. The entitlement is higher
than the reservation and lower than the limit; its actual
value depends on the cluster capacity and total demand.
Dynamic entitlement is equivalent to demand when the

demands of all the VMs in the cluster can be met, else
it is a scaled-down demand value with the scaling depen-
dent on cluster capacity, the demands of other VMs, the
VM’s place in the resource pool hierarchy, and its shares,
reservation and limit. Dynamic entitlement is computed
using a pass over the resource pool hierarchy tree to allo-
cate to all VMs and resource pools their cpu and memory
reservations and to constrain their demand by their limits,
followed by another pass over the tree to allocate spare re-
sources to address limit-constrained demand above reser-
vation in accordance with the associated share values.

DRS currently uses normalized entitlement as its core
per-host load metric. For a host h, normalized entitlement
Nh is defined as the sum of the per-VM entitlements Ei
for all VMs running on h, divided by the host capacityCh

available to VMs: Nh =

∑
Ei

Ch
. IfNh ≤ 1, then all VMs

on host h would receive their entitlements, assuming that
the host-level scheduler is operating properly. If Nh >
1, then host h is deemed to have insufficient resources
to meet the entitlements of all its VMs, and as a result,
some VMs would be treated unfairly. After calculating
Nh for each host, the centralized load balancer computes
the cluster-wide imbalance, Ic, which is defined as the
standard deviation over all Nh.

The DRS load-balancing algorithm (presented as Al-
gorithm 1) uses a greedy hill-climbing technique. This
approach, as opposed to an exhaustive [say offline] ap-
proach that would try to find the best target balance, is
driven by the practical considerations that the VMotion
operations needed to improve load-balancing have a cost
and that VM demand is changing over time so highly op-
timizing for a particular dynamic situation is not worth-
while. DRS aims to minimize Ic by evaluating all pos-
sible migrations, many filtered quickly in practice, and
selecting the move that would reduce Ic the most. The
selected move is applied to the algorithm’s current in-
ternal cluster snapshot so that it then reflects the state
that would result when the migration completes. (The
actual migration execution engine runs subsequent to the
algorithm.) This move-selection step is repeated until no
additional beneficial moves remain or there are enough
moves for this pass or the cluster imbalance is at or below
the threshold T specified by the DRS administrator.

Please note that this overview of the DRS algorithm
is greatly simplified to focus on its core load-balancing
metric. The actual load-balancing algorithm considers
many other factors, including the risk-adjusted benefit of
each move given the range and stability of VMs’ dynamic
demand over the last hour, as well as the cost of the mi-
gration and any potential impact of the migration on the
workload running in the VM. A more detailed descrip-
tion of DRS, including both its load-balancing and other
cluster management aspects, can be found in [6].



Algorithm 1: DRS Load Balancing
Input: Snapshot of entire cluster (hosts and VMs)
Ic ←− σ(Nh) /*standard deviation over all hosts*/
NumMigrations←− 0
while Ic > T and NumMigrations < MaxMigrations
do

BestMigration←− NULL
Maxδ ←− 0
foreach VM v in the cluster do

foreach compatible destination host h do
δ ←− improvement in imbalance Ic
when v is migrated to h
if benefit of migration > cost then

if δ > Maxδ then
BestMigration←− migrate v
to h
Maxδ ←− δ

if M is NULL then
break

Apply M to the algorithm’s internal cluster
snapshot and update Ic
NumMigrations++
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3 Resource Management Challenges

As previously described, a successful resource manage-
ment solution for cloud environments, needs to provide
a rich set of resource controls for better isolation, while
doing initial placement and load balancing for efficient
utilization of underlying resources. However getting all
these at large scale is quite challenging. The problems
with scaling the existing solutions can be broadly classi-
fied as the following:

3.1 Inventory Management
As clusters increase in size, the overhead in collecting, an-
alyzing, and acting upon the associated data grows. One
needs to be able to collect host and VM level data period-

ically and act upon that to do load balancing. Similarly
the number of concurrent VM power-on operations may
need to update some common data structures in a short
span of time. Large scale inventory management needs
a good decomposition of tasks and fine grained locking
of various objects in the inventory. Note that manage-
ment of elasticity also becomes more important, so that
approaches that support rapid increase and decrease of
available resources are attractive.

3.2 Heterogeneity of clusters
As cluster scale increases, the amount of heterogeneity
in the cluster tends to increase. It is difficult for cloud
providers to procure a large number of machines that are
identical. Also, cloud providers typically add machines
over time; there could be several generations of hardware
co-existing in the cloud, possibly impacting the ability to
live-migrate between hosts. In addition, the storage, net-
working, and other hardware needs of the VM may limit
the hosts to which it may live-migrate. Current virtual
machine disk storage systems don’t scale to thousands
of machines, implying that only a subset of hosts are co-
connected to storage devices. As cluster scale increases,
the hosts to which a VM can be migrated becomes a small
percentage of the cluster.

It is important for any load balancing or initial place-
ment solutions to be aware of the load-balancing islands
and their impact. As overlapping islands increase, cluster-
wide metrics (e.g. Ic) become more and more inaccurate.
We did a simulation to study how the global entitlement
might be misleading in the extreme case as the number
of sub-clusters increases. Figure 3 shows the increase in
entitlement error, when calculated globally as the number
of overlapping sub-clusters increase. The error in global
entitlement is the sum of the absolute difference between
the entitlements of the VMs in the cluster with and with-
out considering the sub-cluster (represented as %age of
the sum of entitlement) in a cluster with 5000 VMs.

Resource pool operations also become more challeng-
ing as the heterogeneity of the cluster increases. Users
may specify reservation for sets of VMs by specifying
reservation at the resource pool level. But the VMs
may be compatible only with few hosts that do not have
enough capacity to satisfy all the reservations.

Another issue is the difference in MHz of various pro-
cessors in a heterogeneous environment. For example,
500 MHz on a Intel’s Nehalam chip may be more valu-
able than that of older generation processors. Newer
chips tend to have more L2, L3 caches and better micro-
architecture. Thus one may need to consider various ar-
chitectures while doing placement and load balancing
decisions. One way to deal with such issues is to use a



normalizing factor for various CPUs based on a set of
benchmarks.

3.3 Frequency of operations
As the scale increases, the number of users and the fre-
quency of management operations increase. It is impor-
tant for the system to keep providing low latency as the
cluster size increases.

3.4 Resistance to failures
As scale increases, the impact of failure of the resource
management component increases; its failure would
mean users not being able to power on more VMs or
change resource pool settings, resources not flowing be-
tween resource pools when the VMs need them, and VMs
not being moved out of a host when it becomes over-
loaded. Also, as scale increases, so does the likelihood
of hardware failures. This layer needs to be increasingly
robust and should gracefully handle any component fail-
ures.

4 Techniques

In this section we discuss various techniques to handle
the challenges mentioned above while supporting the re-
source management model discussed in Section 2. The
goal of this section is not to advocate a single approach
but to promote debate and research projects in differ-
ent directions. We discuss three approaches here: (1)
Hierarchical-scaling, (2) Flat-scaling and (3) Statistical-
scaling.

4.1 Hierarchical Scaling
In this approach, resource management systems are built
on top of each other in order to reach scale. For instance,
current tools like DRS provide cluster level resource man-
agement using a cluster of up to 32 hosts and 3000 VMs.
Similar solutions have been proposed by other companies
like Microsoft PRO [1]. In order to scale these solutions,
one can build a layer on top of such solutions that inter-
acts with these solutions and does operations like initial
placement and load balancing across clusters. This hier-
archy can be built within a datacenter and even across
datacenters. Some of the issues in building such a hierar-
chy are:
Issue: What are the good cluster level metrics to use?
Reason: Existing solutions use host level metrics such
as CPU and memory utilization to do resource manage-
ment. These metrics do not aggregate well for cluster.
For example a cluster consisting of 32 hosts, with 2 GHz
available CPU per host, will have total of 64 GHz CPU

available, but such a cluster may not be able to host a VM
with 4 GHz CPU requirement.
Issue: How to do load balancing across Clusters?
Reason: The layer built on top of small clusters will be
expected to do resource management operations across
clusters, while keeping track of resource fragmentation
within each cluster. Since many common metrics don’t
aggregate well, this layer may not scale well. The benefit
of a hierarchical solution is unclear if the problem doesn’t
decompose easily in a hierarchical manner.
Issue: How to handle resource pools?
Reason: The entitlement computation does not decom-
pose in a hierarchical manner. The higher level layers in
this case will have to do the resource pool computations
by going to the VM level settings. This makes it harder
to scale in large environments. Ideally, we would like
to decompose entitlement computations across various
layers.

4.2 Flat Scaling
In this approach, a completely distributed and decentral-
ized resource management layer is built, creating a single
domain for resource management. Decisions are made us-
ing data collected and aggregated over the large number
of hosts and VMs. One way to do this is using structured
peer-to-peer techniques where all hosts are part of a P2P
network. An aggregation layer similar to SDIMS [12] or
Astrolab [10] can collect and aggregate stats across all
hosts. A query infrastructure on top of this P2P substrate
can find hosts that are over-loaded and under-loaded us-
ing techniques like anycast and multicast (Scribe [3]).
This approach can do optimizations at a global scale
rather than limiting itself to local optimizations as done
by the hierarchical solution. For example, power manage-
ment may yield more benefit in this case because hosts’
spare capacity is not binned into smaller-sized clusters.
However, this technique also has some issues.
Issue: How to do compatibility checks efficiently?
Reason: Doing compatibility checks for a VM is equiva-
lent to doing either multi-dimensional queries or taking a
join of multiple queries. These are known to be challeng-
ing problems for P2P environments.
Issue: Too many failure modes
Reason: Because of the fully distributed nature, the num-
ber of failure modes will be high. The overall code would
be much harder to debug and reason about.
Issues: Hard to get the consistent view of the system?
Reason: Operations may fail due to the lack of a con-
sistent view. For example, group power on of hundreds
of VMs may fail several times before succeeding if too
many VMs try to power-on on the same host.
Issue: How to handle resource pools?
Reason: In this case we were able to design a decen-



tralized entitlement computation mechanism. The mech-
anism works by aggregating various stats and sending
them to all hosts using multicast primitives in Scribe.
This solution require multiple rounds of communication
to converge to the correct set of values.

4.3 Statistical Scaling
In this approach, large scale resource management is
achieved by doing smarter operations at a small scale.
The idea is to create dynamic clusters based on the cur-
rent operation by querying a set of relevant hosts that are
needed. For example, if the operation is VM power on,
a query service will ask for top k lightly loaded hosts
that also satisfy other constraints for the VM. It will then
create a dynamic cluster of those k hosts and invoke DRS-
like placement algorithm on that cluster.

One key property we need to show for the success of
this approach is that one can attain large scale load bal-
ancing and optimal placement by doing repeated small
scale optimizations. This intuitive property is supported
by the well known research field related to the power of
two choices [9].

This main implication of the key result in this area is
that having a small amount of information in the form
of one more choice improves the overall load balancing
by a large factor. This result has been used extensively
in many other areas for load balancing. In our case, we
are selecting hosts based on a greedy criteria and not
randomly. In addition, we are running a centralized al-
gorithm on a larger number of hosts (32 or 64). So we
expect to have similar load balancing as compared to both
the centralized solution (that would considered all hosts)
or the flat scaling approach. Some of the issues with this
approach include:
Issue: How to handle resource pools?
Reason: The entitlement computation needs to be done
while considering the entire resource pool hierarchy. This
may limit the scalability of a single resource pool.

5 Conclusions

Efficient management of resources at cloud scale while
providing proper performance isolation, higher consoli-
dation and elastic use of underlying hardware resources
is key to a successful cloud deployment. Existing ap-
proaches either provide poor management controls, or
low consolidation ratios, or do not scale well. Based on
years of experience shipping the VMware DRS resource
management solution and prototypes to increase its scale,
we have presented some use cases for powerful controls,
key challenges in providing those controls at large scale,
and an initial taxonomy of techniques available to do so.

We hope that our experience will help motivate future re-
search in this critical area to solve these practical issues.
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