
Large-scale Incremental Data Processing with Change Propagation

Pramod Bhatotia Alexander WiedeṙIstemi Ekin AkkuşRodrigo Rodrigues Umut A. Acar

Max Planck Institute for Software Systems (MPI-SWS)

Abstract
Incremental processing of large-scale data is an in-

creasingly important problem, given that many process-
ing jobs run repeatedly with similar inputs, and that the
de factostandard programming model (MapReduce) was
not designed to efficiently process small updates. As a
result, new systems specifically targeting this problem
(e.g., Google Percolator, or Yahoo! CBP) have been
proposed. Unfortunately, these approaches require the
adoption of a new programming model, breaking com-
patibility with existing programs, and increasing the bur-
den on the programmer, who now is required to devise
an incremental update mechanism. We claim that auto-
matic incremental processing of large-scale data is pos-
sible by leveraging previous results from the algorithms
and programming languages communities. As an exam-
ple, we describe how MapReduce can be improved to ef-
ficiently handle small input changes by automatically in-
crementalizing existing MapReduce computations, with-
out breaking backward compatibility or demanding pro-
grammers to adopt a new programming approach.

1 Introduction
Large-scale processing of unstructured data sets is an
increasingly common and important task for Internet
services, from e-commerce to social networking sites.
In this context, MapReduce [5] has emerged over the
last few years as thede facto standard programming
model for this kind of processing. This model and
the associated run-time system was originally adopted
by Google, and, subsequently, an open-source platform
named Hadoop, which supports the same programming
model, has also gained tremendous popularity.

Despite this success, Google has recently proposed an
alternative system called Percolator, which is aimed at
processing incremental updates to large data sets [11].
The motivation behind proposing a different system is
that many data processing tasks operate on an input set
that changes incrementally, and MapReduce was not de-
signed to process small incremental updates. Rather,

MapReduce was optimized to process large batches of
data efficiently [11]. Percolator uses an alternative pro-
gramming model where the user is asked to implement
an efficientincremental-update mechanismby defining
upcalls. These upcalls are triggered by changes in user-
defined portions of the data, and update the output ac-
cordingly. Since the work done is often proportional to
the update size, rather than the total input size, Percolator
achieves huge performance gains. A system called CBP,
with a similar philosophy, was proposed by Yahoo! [9].

A downside of these new proposals is that, by depart-
ing from the current programming models for large-scale
data processing, these systems not only lose compatibil-
ity with the existing code base of MapReduce programs,
but also shift the burden of designing and implementing
an efficient incremental-update mechanism to the pro-
grammer. The problem associated with this shift goes
beyond the need to adopt a new programming model: it
lies also in the fact that developing efficient algorithms
for incremental computations is considerably more dif-
ficult than writing algorithms for a static input data set.
To give a simple example, consider how you would com-
pute the minimum element in a list where elements can
be added or removed. For a static list of input data el-
ements, the minimum element can easily be computed
in linear time (O(n), wheren is the number of elements
in the list). However, recomputing the minimum element
from scratch for every insertion or deletion is a costly op-
eration, especially for largen. To circumvent this linear
time complexity, additional data structures like amini-
mum heapcould be maintained to provide a logarithmic
bound (O(log n)). Furthermore, when we move beyond
such simple examples, the development of algorithms
for incremental computations is a complex, application-
specific task that has fueled an entire research area [4, 6].

In this paper, we take the position that automatic
and efficient incremental data processing at large scale
could be achieved by combining ideas and techniques
developed in algorithms, programming languages, and



distributed systems research. The resulting techniques
would neither require a radical departure from current
models of programming, nor to invent and implement
complex algorithms for efficient incremental computa-
tions, nor to program distributed systems.

As evidence for the feasibility of our position, we
propose an approach for transparently and automatically
incrementalizing existing MapReduce programs without
requiring the user to change any code. The idea behind
this approach is to shift the burden of reasoning about
how to efficiently process incremental updates from the
programmer to the system itself, combining advances
from the algorithms, languages, and systems communi-
ties to perform efficient and transparent updates. Our
proposal is to extend the MapReduce framework with
change propagation, where the framework keeps track of
the dependencies between subsets of each MapReduce
computation, and, upon changing of a subset of the in-
put, rebuilds only the parts of the computation and the
output affected by the changes. We present a high-level
sketch of an extension to the Hadoop architecture to sup-
port change propagation, highlighting the main technical
challenges and sketching ideas for overcoming them.

Finally, we perform a proof-of-concept evaluation of
the potential benefits of our proposal. This evaluation
resorts to a single-node implementation of MapReduce,
to which we add the ability to perform change propaga-
tion. Our evaluation indicates that the performance bene-
fits of employing change propagation in MapReduce pro-
grams can be huge. This not only demonstrates the pos-
sibility to add the capability of incremental processing to
MapReduce programs in a way that is efficient and trans-
parent, but also our experience with MapReduce can be
seen as a first step towards a broader goal of bringing au-
tomatic incrementalization to large-scale data processing
systems and applications.

2 Incremental Computation Approaches

We review previous work on incremental computations
and discuss its relevance to incremental large-scale data
processing. For comparing previous approaches, we
use three metrics:expressiveness, efficiency, and pro-
grammability. Expressiveness refers to the ability to ex-
press different kinds of computations (e.g., data-parallel,
purely functional, imperative). Efficiency refers to both
asymptotic and practical efficiency. Programmability
refers to the ease of programming, which we measure by
considering the aspects of algorithmic complexity (i.e.,
how easy/difficult it is to design an efficient incremental
algorithm), and how complex the resulting implementa-
tions are expected to be. Table 1 shows a summary eval-
uation of some approaches with respect to these metrics.
Algorithms community. In this community, re-
searchers designed so-calleddynamic algorithmsthat

permit dynamic changes to their input, and update their
output upon these modifications. Several surveys illus-
trate the vast literature on dynamic algorithms [4, 6].
This research shows that dynamic algorithms can be
asymptotically, often by a near-linear factor, more ef-
ficient than their conventional counterparts. In large-
scale systems, this asymptotic difference can yield huge
speedups. Although dynamic algorithms are expressive
(an algorithm being the basic way in which a solution to
a problem can be expressed) and highly efficient, they
can be difficult to develop and implement even for sim-
ple problems; some problems took years of research to
solve and many remain open. Furthermore, there is no
methodology one can prescribe that suits all problems: a
new algorithm must be devised for each computation.

Programming languages community. In this com-
munity, researchers developed so-calledincremental
computationtechniques to achieve automatic incremen-
talization. The basic idea is to automatically translate a
program that is conventionally defined as mapping be-
tween an input and an output to a program that allows
modifications to its input while updating its output. In-
cremental computation attracted significant attention and
many techniques have been proposed (e.g., [13]). Be-
ing automatic and hiding the mechanism for incremental-
ization, this approach simplifies software development.
Self-adjusting computations extended these techniques
to allow for expressing incremental computations at a
high-level and deriving efficient executables by using
compilers specifically developed for this purpose [8].
State-of-the-art incremental computation techniques are
expressive (applicable to both functional and imperative
computation models), efficient (optimal updates are of-
ten possible), and can be easy to use. Nonetheless, in cer-
tain cases, the approach can require algorithmic reason-
ing to achieve optimal complexity bounds, which can in-
crease algorithmic and software complexity, and require
program modifications.

Systems community. Practitioners have built several
systems based on memoization (e.g., Haloop [2], Nec-
tar [7], DryadInc [12]). These approaches are a first step
towards obtaining a solution that does not require the
programmer to devise and implement a dynamic algo-
rithm. However, their efficiency can still be improved,
since they do not maintain a dependency graph (as we
explain next). Contrary to the memoization-based ap-
proach, some proposed systems require the program-
mer to devise a dynamic algorithm [9, 11]. In particu-
lar, Google’s Percolator [11] adopts an event-driven pro-
gramming model, where an application is structured as a
series of observers. Observers are triggered by the sys-
tem whenever user-specified data changes. Observers in
turn can modify other data forming a dependence chain
that implements the incremental data processing. Sim-

2



Approach Expressiveness Efficiency Programmability

Algorithmic Complexity Implementation Complexity

Algorithms High! High! High% High%
Programming Languages High! High! Low—High!% Low—High!%

Percolator, CBP High! High! High% High%
Incremental Data Proc. High! High! Low! Low!

Table 1:Approaches to incremental problems in algorithms and programming languages community, recently proposed systems
for large-scale data processing. Incremental data processing should be able to combine the best features of these approaches.

ilarly, Yahoo!’s continuous bulk processing (CBP) [9]
proposes a data-parallel programming model along the
lines of MapReduce by introducing new primitives to
store and reuse prior state for incremental processing,
whereloopback flowsare used to redirect the output of
a stage as its input. Both systems are expressive and can
be efficient, as they give the programmer full control over
how modifications to the input are handled. However,
they have high algorithmic and implementation complex-
ity, since the programmer must implement the efficient
incremental update algorithm.
Database community. Several techniques were pro-
posed for performing incremental view maintenance, i.e.,
efficiently updating the results of a pre-defined database
query upon changes to table contents [3]. These tech-
niques have been engineered to be highly efficient, and
impose no extra burden on the programmer, since the
database engine hides all the complexity of the incre-
mentally updating query results. However, in terms of
their expressiveness, these techniques are geared towards
database systems (or, more recently, large-scale rela-
tional query processing framework [10]) and therefore
their interface is limited to the query language supported
by the database engine.

3 Automatic Incrementalization

Prior advances on automatic incrementalization (Sec-
tion 2) suggest that large-scale incremental data pro-
cessing should be possible. If successful, this approach
will simplify both software and its development, while
improving efficiency. Yet, there are several challenges
that must be overcome to achieve automatic incremen-
talization of large-scale data processing applications. We
outline these challenges and point out why they seem
tractable and how we might address them.

Expressiveness. Existing automatic incrementaliza-
tion techniques allow expressing arbitrary sequential
computations, with some preliminary work on parallel
systems. An important challenge will be the general-
ization of these techniques to allow for expressing par-
allel and distributed computations. In the cases where
explicit use of parallelism or concurrency is not needed,
e.g., in MapReduce, the task will be easier because only

the techniques under the hood need to be aware of the
parallelism and concurrency.
Efficiency. Existing approaches to incremental com-
putation often target shared memory, uniprocessor ma-
chines, and tend to make liberal use of memory to save
time [8]. In the context of a distributed computation,
where the memory-time tradeoff is different, these ap-
proaches could lead to disastrous efficiency, calling for
careful engineering of the systems, particularly to mini-
mize inter-node data movement.
Programmability. Despite the benefits of automatic
incrementalization, a generic updater can sometimes re-
sult in suboptimal outcomes, making custom solutions
necessary. Recent results show that these two approaches
can be combined modularly [1]. We thus should be able
to create a library of custom solutions to be employed
by the programmer on a needs basis. Depending on the
specifics of data processing domains, we may develop
domain-specific languages and systems to take advan-
tage of that domain’s structure.

4 Change-propagating MapReduce
In this section, we support the case for a new ap-
proach to large-scale data processing by sketching how
we can adapt the change propagation mechanism of self-
adjusting computations [8] to MapReduce. The result-
ing framework preserves the expressiveness of conven-
tional MapReduce, and can respond to small incremen-
tal changes to data asymptotically more efficiently than
a complete re-computation. This is done automatically,
with no additional programming effort. We therefore
achieve expressiveness, efficiency, and programmability.
Basic approach. The principle behind self-adjusting
computations is to track all computation data and all
sub-computations that depend on them in adynamic
dependency graphand use a change propagation al-
gorithm, which, given an update, identifies the sub-
computations that depend on the data and re-executes
them. This may modify other data, causing other sub-
computations to be re-executed. Change propagation ter-
minates when all modified data and their dependent sub-
computations complete. In language-based approaches
to self-adjusting computation [8], the construction of the

3



Figure 1:An example computation graph of MapReduce and
change propagation. An input change affects only the shaded
tasks via dependency edges, and the remaining ones are reused.

computation and the change propagation are supported
automatically by using a combination of compilation and
algorithmic techniques. Here, we specialize these tech-
niques to the MapReduce framework by taking advan-
tage of our knowledge of the computation structure.
Contraction phase and stable MapReduce. For
change propagation to be efficient it is critical to strike a
balance between 1) granularity: the computation should
be split into tasks that are small enough, and 2) shal-
lowness of dependence graph: the chains of dependency
between computations should be short. Additionally,
these computations should bestable: the structure of
their computation graph should not change dramatically
as their input data is modified by a small amount. Since
the MapReduce framework is naturally parallel, it has
short dependency chains. It can, however, yield unstable
computations due to the first requirement. The problem
is that, when we consider the smallest unit of computa-
tion to be Map and Reduce tasks, we observe that we can
arbitrarily control the granularity of Map tasks by vary-
ing the size of the input chunk that is assigned to each
Mapper, but, for Reduce tasks, this cannot be done, since
their granularity depends only on the number of values
that were associated with each key that was emitted as
an output by the Map phase. In other words, a Reducer
with a large number of values will be too coarse-grained.

To address this, we leverage an already existing mech-
anism for controlling the granularity of processing tasks,
but with a different purpose. In particular, we pro-

pose taking advantage of Combiners, which were origi-
nally proposed to reduce network traffic by anticipating a
small part of the processing done by Reduce tasks. Given
this, and inspired by an algorithmic idea, list-contraction,
we add another phase called theContractionphase be-
tween Map and Reduce. In this phase, after collecting
the records belonging to the same key, we split each in-
put to a Reduce task into smaller chunks and contract
the tasks by constructing a balanced tree on them. Each
level of the tree applies the combiner function to a subset
of the nodes, until we reach the root of the tree, where the
outcome of the Contraction phase is fed to the Reducer
as in conventional MapReduce.

Example. Figure 1 shows an example computation
graph for a MapReduce job with change propagation.
Note that the contraction phase allows for splitting the
results previously generated by Reduce tasks, yielding
a shallow computation graph with logarithmic depth,
which allows for efficient change propagation. Also, go-
ing back to the example in the introduction about com-
puting the minimum, the contraction phase is what al-
lows the incremental computation to be transparent and
only incur logarithmic cost.

Change propagation. Given modifications to data, the
change propagation mechanism first updates the struc-
ture of the computation graph, introducing new tasks and
deleting existing tasks as necessary. Change propaga-
tion then determines the tasks that are reachable from the
changed data and re-executes them. Since the computa-
tion graph is shallow, such a propagation requires a very
small number of tasks to be re-executed. For example, if
only one record is changed, no more than a logarithmic
number of tasks will need to be re-executed.

Task granularity. In order to determine the right task
granularity a tradeoff between efficiency and space over-
head has to be made: a smaller task size will make the
change propagation more efficient, but on the other hand
also increases the space overhead for storing the interme-
diate results. In practice, choosing a task size that is too
small will also result in high scheduling and communi-
cation overheads.

Input mechanisms. One of the challenges in extend-
ing the Hadoop framework is that we need a data storage
that permits changes to data stored in files. We envi-
sion three options to address this. First, we can restrict
changes to adding new content to the input by appending
to an HDFS file. Second, we can consider that the in-
put for consecutive runs is stored in separate HDFS files.
This would require detecting the differences between the
two files efficiently. The third alternative is to store the
input to each task in HBase instead of HDFS. HBase sup-
ports mutations to elements stored in each table and is
also supported by Hadoop.

4



 1

 10

 100

 1000

10 100 1000 10000 100000

T
im

e 
(m

ill
is

ec
on

ds
)

Input Data-size

WC Vanilla
WC 1st CEAL run

Min Vanilla
Min 1st CEAL run

Figure 2: Initial run times (without
change propagation and incremental).

 1

 10

 100

 1000

10 100 1000 10000 10000

T
im

e 
(m

ic
ro

se
co

nd
s)

Input Data-size

Word-count
Minimum

Figure 3:Change-propagation times.

 1

 10

 100

 1000

10 100 1000 10000 100000

S
pe

ed
up

Input Data-size

Word-count
Minimum

Figure 4:Speedup of change propaga-
tion.

5 Evaluation
We implemented a proof-of-concept prototype to test
the feasibility of incorporating change propagation to
a MapReduce framework. Our prototype leverages
CEAL [8], a C complier targeting sequential, shared-
memory machines, which generates executables that au-
tomatically respond to modifications to their data using
change propagation. Our prototype is a single-node im-
plementation of MapReduce in CEAL, enabling auto-
matic incremental updates in MapReduce applications.
We developed two applications for our framework: a
word-count application and an application that finds the
minimum in a sequence of numbers.

In our experiments, we randomly generate the input
and vary the input size in each run. For the incremental
version of MapReduce, we measure two characteristics:
the runtime for initially processing the full input, and the
runtime for propagating a single input change to the final
result. For comparison, we use the same implementation
with the change propagation functionality disabled.

In Figure 2, we show the absolute runtimes for
both applications, with change propagation disabled
(Vanilla) and CEAL’s first time run when varying the
input data size. In the case of CEAL’s first run, the full
data has to be processed because no computation results
from previous runs can be leveraged. As a result, setting
up the initial data structures for change propagation im-
poses runtime overhead only for the first time. Figure 3
depicts the absolute runtime for processing incremen-
tal changes when change propagation is enabled. When
comparing the runtime graphs, we see that the change
propagation mechanisms break the linear dependency of
runtime on input size for incremental processing tasks.
In Figure 4 we show the asymptotic speedup gains of
change propagation over reprocessing the full input.

6 Conclusions
In this paper we take the position that the MapReduce
model can be extended to efficiently automatically pro-
cess incremental updates, by leveraging approaches from
other communities. Our experimental evaluation of a
proof-of-concept, single node prototype has revealed a

large potential for performance improvements.
We see our proposal as contributing to help bridge the

gap between easy-to-use solutions for bulk data process-
ing that do not support incremental computations, and
approaches for change propagation developed in the al-
gorithms and programming languages communities. Our
aim is to take a step further in the direction of a symbiotic
approach that inherits the best of both worlds.

References
[1] A CAR, U. A., BLELLOCH, G. E., LEY-WILD , R., TANG-

WONGSAN, K., AND TÜRKOĞLU, D. Traceable data types for
self-adjusting computation. InProc. of Conf. on Programming
Language Design and Implementation (PLDI)(2010).

[2] BU, Y., HOWE, B., BALAZINSKA , M., AND ERNST, M. D.
HaLoop: Efficient iterative data processing on large clusters. In
36th International Conf. on Very Large Data Bases(Sep. 2010).

[3] CERI, S., AND WIDOM , J. Deriving production rules for incre-
mental view maintenance. InProc. 17th International Conference
on Very Large Data Bases(1991).

[4] CHIANG , Y.-J., AND TAMASSIA , R. Dynamic algorithms in
computational geometry.Proceedings of the IEEE 80, 9 (1992).

[5] DEAN, J.,AND GHEMAWAT, S. Mapreduce: simplified data pro-
cessing on large clusters. InProc. 6th Symposium on Operating
Systems Design and Implementation (OSDI’04).

[6] DEMETRESCU, C., FINOCCHI, I., AND ITALIANO , G. Hand-
book on Data Structures and Applications. 2005, ch. 36.

[7] GUNDA , P. K., RAVINDRANATH , L., THEKKATH , C. A., YU,
Y., AND ZHUANG, L. Nectar: Automatic management of data
and computation in data centers. InProc. OSDI 2010.

[8] HAMMER , M. A., ACAR, U. A., AND CHEN, Y. CEAL: a C-
based language for self-adjusting computation. InProc. Conf.
Programming Language Design and Implementation (PLDI’09).

[9] L OGOTHETIS, D., OLSTON, C., REED, B., WEBB, K. C., AND

YOCUM, K. Stateful bulk processing for incremental analytics.
In Proc. 1st Symp. on Cloud computing (SoCC’10).

[10] OLSTON ET. AL ., C. Nova: Continuous pig/hadoop workflows.
In Proc. Intl. Conf. on Mgt. of Data (SIGMOD 2011).

[11] PENG, D., AND DABEK , F. Large-scale incremental process-
ing using distributed transactions and notifications. In9th Symp.
Operating Systems Design and Implementation (OSDI’10).

[12] POPA, L., BUDIU , M., YU, Y., AND ISARD, M. DryadInc:
Reusing work in large-scale computations. InWorksh. on Hot
Topics in Cloud Computing (HotCloud’09).

[13] RAMALINGAM , G., AND REPS, T. A categorized bibliography
on incremental computation. InPrinciples of Programming Lan-
guages(1993), pp. 502–510.

5


	Introduction
	Incremental Computation Approaches
	Automatic Incrementalization
	Change-propagating MapReduce
	Evaluation
	Conclusions

