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Abstract

Replicating data off-site is critical for disaster recov-

ery reasons, but the current approach of transferring

tapes is cumbersome and error-prone. Replicating across

a wide area network (WAN) is a promising alternative,

but fast network connections are expensive or impracti-

cal in many remote locations, so improved compression

is needed to make WAN replication truly practical. We

present a new technique for replicating backup datasets

across a WAN that not only eliminates duplicate regions

of files (deduplication) but also compresses similar re-

gions of files with delta compression, which is available

as a feature of EMC Data Domain systems.

Our main contribution is an architecture that adds

stream-informed delta compression to already existing

deduplication systems and eliminates the need for new,

persistent indexes. Unlike techniques based on know-

ing a file’s version or that use a memory cache, our ap-

proach achieves delta compression across all data repli-

cated to a server at any time in the past. From a de-

tailed analysis of datasets and hundreds of customers us-

ing our product, we achieve an additional 2X compres-

sion from delta compression beyond deduplication and

local compression, which enables customers to replicate

data that would otherwise fail to complete within their

backup window.

1 Introduction

Creating regular backups is a common practice to pro-

tect against hardware failures and user error. To protect

against site disasters though, replicating backups to a re-

mote repository is necessary. Shipping tapes has been

a common practice but has the disadvantages of being

cumbersome, open to security breaches, and difficult to

verify success. Replicating across the WAN is a promis-

ing alternative, but high-speed network connectivity is

expensive and has been reserved mainly for Tier 1, pri-

mary data, which has not been available for backup repli-

cation.

Moreover, WAN bandwidth has not increased with

data growth rates. While we tend to think of important

data residing in corporate centers or data warehouses,

computation has become pervasive and valuable data is

increasingly generated in remote locations such as ships,

oil platforms, mining sites, or small branch offices. Net-

work connectivity may either be expensive or only avail-

able at low bandwidths.

Since network bandwidth across the WAN is often

a limiting factor, compressing data before transfer im-

proves effective throughput. More data can be protected

within a backup window, or, for the same reasons, data

is protected against disasters more quickly. Numerous

systems have explored data reduction techniques during

network transfer including deduplication [14, 25, 35, 37],

which is effective at replacing identical data regions

with references. A promising technique to achieve ad-

ditional compression is delta compression, which com-

presses relative to similar regions by calculating the dif-

ferences [17, 19, 36].

For both deduplication and delta compression, the goal

is to find previous data that is either a duplicate or sim-

ilar to data being transferred. We would like the pool

of eligible data to include previous versions, maximiz-

ing our potential compression gains. A standard ap-

proach is to use a full index across the entire dataset,

which requires space on disk, disk I/O, and ongoing up-

dates [1, 19]. An alternative is to use a partial index

holding data that has recently been transferred, which

removes the persistent structures but shrinks the pool

of eligible data [35]. Depending on the backup cycle,

a week’s worth of data or more may have to reside in

an index to achieve much compression. We present a

novel technique called Stream-Informed Delta Compres-

sion that achieves identity and delta compression across

petabyte backup datasets with no prior knowledge of file

versions while also reducing the index overheads of sup-

porting both compression techniques.



Repeated patterns in backup datasets have been lever-

aged to design effective caching strategies to minimize

disk accesses for deduplication [2, 16, 20, 23, 39, 41].

Their key observation is that for backup workloads, cur-

rent data streams tend to have patterns that correspond

to an earlier stream, which can be leveraged for effec-

tive caching. Our investigations show that the same data

patterns exist for identifying similar data as well as du-

plicates, without additional index structures.

Our technique assumes that backup data is stored in a

deduplicated format on both the backup server and re-

mote backup repository. As streams of data are writ-

ten to the backup server, they are divided into content-

defined chunks, a secure fingerprint is calculated over

each chunk, and only non-duplicate chunks are stored in

containers devoted to that particular stream.

We augment this standard technique by calculating a

sketch of each non-duplicate chunk. Sketches, some-

times referred to as resemblance hashes, are weak hashes

of the chunk data with the property that if two chunks

have the same sketch they are likely near-duplicates.

These can be used during replication to identify simi-

lar (non-identical) chunks. Instead of using a full index

mapping sketches to chunks, we rely on the deduplica-

tion system to load a cache with sketches from a previ-

ous stream, which we demonstrate in Section 6 leads to

compression close to using a full sketch index. During

replication, chunks are deduplicated, and non-duplicate

chunks are delta compressed relative to similar chunks

that already reside at the remote repository. We then

apply GZ [15] compression to the remaining bytes and

transfer across the WAN to the repository where delta

compressed data is first decoded and then stored.

There are several important properties of Stream-

Informed Delta Compression. First, we are able to

achieve delta compression against any data previously

stored and are not limited to a single identified file or the

size constraints of a partial index. Since delta compres-

sion relies upon a deduplication system to load a cache,

there is a danger of missing potential compression, but

our experiments demonstrate the loss is small and is a

reasonable trade-off.

Second, our architecture only requires one index of

fingerprints, while traditional similarity detection re-

quired one or more on-disk indexes for sketches [1, 19]

or used a partial index with a decrease in compression.

Another important consideration in minimizing the num-

ber of indexes is that updating the index during file dele-

tion is a complicated step, and reducing complexity/error

cases is important for production systems.

Our delta compression algorithm has been released

commercially as a standard feature for WAN replication

between Data Domain systems. Customers have the op-

tion of turning on delta compression when replicating

between their deduplicated backup storage systems to

achieve higher compression and correspondingly higher

effective throughput. Analyzing statistics from hundreds

of customers in the field shows that delta compression

adds an additional 2X compression and enables the repli-

cation of more data across the WAN than could otherwise

be protected.

2 Similarity Index Options

To achieve the highest possible compression during

WAN replication, we would like to find similarity

matches across the largest possible pool of chunks.

While previous projects have delta encoded data for

replication, the issue of indexing sketches efficiently has

not been explored. In this section, we discuss tradeoffs

for three indexing options.

2.1 Full Sketch Index

The conceptually simplest solution is to use a full in-

dex mapping from sketch to chunk. Unfortunately, for

terabytes or petabytes of storage, the index is too large

for memory and must be kept on disk, though sev-

eral previous projects have used a full index for storing

sketches [1, 18, 19, 40]. As an example, for a produc-

tion deduplicated storage system with 256 TB of capac-

ity, 8 KB average chunk size, and 16 bytes per record,

the sketch index would be a half-TB. Sketches are ran-

dom values so there is little locality in an index system,

and every query will cause a disk access.

Also, a common technique is for sketches to actually

consist of subunits called super-features that are indexed

independently [4, 19]. Using multiple super-features in-

creases the probability of finding a similar chunk (see

Section 4.1), but it also requires a disk access for each

super-feature’s on-disk index, followed by a disk access

for the base chunk itself. Unless the number of disk

spindles increases, lookups will be slowed by disk ac-

cesses. Another detail that is often neglected is that each

index has to be updated as chunks are written and deleted

from the system, which can be complicated in a live sys-

tem. Moving the index to flash memory decreases lookup

time [10] but increases hardware cost.

2.2 Partial Sketch Index

An alternative to a full index is to use a partial in-

dex holding recently transmitted sketches, which would

probably reside in memory, but could also exist on disk.

The advantage of a partial index is that it can be cre-

ated as data is replicated without the need for persis-

tent data structures, and several projects [33, 35] and

products [32] use a cache structure. Sizing and updat-

ing a partial index are important considerations. The

most common implementations are FIFO or LRU poli-

cies [33], which have the advantage of finding similar

chunks nearby in the replication stream, but will miss
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Figure 1: Optimal compression in a backup configura-

tion (e.g. weekly full backup) requires an index to in-

clude at least a full backup cycle (1.0 on the x-axis).

distant matches. For backup workloads, repeated data

may not appear until next week’s full backup takes place,

and enterprise organizations typically have hundreds to

thousands of primary storage machines to be backed up

within that time. Therefore, a partial index would have

to be large enough to hold all of an organization’s pri-

mary data. Riverbed [32] uses an array of disks to index

recently transferred data.

Another form of a partial-index is to use version infor-

mation. As an example, rsync [37] uses file pathnames

as the mechanism to find previous versions to perform

compression before network transfer.

We analyze this experimentally in Figure 1, which

shows how much compression is achieved as index cov-

erage increases (more details are in Section 6). The

datasets consist of two weeks worth of backup data,

and the combination of deduplication and delta compres-

sion across both weeks is presented, normalized relative

to compression achievable with a full index (right-most

data points). This result shows a sharp increase in com-

pression aligned with the one week boundary when suffi-

cient data are covered by an index for both deduplication

and delta compression. Effectively, a partial index would

have to be nearly as large as a full index to achieve high

compression.

2.3 Stream-Informed Sketch Cache

Numerous papers have explored properties of backup

datasets and found that there are repeated patterns related

to backup policies. These patterns have been leveraged

in deduplication systems to prefetch fingerprints written

sequentially by a previous data stream [2, 16, 20, 39, 41].

We discovered that similarity detection has the same

stream properties as deduplication, because small edits to

a file will probably be a similarity match to the previous

backup of the same file, and edits may be surrounded by

duplicate regions that can load a cache effectively. This

exploration of similarity locality is one of the major con-

tributions of our work.

Following on previous work, we could build a cache

and indexing system similar to deduplicating systems

(i.e. Bloom filters and indexes), but a disadvantage of

this approach is that the number of indexing structures in-

creases with the number of super-features and adds com-

plexity to our system.

Instead, we leverage the same cache-loading technique

used by our storage system for deduplication [41]. While

loading a previous stream’s fingerprints into a cache, we

also load sketches from the same stream. This has the

significant advantage of removing the need for extra on-

disk indexes that must be queried and maintained, but

it also has the potential disadvantage of less similarity

detection than indexing sketches directly.

To explore these alternatives, we built a full sketch in-

dex, a partial index, and a stream-informed cache that

piggy-backs on deduplication infrastructure. In Section 6

we explore trade-offs between these three techniques.

3 Delta Replication Architecture

While our research has focused on improving the com-

pression and throughput of replication, it builds upon

deduplication features of Data Domain backup storage

systems. We first present an overview of our efficient

caching technique before augmenting that architecture to

support delta compression in replication.

3.1 Stream-Informed Cache for Deduplication

A typical deduplication storage system receives a stream

consisting of numerous smaller files concatenated to-

gether in a tar-like structure. The file is divided into

content-defined chunks [22, 25], and a secure hash value

such as SHA-1 is calculated over each chunk to repre-

sent it as a fingerprint. The fingerprint is then compared

against an index of fingerprints for previously stored

chunks. If the fingerprint is new, then the chunk is stored

and the index updated, but if the fingerprint already ex-

ists, only a reference to the previous chunk is maintained

in a file’s meta data. Depending on backup patterns

and retention period, customers may experience 10X or

higher deduplication (logical file size divided by post-

deduplication size).

Early deduplication storage systems ran into a fin-

gerprint index bottleneck, because the index was too

large to fit in memory, and index lookups limited overall

throughput [30]. Several systems addressed this prob-

lem by introducing caching techniques. The key insight

of the Data Domain system [41] is that when a finger-

print is a duplicate, the following fingerprints will likely

match data written consecutively in an earlier stream.

We present our basic deduplication architecture along

with highlighted modifications in Figure 2. Fingerprints
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Figure 2: Data Domain deduplication architecture with

cache, Bloom filter, fingerprint index, and containers.

Highlighted modifications show sketches stored in con-

tainers and loaded in a stream-informed cache when fin-

gerprints are loaded.

and chunks are laid out in containers and can be loaded

into a fingerprint cache. When a chunk is presented for

storage, its fingerprint is compared against the cache,

and on a miss, a Bloom filter is checked to determine

whether the fingerprint is likely to exist in an on-disk in-

dex. If so, the index is checked, and the corresponding

container’s list of fingerprints is loaded into the cache.

When eviction occurs, based on an LRU policy, all fin-

gerprints from a container are evicted as a group. Other

techniques for maintaining fingerprint locality have been

presented [2, 16, 20, 23, 39], which indexed either dedu-

plicated chunks or the logical stream of file data.

3.2 Replication with Deduplication

For disaster recovery purposes, it is important to repli-

cate backups from a backup server to a remote repository.

Replication is a common feature in storage systems [28],

and techniques exist to synchronize versions of a reposi-

tory while minimizing network transfer [18, 37]. In most

cases, these approaches result in completely reconstruct-

ing files at the destination.

For deduplication storage systems, it is natural to only

transfer the unique chunks and the meta data needed to

reconstruct logical files. Although not described in de-

tail, products such as Data Domain BOOST [13] already

support deduplicated replication by querying the remote

repository with fingerprints and only transferring unique

chunks, which can be compressed with GZ or other lo-

cal compressors. Earlier work by Eshghi et al. [14] pre-

sented a similar approach that minimized network trans-

fer by querying the remote repository with a hierarchical

Backup Server Remote Repository

Load cache with fingerprints

and sketches 

Respond with duplicate

status of fingerprints

Send batch of fingerprints

for file being transferred

For non-duplicate chunks,

send sketches

Check sketch cache and

send base fingerprints

Delta encode chunks

Locally compress and send

Yes
No

If delta compressed, 

decode

Phase 1

Phase 2

Delta Phase

Phase 3

Store to disk

Does base 

fingerprint

exist?

Figure 3: Replication protocol modified to include delta

compression.

file consisting of hashes of chunks. These approaches re-

moves duplicates in network-constrained environments.

3.3 Delta Replication

We expand upon standard replication for deduplication

systems by introducing delta compression to achieve

higher total compression than deduplication and local

compression can achieve. We modified the basic ar-

chitecture in Figure 2, adding sketches to the container

meta data section. Sketches are designed so that similar

chunks often have identical sketches. As data is written

to a deduplicating storage node, non-duplicate chunks

are further processed to create a sketch, which is stored

in the container along with the fingerprint. During du-

plicate filtering at the repository, both fingerprints and

sketches are loaded into a cache. In later sections, we

explore trade-offs of this architecture decision.

3.4 Network Protocol Considerations for Delta

Compression

The main issue to address is that both source and des-

tination must agree on and have the same base chunk,

the source using it to encode and the destination to de-

code. Figure 3 shows the protocol we chose for com-

bining deduplication and delta compression. The backup

server sends a batch of fingerprints to the remote repos-

itory, which loads its cache, performs filtering, and re-

sponds indicating which corresponding chunks are al-

ready stored. For delta compression, the backup server

then sends the sketches of unique chunks to the repos-

itory, and the repository checks the cache for matching

sketches. The repository responds with the fingerprint

corresponding to the similar chunk, called the base fin-
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gerprint, or indicates that there is no similarity match. If

the backup server has the base fingerprint, it delta com-

presses a chunk relative to the base before local com-

pression and transfer. At the repository, delta encoded

and compressed chunks are uncompressed and decoded

in preparation for storage.

We considered sending sketches with fingerprints in

Phase 1, but sending sketches after filtering (Phase 2) re-

duces wasted meta data overhead, compared to sending

the sketches for all chunks. Fingerprint filtering occurs

on the destination, and its cache is properly set up to find

similar chunks. So in practice, it is best if the destination

performs similarity lookup.

4 Implementation Details

In this section, we discuss: creating sketches, selecting

a similar base chunk, and delta compression relative to a

base.

4.1 Similarity Detection with Sketches

In order to delta compress chunks, we must first find

a similar chunk already replicated. Numerous previous

projects have used sketches to find similar matches, and

our technique is most similar to the work of Broder et

al. [4, 5, 6].

Intuitively, similarity sketches work by identifying

“features” of a chunk that would not likely change even

as small variations are introduced in the data. One ap-

proach is to use a rolling hash function over all overlap-

ping small regions of data (e.g. 32 byte windows) and

choose as the feature the maximal hash value seen. This

can be done with multiple different hash functions gen-

erating multiple features. Chunks that have one or more

features (maximal values) in common are likely to be

very similar, but small changes to the data are unlikely

to perturb the maximal values [4].

Figure 4 shows an example with data chunks 1 and 2

that are similar to each other and have four sketch fea-

tures (maximal values) in common. They have the same

maximal values because the 32-byte windows that gener-

ated the maximal values were not modified by the added

regions (in red). If different regions had changed it could

affect one or more of the maximal values, so different

maximal features would be selected to represent chunk

2. This would cause a feature match to fail. In general,

as long as some set of the maximal values are unchanged,

a similarity match will be possible.

For our sketches we group multiple features together

to form “super-features” (also called super-fingerprints

in [19]). The super-feature value is a strong hash of the

underlying feature values. If two chunks have an identi-

cal super-feature then all the underlying features match.

Using super-features helps reduce false positives and re-

quires chunks to be more similar for a match to be found.

Data
Chunk 1

Data
Chunk 2

Maximal 
Value 1

Maximal 
Value 2

Maximal 
Value 3

Maximal 
Value 4

Regions of 
difference

(similar to chunk 1)

Figure 4: Similar chunks tend to have the same maximal

values, which can be used to create features for a sketch.

To generate multiple, independent features, we first

generate a Rabin fingerprint Rabin fp over rolling win-

dows w of chunk C and compare the fingerprint against a

mask for sampling purposes. We then permute the Rabin

fingerprint to generate multiple values with function πi

with randomly generated coprime multiplier and adder

values m and a.

fp = Rabin fp(w)

πi(fp) = (mi ∗ fp+ai) mod 232

If the result of πi(fp) is maximal for all w, then we re-

tain the Rabin fingerprint as featurei. After calculating

all features, a super-feature sf j is formed by taking a Ra-

bin fingerprint over k consecutive features. We represent

consecutive features as featureb...e for beginning and end-

ing positions b and e, respectively.

sf j = Rabin fp(feature j∗k... j∗k+k−1)

As an example, to produce three super-features with

k = 4 features each, we generate twelve features, and

calculate super-features over the features 0...3, 4...7, and

8...11.

We performed a large number of experiments varying

the number of features per super-feature and number of

super-features per sketch. Increasing the number of fea-

tures per super-feature increases the quality of matches,

but also decreases the number of matches found. In-

creasing the number of super-features increases the num-

ber of matches but with increased indexing requirements.

We typically found good similarity matches with four

features per super-feature and a small number of super-

features per sketch. These early experiments were com-

pleted with datasets that consisted of multiple weeks of

backups and had sizes varying from hundreds of giga-

bytes to several terabytes. We explore the delta com-

pression benefits of using more than one super-feature in

Section 6.4.

To perform a similarity lookup, we use each super-

feature as a query to an index representing the corre-

sponding super-features of previously processed chunks.
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Chunks that match on more super-features are consid-

ered better matches than those that match on fewer super-

features, and experiments show a correlation between

number of super-feature matches and delta compression.

Other properties can be used when selecting among can-

didates including age, status in a cache, locality on disk,

or other criteria.

4.2 Delta Compression

Once a candidate chunk has been selected, it is referred

to as the base used for delta compression, and the tar-

get chunk currently being processed will be represented

as a 1-level delta of the base. To perform delta encod-

ing, we use a technique based upon Xdelta [21] which is

optimized for compressing highly similar data regions.

We initialize the encoding by iterating through the

base chunk, calculating a hash value at subsampled po-

sitions, and storing the hash and offset in a temporary

index. We then begin processing the target chunk by cal-

culating a hash value at rolling window positions. We

look up the hash value in the index to find a match against

the base chunk. If there is a match, we compare bytes in

the base and target chunks forward and backward from

the starting position to create the longest match possible,

which is encoded as a copy instruction. If the bytes fail

to match, we issue an insert instruction to insert the

target’s bytes into the output buffer, and we also add this

region to the hash index. During the backward scans,

we may intersect a region previously encoded. We han-

dle this by determining whether keeping the previous in-

struction or updating it will lead to greater compression.

Since we are performing delta compression at the chunk

level, as compared to the file level, we are able to main-

tain this temporary index and output buffer in memory.

5 Experimental Details

We perform actual replication experiments on working

hardware with multi-month datasets whenever practical,

but we also use simulators to compare alternative tech-

niques. In this section, we first present the datasets

tested, then details of our experimental setup, and finally

compression metrics.

5.1 Datasets

In this paper we use backup datasets collected over sev-

eral months as shown in Table 1, which lists the type of

data, total size in TB, months collected, deduplication,

delta, GZ, and total compression. Total compression is

measured as data bytes divided by replicated bytes (after

all types of compression) and is equivalent to the multi-

plication of deduplication, delta, and GZ. For the com-

pression values, we used results from our default con-

figuration. These datasets were previously studied for

deduplication [11, 27] but not delta compression. Note

that our deduplication results vary slightly (within 5%)

from Dong et al. [11] due to implementation differences.

We also highlight steady-state delta compression after

a seeding period has completed. For all of the datasets

except Email, seeding was one week, and the period af-

ter seeding is the remaining months of data. Customers

often handle initial seeding by keeping pairs of replicat-

ing machines on a LAN (when new hardware is installed)

until seeding completes and then move the destination

machine to the long-term location. Alternatively, seed-

ing can be handled using backups available at the des-

tination. While there is some delta compression within

the seeding period, delta compression increases once a

set of base chunks become available, and the period after

seeding is indicative of what customers will experience

for the lifetime of their storage.

These datasets consist of large “tar” type files repre-

senting many user files or objects concatenated together

by backup software. Except for Email (explained be-

low), these datasets consist of a repeated pattern of a

weekly full backup followed by six, smaller incremen-

tal backups.

Source Code Repository: Backups from a version con-

trol repository containing source code.

Workstations: Backups from 16 desktops used by soft-

ware engineers.

Email: Backups from a Microsoft Exchange server. Un-

like the other datasets, Email consists of daily full back-

ups, and the seeding phase consists of a single backup

instead of a week’s worth of data.

System Logs: Backups from a server’s /var directory,

mostly consisting of emails stored by a list server.

Home Directories: Backups from software engineers’

home directories containing source code, office docu-

ments, etc.

5.2 Delta Replication Experiments

Many of our experiments were performed on production

hardware replicating between pairs of systems in our lab.

We actually used a variety of machines that varied in stor-

age capacity (350 GB - 5 TB), RAM (4 GB - 16 GB),

and computational resources (2 - 8 cores). We have con-

trolled internal parameters and confirmed that disparate

machines produce consistent results. Unless specifically

stated, we ran all experiments with 3 super-features per

sketch, 12 MB sketch cache, 8 KB average chunk size,

and 4.5 MB containers holding meta data and locally

compressed chunks. When applying local compression,

we create compression regions of approximately 128 KB

of chunks.

5.3 Simulator Experiments

We compare our technique of replication with a finger-

print index and sketch cache against two alternative ar-
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Name
Properties Entire Dataset Seeding After Seeding

TB Months Dedupe Delta GZ Total GB Dedupe Delta GZ Total

Source Code 4.6 6 20.25 2.97 3.24 194.86 140 24.91 3.75 3.99 372.72

Workstations 4.9 6 5.62 4.44 1.93 48.16 166 5.70 4.62 1.91 50.30

Email 5.2 7 6.79 1.95 2.95 39.06 16 6.90 1.97 2.96 40.24

System Logs 5.4 4 37.19 2.39 2.38 211.54 254 57.94 3.55 2.86 588.26

Home Dirs 12.9 3 19.20 1.90 1.48 53.99 491 31.66 2.89 1.91 174.76

Table 1: Summary of datasets. Deduplication, delta, and GZ compression factors are shown across the entire dataset

as well as for the period after seeding, which was typically one week.

chitectures: 1) full fingerprint and sketch indexes and 2)

a partial-index of fingerprints and sketches implementing

an LRU eviction policy.

Before building the production system, we actually

started with a simplified simulator that maintained a full

index of fingerprints and sketches in memory. To de-

crease memory overheads, we use 12 bytes per finger-

print as compared to larger fingerprints necessary for a

product such as a 20 byte SHA-1. In a separate analy-

sis, we found that 12 byte fingerprints only cause a small

number of collisions out of the hundreds of millions of

chunks processed. To maximize throughput and simplify

the code, we try to keep the entire index in RAM. Also,

instead of implementing a full replication protocol, we

record statistics as the client deduplicates and delta com-

presses chunks without network transfer. Our simulator

did not apply local compression with the same technique

as our replication system, so comparisons to the simula-

tor do not include local compression.

Our second simulator explores the issues of data lo-

cality and index requirements with an LRU partial-index

of fingerprints and sketches. This partial-index is a mod-

ification of the previous simulator with the addition of

parameters to control the index size. The partial-index

only holds meta data, fingerprints and sketches, which

each reference chunks stored on disk. The fingerprint

and sketches for a chunk maintain the same age in the

partial-index, so they are added and evicted as a unit. If a

fingerprint is referenced as a duplicate of incoming data

or a sketch is selected as the best similarity match for

compression, the age is updated.

5.4 Compression Metrics

Our focus is on improving replication across the WAN,

specifically for customers with low network connectiv-

ity. For that reason, we mostly focus on compression

metrics, though we also present throughput results from

experiments and hundreds of customer systems.

We tend to use the term compression generically to re-

fer to any type of data reduction during replication such

as deduplication, delta compression, or local compres-

sion with an algorithm such as GZ. Compression is cal-

culated as original bytes/post compression bytes. How-

ever, we generally use the term total compression to

mean data reduction achieved by deduplication, delta,

and GZ in combination. As an example, if the deduplica-

tion factor is 10X , delta is 2X , and GZ is 1.5X then total

compression is 30X since these techniques have a mul-

tiplicative effect. A compression factor of 1X indicates

no data reduction. In order to show different datasets

on the same graph, we often plot normalized compres-

sion, which is total compression of a particular exper-

iment divided by the maximum total compression. As

explained in Section 6, maximum compression is mea-

sured using a full index or the appropriate baseline for

each experiment and dataset. Normalized compression

is in the range (0...1].

6 Results

In this section, we begin by exploring parameters of our

system (cache size, number of super-features, and multi-

level delta) and then compare Stream-Informed Delta

Compression to alternative techniques such as using a

full sketch index or maintaining a partial-index of re-

cently used sketches. We then investigate the interaction

of delta and GZ compression.

6.1 Sketch Cache Size

When designing our cache-based delta system, sizing the

cache is an important consideration. If datasets have

similarity locality that matches up perfectly to dedupli-

cation locality, then a cache holding a single container

could theoretically achieve all of the possible compres-

sion. With a larger cache, similarity matches may be

found to chunks loaded in the recent past, with com-

pression growing with cache size. We found that the hit

rate is maximized with a cache sized consistently across

datasets even though Home Directories is over twice as

large as the other datasets.

We evaluated the sketch cache hit rate in Figure 5, by

increasing the sketch cache size (x-axis) and measuring

the number of similarity matches found in the cache rel-

ative to using a full index. The sketch cache size refers to

the amount of memory required to hold sketches, which

is approximately 12 bytes per super-feature. Therefore a

cache of 12 MB corresponds to 1 million super-features
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Figure 5: Locality-informed sketch cache hit rate reaches

its maximum with a cache of 12-16 MB.

and 1/3 million chunks, since we have 3 super-features

per sketch by default.

With a cache of 4 MB, the hit rate is between 50%

and 90% of the maximum, and the hit rate grows until

around 12 or 16 MB, when it is quite close to the final

value we show at 20 MB. Email showed the worst hit

rate, maxing at around 80%, which is still a reasonably

high result. Email has worse deduplication locality than

the other datasets and this impacts delta compression in

a data-dependent manner. Regardless of the dataset size

(5 TB up to 13 TB) and deduplication (5-37X), all of

the datasets reached their maximum hit rates with a sim-

ilarly sized cache. Our implementation has a minimum

cache size related to the large batches of chunks trans-

ferred during replication as well as the multiple stages of

pipelined replication that either add data to the cache or

need to check for matches in the cache.

Although it may be reasonable to use a larger cache

in enterprise-sized servers, note that our experiments are

for single datasets at a time. A storage server would

normally handle numerous simultaneous streams, each

needing a portion of the cache, so our single-stream

results should be scaled accordingly. Since the lo-

cality of delta compression for backup datasets corre-

sponds closely to identity locality, only a small cache

is needed, and our memory requirements should scale

well with the number of backup streams. Our intuition

is that users/applications often make small modifications

to files, so duplicate chunks indicate a region of the pre-

vious version of a file that is likely to provide delta com-

pression.

6.2 Delta Encoding

Our similarity detection technique is able to find matches

for most chunks during replication and achieves high en-

coding compression on those chunks. The second col-

umn of Table 2 shows the percentage of bytes after dedu-

plication that are delta encoded after seeding. 55-82%

Name
% Post- Encoding Delta

Dedupe Bytes Factor Factor

Source Code 82 8.91 3.75

Workstations 81 30.05 4.62

Email 55 10.05 1.97

System Logs 77 15.65 3.55

Home Dirs 68 30.11 2.89

Median 77 15.65 3.55

Table 2: Datasets, percent of post-deduplication bytes

delta encoded, delta encoding factor, and resulting delta

factor for each dataset, which corresponds to Table 1 af-

ter seeding.

of bytes undergo delta encoding with a median of 77%.

Delta encoding factors vary from 8.91-30.11X with a

median of 15.65X. As an example of how the delta fac-

tor is calculated for System Logs, 77% of bytes after

deduplication are delta encoded to 1
15.65

of their origi-

nal size, and 23% of bytes are not encoded. Therefore,
1

.77
15.65 +.23

≈ 3.55 (rounding in the tables affects accuracy),

which is equivalent to dividing post-deduplication bytes

by post-delta compression bytes.

While further improvements in encoding compression

are likely possible, we are already shrinking delta en-

coded chunks to a small fraction of their original size.

On the other hand, increasing the fraction of chunks that

receive delta encoding could lead to larger savings.

6.3 Multi- vs 1-Level Delta

While we have described the delta compression algo-

rithm as representing a chunk as a 1-level delta from a

base, because we decode chunks at the remote repository,

our delta replication is actually multi-level. Specifically,

consider a delta encoded chunk B transferred across the

network that is then decoded using base chunk C and

stored. At a later time, another delta encoded chunk A

is transferred across the network that uses B as a base.

Although B exists in a decoded form, it was previously a

1-level delta encoded chunk, so A is effectively a 2-level

delta because A referenced B, which referenced C. Our

replication system, like many, does not bound the delta

level, since chunks are decoded at the destination, and we

effectively achieve multi-level delta across the network.

As compared to replicating delta compressed chunks,

storing such chunks introduces extra complexity. Al-

though n-level delta is possible for any value of n, de-

coding an n-level delta entails n reads of the appropriate

base chunks, which can be inefficient in a storage sys-

tem. For this reason, a delta storage system [1] may only

support 1− or 2-level delta encodings to bound decode

times.
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Figure 6: Multi-level delta compression improves 6-30%

beyond 1-level delta.

To compare the benefits of multi- and 1−level delta,

we studied the compression differences. We modified

our replication system so that after a chunk is delta en-

coded, its sketch is then invalidated. This ensures that

delta encoded chunks will never be selected as the base

for encoding other chunks, preventing 2-level or higher

deltas.

In Figure 6, multi- and 1−level delta are compared,

with multi-level delta adding 1.03 - 1.18X additional

compression. As an example, Source Code increased

from 178X to 194X total compression (deduplication,

delta, and GZ), which is roughly similar to adding a sec-

ond super-feature as discussed in Section 6.4. These re-

sults also highlight that 1-level delta is a reasonable ap-

proximation to multi-level, when multi-level is impracti-

cal. Unlike a storage system, we are able to get the com-

pression benefits of multi-level without the slowdowns

related to decoding n-level delta chunks.

6.4 Sketch Index vs Stream-Informed Sketch Cache

We next investigate how our stream-informed caching

technique compares to the alternative of a full sketch in-

dex. We expect that using a full sketch index could find

potential matches that a sketch cache will miss because

of imperfect locality, but maintaining indexes for billions

of stored chunks adds significant complexity. We explore

the compression trade-offs by comparing delta replica-

tion with a cache against a simulator with complete in-

dexes for each super-feature.

Figure 7 compares compression results for the index

and cache options. The lowest region of each vertical bar

is the amount of compression achieved by deduplication,

and because of differences in implementation between

our product and simulator, these numbers vary slightly.

The next four sets of colored regions show how much ex-

tra compression is achieved by using 1-4 super-features.

The cache experiments ran on production hardware, and

the cache was fixed at 12 MB. Also, our simulator with

 0

 0.2

 0.4

 0.6

 0.8

 1

Ind.
C
ac.

Ind.
C
ac.

Ind.
C
ac.

Ind.
C
ac.

Ind.
C
ac. 

N
o
rm

a
liz

e
d
 C

o
m

p
re

s
s
io

n

Dedupe
1 SF
2 SF

3 SF
4 SF

Home DirsSys LogsEmailWorkstSrc Code

Figure 7: Using a stream-informed sketch cache results

in nearly as much compression as using a full index,

and using two super-features with a cache achieves more

compression than a single super-feature index.

index did not apply local compression, so only dedupli-

cation and delta compression are analyzed.

In all cases, using a single super-feature adds sig-

nificant compression beyond deduplication alone, with

decreasing benefit as the number of super-features in-

creases. Although using a sketch cache generally has

lower delta compression than an index, the results are

reasonably close (Workstations with 1 super-feature

and a cache is within 14% of the index with 1 super-

feature). Importantly, we can use more than one super-

feature in our cache with little additional overhead com-

pared to multiple on-disk indexes for super-features. Us-

ing a cache with two or more super-features achieves

greater compression than a single index, which is why

we decided to pursue the caching technique.

An interesting anomaly is that Source Code achieved

higher delta compression with a stream-informed sketch

cache than a full index, even though we would ex-

pect a limited-size cache to be an approximation to a

full index. We found that Source Code and Home

Directories had extremely high numbers of potential

similarity matches (> 10,000) all with the same num-

ber of super-feature matches, which was likely due to

repeated headers in source files1. Selecting among the

candidates leads to differences in delta compression, and

the selection made by a stream-informed cache leads

to higher compression for Source Code than our tie-

breaking technique for the index (most recently written).

1This caused slowed throughput for Home Directories, and

those experiments would not have completed without adjusting

the sketch index. We modified the sketch index for all Home

Directories results such that if a sketch has more than 128 similarity

matches, the current sketch is not added to the index.
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Home Directories had similar compression with ei-

ther a cache or index.

Another unexpected result is that increasing the num-

ber of super-features used with our cache did not always

increase total compression. Since we fix the size of our

cache at 12 MB, when the number of super-features in-

creases, fewer chunks are represented in the cache. The

optimal cache size tends to increase with the number of

super-features, but the index results indicate that adding

super-features has diminishing benefit.

6.5 Partial-index of Fingerprints and Sketches

As a comparison to previous work, we implemented a

partial-index of fingerprints and sketches that updates

ages when either a chunk’s fingerprint or sketch is ref-

erenced and evicts from the partial-index with an LRU

policy. While it is somewhat unfair to compare a partial-

index to our technique, it is useful for analyzing the scal-

ability of such systems.

To focus on the data patterns of typical backups, we

limit this experiment to two full weeks of each dataset,

which typically consists of a full backup followed by

six incremental backups followed by another full and six

incremental backups. For Email, we selected two full

backups a week apart, since a full backup was created

each day.

Figure 1 (presented in Section 2) shows the amount

of compression achieved (deduplication and delta) as the

partial-index size increases along the x-axis, which is

measured as the fraction of the first week’s data kept in

a partial-index. When the partial-index is able to hold

more than a week’s worth of data (1.0 on x-axis), com-

pression jumps dramatically as the second week’s data

compresses against the first week’s data. To highlight

this property, the horizontal axis is normalized based

on the first week’s deduplication rate, since the post-

deduplication size affects how many fingerprints and

sketches must be maintained.

These results highlight that techniques using a partial-

index must hold a full backup cycle’s worth of data (e.g.

at least one full backup) to achieve significant compres-

sion, while our delta compression technique uses a com-

bination of a deduplication index and stream-informed

sketch cache to achieve high compression with small

memory overheads. For storage systems with large back-

ups or backups from numerous sources, our algorithm

would tend to scale memory requirements better, since

Figure 5 demonstrates that we only need a fixed-size

cache regardless of the dataset size.

6.6 Interaction of Delta and Local Compression

Our replication system includes local compressors such

as GZ that can be selected by the administrator. During

replication, chunks are first deduplicated and many of the

Name
No Delta With Delta Delta

GZ Delta GZ Improve.

Source Code 7.20 3.75 3.99 2.08

Workstations 2.83 4.62 1.91 3.12

Email 3.12 1.97 2.96 1.87

System Logs 4.63 3.55 2.86 2.19

Home Dirs 3.12 2.89 1.91 1.77

Median 3.12 3.55 2.86 2.08

Table 3: Delta encoding overlaps with the effectiveness

of GZ, but total compression including delta is still a 2X

improvement beyond alternative approaches. Results are

after initial seeding.

remaining chunks are delta compressed. All remaining

data bytes (delta compressed or not) are then compressed

with a local compressor. A subtle detail of delta com-

pression is that it reduces redundancies within a chunk

that appear in the previous base chunk and within itself,

which overlaps with compression that local compressors

might find.

We evaluated the impact of delta compression on GZ

and total compression by rerunning our replication ex-

periments with GZ enabled and delta compression ei-

ther enabled or disabled. Table 3 shows GZ compression

achieved both with and without delta after seeding. Re-

sults with delta enabled are the same as Table 1. Dedu-

plication factors are the same with or without delta en-

abled, and are removed from the table for space reasons.

GZ and delta overlap by 5-50% (7.20X vs 3.99X for GZ

on Source Code), but using delta in combination with

GZ still provides improved total compression (2.08X for

Source Code). The overlap of local compression and

delta compression varies with dataset and type of local

compressor selected (GZ, LZ, etc.), but we typically see

significant advantages to using both techniques in com-

bination with deduplication.

6.7 WAN Replication Improvement

We performed numerous replication experiments mea-

suring network and effective throughput. Figure 8 shows

a representative replication result for the Workstations

dataset. Throughput was throttled at T3 speed (44 Mb/s)

and measured every 10 minutes. We found effective

throughput is 1-2 orders of magnitude faster than net-

work throughput, which corresponds to total compres-

sion. Although throughput could be further improved

with better pipelining and buffering, this result highlights

that compression boosts effective throughput and reduces

the time until transfer is complete.
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throughput due to compression during replication.

7 Performance Characteristics

In this section, we discuss overheads of delta compres-

sion and limitations of stream-informed delta compres-

sion.

7.1 Delta Overheads

First, capacity overheads for storing sketches are rela-

tively small. Each chunk stored in a container (after

deduplication) also has a sketch added to the meta data

section of the container, which is less than 20 bytes, but

our stream-informed approach removes the need for a

full on-disk index of sketches.

There are also two performance overheads added to

the system: sketching on the write path and reading sim-

ilar base chunks to perform delta compression. First,

incoming data is sketched before being written to disk,

which introduces a 20% slowdown in unoptimized tests.

The sketching stage happens after deduplication, so after

the first full backup, later backups experience less slow-

down since a large fraction of the data is duplicate and

does not need to be sketched. As CPU cores increase

and pipelining is further optimized, this overhead may

become negligible.

The second, and more sizable throughput overhead,

is during replication when similar chunks are read from

disk to serve as the base for delta compression, which

limits our throughput by the read speed of our storage

system. Our read performance varies with the number

of disk spindles and data locality, which we are continu-

ing to investigate. Remote sites also tend to have lower-

end hardware with fewer disk spindles than data ware-

houses. For these reasons, we recommend turning on

delta compression for low bandwidth connections (6.3

Mb/s or slower), where delta compression is not the bot-

tleneck and extra delta compression multiplies the effec-

tive throughput. Also, it should be noted that read over-

heads only take place when delta compression occurs, so
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Figure 9: CPU and disk utilization grows fairly linearly

on the remote repository as the number of replication

streams increases. Error bars indicate a standard devi-

ation.

if no similarity matches are found, read overhead will be

minimal.

Effectively, we are trading computation and I/O re-

sources for higher network throughput, and we expect

computation and I/O to improve at a faster rate than net-

work speeds increase, especially in remote areas. We

expect this tradeoff to become more important in the fu-

ture as data sizes continue to grow. Improvements to our

technique and hardware may also expand the applicabil-

ity of delta replication to a larger range of customers.

Delta compression increases computational and I/O

demands on both the backup server and remote reposi-

tory. We set up an experiment replicating from twelve

small backup servers (2 cores and 3-disk RAID) to a

medium-sized remote repository (8 cores and 14-disk

RAID) with a T1 connection (1.5 Mb/s). At the backup

servers, the CPU and disk I/O overheads were modest

(2% and 4% respectively). At the remote repository,

CPU and disk overhead scaled linearly as the number of

replication streams grew from 1 to 12 as shown in Fig-

ure 9. Measurements were made over every 30 second

period after the seeding phase, and standard deviation er-

ror bars are shown. These results suggest that dozens of

backup servers could be aggegated to one medium-sized

remote repository. As future work, we would like to in-

crease the scaling tests.

7.2 Stream-Informed Cache Limitations

Since we do not have a full sketch index, loss of cache

locality translates to a loss in potential compression.

While earlier experiments showed that stream-informed

caching is effective, those experiments were on individ-

ual datasets. In a realistic environment, multiple datasets

have to share a cache, and garbage collection further de-

grades locality on disk because live chunks from differ-

ent containers and datasets can be merged into new con-

tainers.
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We ran an experiment with a midsize storage appli-

ance with a 288 MB cache sized to handle approximately

20 replicating datasets. The experiment consisted of

replicating a real dataset to this appliance while vary-

ing the number of synthetic datasets also replicated be-

tween 0, 24, and 49. This test was performed with three

real datasets. The synthetic datasets were generated with

an internal tool that had deduplication of 12X and delta

compression of 1.7X, which exercises our caching in-

frastructure in a realistic manner. When the number of

datasets was increased to 25 (1 real and 24 synthetic),

delta compression decreased 0%, 6% and 12% among

the three real datasets relative to a baseline of replicat-

ing each real dataset individually. Increasing to 49 syn-

thetic datasets (beyond what is advised for this hardware)

caused delta compression to decrease 0%, 12%, and 27%

from the baseline for the three real datasets. Our intuition

is that the variability in results is due to locality differ-

ences among these datasets. In general, these results sug-

gest our caching technique degrades in a gradual manner

as the number of replicating datasets increases relative to

the cache size.

This experiment investigates how multiple datasets

sharing a cache affect delta compression, and we vali-

date these findings with results from the field presented

in Section 8, where customers achieved 2X additional

delta compression beyond deduplication even though

their systems had multiple datasets sharing a storage ap-

pliance. While we do not know the upper bound on

how much delta compression these customers could have

achieved in a single-dataset scenario, these results sug-

gest sizable network savings.

8 Results from Customers

Basic replication has been available with EMC Data Do-

main systems for many years using the deduplication

protocol of Figure 3, and the extra delta compression

stage became available in 2009. The version available to

customers has a cache scaled to the number of supported

replication streams.

We analyzed daily reports from several hundred stor-

age systems used by our customers during the second

week of August 2011, including a variety of hardware

configurations. Reporting median values, a typical cus-

tomer transferred 1 TB of data across a 3.1 Mb/s link dur-

ing the week, though because of our compression tech-

niques, much less data was physically transferred across

the network. Median total compression was 32X includ-

ing deduplication, delta, and local compression. Fig-

ure 10 shows the distribution of delta compression with

50% of customers achieving over 2X additional com-

pression beyond what deduplication alone achieves, and

outliers achieving 5X additional delta compression. Con-
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Figure 10: Distribution of delta compression. 50% of

customers achieve over 2X additional delta compression.
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Figure 11: Distribution of hours saved by customers. We

estimate that 50% of customers save over 588 hours of

replication time per week because of our combination of

compression techniques.

current work [38] provides further analysis of replication

and backup storage in general.

Finally, in Figure 11, we show how much time was

saved by our customers versus sending data without any

compression. Our reports indicate how much data was

transferred, an estimate of network throughput (though

periodic throttling is difficult to extract), and compres-

sion, so we can calculate how long replication would

take without compression. The median customer would

need 608 hours to fully replicate their data (more hours

than are in a week), but with our combined compres-

sion, replication reduced to 20 hours (saving 588 hours

of network transfer time). For such customers, it would

be impossible for them to replicate their data each week

without compression, so delta replication significantly

increases the amount of data that can be protected.

9 Related Work

Our stream-informed delta replication project builds

upon previous work in the areas of optimizing network
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transfer, delta compression, similarity detection, dedu-

plication, and caching techniques.

Minimizing network transfer has been an area of on-

going research. One of the earliest projects by Spring

et al. [33] removed duplicate regions in packets with a

synchronized cache by expanding from duplicate start-

ing points. LBFS [25] divided a client’s file into chunks

and deduplicated chunks against any previously stored.

Jumbo Store [14] used a hierarchical representation of

files that allowed them to quickly check whether large

subregions of files were unchanged. CZIP [26] applied a

similar technique with user level caches to remove dupli-

cate chunks while synchronizing remote repositories.

Most work in file synchronization has assumed that

versions are well identified so that compression can

be achieved relative to one (or a few) specified file(s).

Rsync [37] is a widely used tool for synchronizing fold-

ers of files based on compressing against files with the

same pathname. An improvement [35] recursively split

files to find large duplicate regions using a memory

cache.

Beyond finding duplicates during network transfer,

delta compression is a well known technique for com-

puting the difference between two files or data ob-

jects [17, 36]. Delta compression was applied to web

pages [8, 24] and file transfer and storage [7, 9, 21, 34]

using a URL and file name, respectively, to identify a

previous version.

When versioning information is unavailable, a mecha-

nism is needed to find a previous, similar file or data ob-

ject to use as the base for delta compression. Broder [4,

5] performed some of the early work in the resem-

blance field by creating features (such as Rabin finger-

prints [31]) to represent data such that similar data tend

to have identical features. Features were further grouped

into super-features to improve matching efficiency by

reducing the number of indexes. Features and super-

features were used to select an appropriate base file for

deduplication and delta compression [12, 19], removing

the earlier requirement for versioning information. TA-

PER [18] presented an alternative to super-features by

representing files with a Bloom filter storing chunk fin-

gerprints and measuring file similarity based on the num-

ber of matching bits between Bloom filters and then delta

compressing similar files. Delta compression within the

storage system has used super-feature techniques to iden-

tify similar files or regions of files [1, 40]. Aronovich et

al. [1] used 16 MB chunks to decrease sketch indexing

requirements and had hundreds of disk spindles for per-

formance.

Storage systems have eliminated duplicate regions

based on querying an index of fingerprints [3, 22, 29, 30].

Noting that the fingerprint index becomes much larger

than will fit in memory and that disk accesses can be-

come the bottleneck, Zhu et al. [41] presented a tech-

nique to take advantage of stream locality to reduce

disk accesses by 99%. Several variants of this ap-

proach explored alternative indexing strategies to load

a fingerprint cache such as moving the index to flash

memory [10] and indexing a subset of fingerprints ei-

ther based on logical or post-deduplication layout on

disk [2, 16, 20, 23, 39]. Our similarity detection ap-

proach builds upon these caching ideas to load sketches

as well as fingerprints into a stream-informed cache.

10 Conclusion and Future Work

In this paper, we present stream-informed delta com-

pression for replication of backup datasets across a

WAN. Our approach leverages deduplication locality to

also find similarity matches used for delta compression.

While locality properties of duplicate data have been pre-

viously studied, we present the first evidence that similar

data has the same locality. We show that using a compact

stream-informed cache to load sketches achieves almost

as much delta compression as using a full index without

extra data structures. Our technique has been incorpo-

rated into the Data Domain systems, and average cus-

tomers achieve 2X additional compression beyond dedu-

plication and save hundreds of hours of replication time

each week.

In future work, we would like to expand the number

of WAN environments that benefit from delta replica-

tion by improving the read throughput, which currently

gates our system. Also, we would like to further ex-

plore delta compression techniques to improve compres-

sion and scalability.
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