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Abstract

Historically, storage controllers have been extended by

integrating new code, e.g., file serving, database process-

ing, deduplication, etc., into an existing base. This in-

tegration leads to complexity, co-dependency and insta-

bility of both the original and new functions. Hypervi-

sors are a known mechanism to isolate different func-

tions. However, to enable extending a storage controller

by providing new functions in a virtual machine (VM),

the virtualization overhead must be negligible, which is

not the case in a straightforward implementation. This

paper demonstrates a set of mechanisms and techniques

that achieve near zero runtime performance overhead for

using virtualization in the context of a storage system.

1 Introduction

Additional functions, such as file serving or database, are

often added to existing storage systems to meet new re-

quirements. Historically, this has been done via code in-

tegration, or by running the new function on a gateway

or virtual storage appliance (VSA [37]). Code integration

generally performs best. However, the new function must

run on the same OS version, the controller’s main func-

tionality is vulnerable to bugs due to lack of isolation,

resource management is complicated for software which

assumes a dedicated system, and development complex-

ity increases in particular when the new function already

exists as independent software. The gateway approach

offers isolation but adds both latency and hardware costs.

A hypervisor can isolate the new function, allow for

differing OS versions, and simplify development. How-

ever, until now the high performance overhead of virtu-

alization (in particular virtualized I/O) has made this ap-

proach impractical. In this paper, we show how to use

server-based virtualization to integrate new functions into

a storage system with near zero performance cost. Our

approach is in line with the VSA approach, but we run

the VM directly on the storage system.

While our work was done using KVM [14], our in-

sights are not KVM-specific. We do take advantage of the

fact that KVM uses an asymmetric model in which some

of the code is virtualized (the new features) while other

code (the original storage system) runs on “bare metal,”

unaware of the existence of the hypervisor.

There are three sources of performance overhead. Base

overheads include aspects such as virtual memory man-

agement or process switching. External communication

with storage clients is important when the new function is

a “filter” on top of the original storage system, e.g., a file

server. Finally, internal communication overheads are in-

curred to tie the new function to the original controller.

To reduce base overhead, we use two main techniques.

First, we statically allocate CPU cores to the guest to en-

sure that the function has sufficient resources. Second,

we statically allocate memory for the VM, backing that

area with larger pages to reduce translation overheads.

The straightforward implementation of external com-

munication is expensive because the hypervisor inter-

venes when physical events occur (e.g., interrupts or de-

vice accesses). Each such intervention entails an ex-

pensive “exit” from the guest code to the hypervisor.

The highest-performing approach for reducing this over-

head is device assignment, which eliminates exits for de-

vice access. Thus, to reduce these costs, we assign the

network device directly to the guest using an SR-IOV-

enabled adapter [23] which allows the guest to send re-

quests directly to the device. To eliminate exits for inter-

rupts, we use polling instead of interrupts, a well-known

technique in storage systems.

To reduce the cost of internal communication,wemod-

ified KVM’s para-virtual block driver to poll as well,

eliminating exits due to PIOs and interrupt injections.

This provides for a fast, exit-less, zero-copy transport.

By using these techniques, we show nomeasurable dif-

ference in network latency between bare metal and virtu-

alized I/O and under 5% difference in throughput. For

internal communication, micro-benchmarks show 6.6µs

latency overhead, read throughput of 357K IOPS, and

write throughput of 284K IOPS; roughly seven times bet-

ter than a base KVM implementation. In addition, an I/O

intensive filer workload running in KVM incurs less than

0.4% runtime performance overhead compared to bare

metal integration.

Our main contributions are:

• a detailed, benchmark-driven analysis of virtualiza-

tion overheads in a storage system context,

• a set of approaches to removing overheads, and

• a demonstration of how these approaches enable

running new storage features in a VM with essen-

tially zero runtime performance overhead.



The rest of the paper is organized as follows. Section 2

provides background on KVM and VM I/O. We take

an incremental approach to show our performance im-

provements; Section 3 describes the experimental envi-

ronment. Sections 4 and 5 present a performance analysis

and describe optimizations related to the external and in-

ternal communication interfaces, respectively. Base over-

heads are shown together with macro-benchmark results

are in Section 6. Section 7 describes related work and we

conclude in Section 8.

2 x86 I/O Virtualization Primer

We now provide some background information on KVM

(the hypervisor used in this paper) and virtual machine

I/O. There are two main options for where a hypervisor

resides. Type 1 hypervisors run directly on the hard-

ware, whereas type 2 hypervisors are hosted by an OS.

KVM takes a hybrid approach that combines the bene-

fits of both. It is a Linux kernel module that leverages

Intel VT-x or AMD-V CPU features for running unmod-

ified virtual machines, thereby creating a single host ker-

nel/hypervisor that runs both processes and virtual ma-

chines. Such a hybrid architecture allows the storage con-

troller software to run unmodified on bare metal while

also running additional functionality in virtual machines.

There are three main methods for accessing I/O de-

vices in VMs. In the first, emulation, the hypervisor em-

ulates a specific device in software [35]. The OS run-

ning in the VM (guest OS) uses its regular device drivers

to access the emulated device. This method requires no

changes to the guest, but suffers from poor performance.

In the second method, para-virtualization [4], the

guest OS runs specialized code to cooperate with the hy-

pervisor to reduce overheads. For example, KVM’s para-

virtualized drivers use virtio [26], which presents a ring

buffer transport (vring) and device configuration as a PCI

device. Drivers such as network, block, and video are

implemented using virtio. In general, the guest OS driver

places pointers to buffers on the vring and initiates I/O

via a Programmed I/O (PIO) command. The hypervisor

directly accesses the buffers from the guest OS’s mem-

ory (zero-copy). Para-virtualized devices perform better

than emulated devices, but require installing hypervisor-

specific drivers in the guest OS.

The third method, device assignment [6, 17, 39], gives

the VM a physical device that it can submit I/Os to with-

out the hypervisor’s involvement. An I/O Memory Man-

agement Unit (IOMMU) provides address translation and

memory protection [6, 7, 38]. Interrupts, however, are

routed to the guest OS via the hypervisor. Assigning a

device to the VM means that no other OS can access

it (including the hypervisor or other guests). However,

technologies such as Single Root I/O Virtualization (SR-

IOV) [23] allow devices to be assigned to multiple OSs.

3 Experimental Setup

We take an incremental approach to showing how to

eliminate the virtualization overheads. For our ex-

periments we used two servers, each with two quad-

core 2.93GHz EPT-enabled Intel Xeon 5500 processors,

16GB of RAM and an Emulex OneConnect 10Gb Eth-

ernet adapter. The servers were connected with a 10Gb

cable. One server acted as a load generator and the other

was our (emulated) storage controller platform.

We used RHEL 5.4 with the RedHat 2.6.18-164.el5

kernel for both the load server and the guest. The con-

troller server used the RedHat kernel for bare metal runs

and Ubuntu 9.10 with a vanilla 2.6.33 kernel for KVM

runs. The newer kernel was necessary for running KVM.

The controller server was run with four cores enabled,

unless otherwise specified. For VM-based experiments,

two cores and 2GB of memory were assigned to the

guest; all four cores were used by the host in the bare

metal cases.

We used an 8GB ramdisk for the storage back-end in

the experiments described in Section 5 and 6. This al-

lowed us to measure I/O performance without physical

disks becoming the bottleneck. We accessed the ramdisk

via a loopback device, which allowed us to assign disk

I/O handling to specific cores, similar to the way a stor-

age controller functions.

All results shown are the averages of at least 5 runs,

with standard deviations below 5%.

4 Network Communication Performance

Enabling the guest to interact with the outside world re-

quires I/O access. As discussed in Section 2, each of the

three common approaches to I/O virtualization has bene-

fits and drawbacks. We identified device assignment—

the best performing option—as the most suitable ap-

proach for adding new functionality to storage con-

trollers. KVM’s initial device assignment implemen-

tation, however, did not provide the necessary perfor-

mance. In the remainder of this section, we analyze de-

vice assignment and discuss a set of optimizations which

allowed us to achieve near bare-metal performance.

Virtualization overhead is mainly due to events that are

trapped by the hypervisor, causing costly exits [1, 5, 16].

The overhead is a factor of the frequency of exits and the

time it takes the hypervisor to handle the exit and resume

running the guest. To examine the performance impact

of virtualization for our intended use and ways to reduce

it, we focused on networking micro-benchmarks. Our

goal is to minimize the amount of time that the hypervisor

needs to run, by minimizing the number of exits.

The first technique that we used to improve the guest’s

performance is related to the handling of the hlt (halt)

and mwait x86 instructions. When the OS does not have

any work to do it can call these instructions to enter a



power saving mode. Most hypervisors will trap these

commands and will run other tasks on the core. In our

case, however, the new function should always run. We

therefore instructed the guest OS to enter an idle loop

when there is no work to be done by enabling a kernel

boot parameter (idle=poll). This improves perfor-

mance, as the guest is always running.

The second technique that we used is related to inter-

rupt handling. Most of the guest exits related to device

assignment are caused by interrupts [2, 5, 18]. Every ex-

ternal interrupt causes at least two guest exits: first, when

the interrupt arrives (causing the hypervisor to gain con-

trol and to inject the interrupt to the guest) and when the

guest signals completion of the interrupt handling (caus-

ing the host to gain control and to emulate the comple-

tion for the guest). The guest can configure the adapter to

use two different interrupt-delivery modes: MSI, which

is the newer message based interrupt protocol, or the

legacy INTX protocol. The KVM implementation we

used incurred additional overhead when using MSI inter-

rupts, due to additional exits for masking and unmasking

adapter interrupts. Since most of the virtualization over-

head comes from interrupts, our approach is to run the

adapter in polling rather than interrupt-driven mode.

In Linux today, most network adapters use NAPI [30,

31], a hybrid approach to reducing interrupt overhead

which switches between polling and interrupt-driven op-

eration depending on the network traffic. However, even

with NAPI, we have seen interrupt rates of 70K interrupts

per second. Since such a high interrupt rate can incur pro-

hibitive overhead and interrupts are not necessary for our

intended use case, we decided to forgo interrupts and use

polling. Our polling driver creates a new thread for the

polling functions. The adapter we use has three types of

events: packet received, packet sent, and command com-

pletion. Since there is no way to know when a packet

will be received, our polling driver continuously polls for

packets received; packet sent and command completion

indications are handled by the same polling thread every

so often. Using a constantly polling thread means that we

dedicate most of a core for this functionality. While this

might seem expensive from the resources perspective, it

proved critical to achieve the desired performance. A sin-

gle core could also be used to poll multiple devices by

integrating their polling threads into a single thread, or

by scheduling different polling threads on the same core.

We did not experiment with this configuration.

Next we evaluate the performance of the polling driver

using network micro-benchmarks. Table 1 depicts the av-

erage duration time of a ping flood command going from

a client machine to the system under test. The system un-

der test replies to pings using our polling driver either in

polling mode or in INTX mode. The driver runs either in

the host (bare-metal), or in the guest with halt disabled,

Bare-metal Guest Guest halt

INTX 24 49 89

Polling 21 21 21

Table 1: Ping average latency (µs)
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Figure 2: netperf TCP send throughput

or in the guest with halt enabled (guest halt).

Figure 1 shows the results for several netperf

request-response configurations, measuring round-trip

time using 1 byte packets. guest msi and guest intx stand

for the guest using MSI and INTX interrupt delivery, re-

spectively. host msi stands for the host using interrupts

in MSI mode; guest poll and host poll stand for the guest

and host using polling mode, respectively. As expected,

polling mode achieves better performance than interrupt

mode in the host (i.e, on bare metal). Since in guest mode

the cost of interrupts is much higher, the gain from using

polling is more significant than in the bare-metal case.

Using MSI interrupts in guest mode has significant im-

pact on the performance with this KVM version since

there are frequent exits due to interrupt masking calls by

the guest.

Figure 2 shows the results of a single-threaded

netperf send TCP throughput test (system under test

is sending) in the same configurations as the previous fig-

ure: host using polling and INTX interrupts, guest using
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Figure 3: netperf TCP receive throughput

polling, INTX, and MSI interrupts. Here the contribution

of polling is less noticeable, since the TCP stack batches

network processing. On bare metal, polling provides bet-

ter performance than interrupt mode. In guest mode, the

advantage of polling is much more significant.

Figure 3 shows the results of a single-threaded

netperf receive TCP throughput test (system under

test is receiving). Here it is surprising to see that for the

bare-metal case the performance of polling (host poll)

is less than that of interrupts (host msi). The reason is

that in the netperf throughput test the sender is the bot-

tleneck. When the receiver is working in polling mode, it

sends many more acknowledgment packets to the sender.

For example in the case of 1K messages, the receiver

sends approximately 10 times as many ACKs. Since

the sender is already the bottleneck, sending more ACKs

generates more load on the sender, which reduces sender

throughput. While this issue is noticeable for this micro-

benchmark, in practice, the handling time of a packet

by the receiver is much larger, hence in most cases the

sender is not the bottleneck. Polling achieves the same

performance in the guest poll and host poll cases, which

indicates that the virtualization-induced runtime over-

head is negligible.

To verify that the reduced polling performance for the

receive test is an artifact of TCP, we ran the same test us-

ing UDP. With UDP, all setups—guest or bare metal, in-

terrupts or polling—achieve the same performance. Be-

cause the sender is the bottleneck, once the TCP ACK

effect is removed, performance is not affected by the re-

ceiver’s mode of operation.

5 Internal Communication Performance

Of the three methods for accessing I/O devices described

in Section 2, we use para-virtualization for internal com-

munication. Para-virtualization performs better than em-

ulated devices, and because we supply the VM image that

runs in the controller, we can easily use custom drivers.

Further, our goal is to transmit I/O requests to a controller

process running on the host, so device assignment is less
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Figure 4: Unmodified KVM para-virtualized block I/O path.
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Figure 5: Para-virtualized block I/O path with polling.

practical. For example, we cannot assign the drives be-

cause the storage controller must “own” them, and not the

guest OS. One may also consider using external commu-

nication to access the controller via iSCSI or Fibre Chan-

nel, but this adds unnecessary communication overheads.

We use ramdisk as the backing store for our analysis

to prevent the disks from dominating latencies or becom-

ing a bottleneck. In addition, we use direct I/O to prevent

caching effects that mask virtualization overheads. La-

tencies presented are the average over 10 minutes.

Section 5.1 describes the vanilla KVM para-virtualized

block I/O, and Section 5.2 describes our optimizations.

5.1 KVM Para-virtualized Block I/O

Figure 4 depicts the unmodified para-virtualized block

I/O path in KVM, along with associated latencies for ma-

jor code blocks when executing a 4KB direct I/O write

request. The guest application initiates an I/O, which is

handled by the guest kernel as usual. The direct I/O wait-

ing time (DIOWait, 16.6% of the total), consists of world



switches and context switches between threads inside the

guest. Though we have drawn it as one block, it is in-

terleaved with other code running on the same core. The

para-virtualized block driver (virtio-block front-end) it-

erates over the requests in the elevator queue and places

each request’s I/O descriptors on the vring, a queue re-

siding in guest memory that is accessible by the host.

The driver then issues a programmed I/O (PIO) command

which causes a world switch from guest to host.

Control is transferred to the KVM kernel module to

handle the exit. The post- and pre-execution times (24%

and 18.4%, respectively) account for the work done

by both KVM and QEMU to change contexts between

the guest and QEMU process (including the exit/entry).

KVM identifies the cause of the exit and, in this case,

passes control to the QEMU virtio-block back-end (BE).

It extracts the I/O descriptors from the vring without

copies and passes the requests to the block driver layer

(QEMU BDRV), which initiates asynchronous I/Os to

the block device. The guest may now resume execution.

An event-driven dedicated QEMU thread receives I/O

completions and forwards them to the virtio-block BE.

The BE updates the vring with completion information

and calls upon KVM to inject an interrupt into the guest,

for which KVM must initiate a world switch. When the

guest resumes, its kernel handles the interrupt as normal,

and then accesses its APIC to signal the end of interrupt,

causing yet another exit. Locks to synchronize the two

QEMU threads incur additional overhead.

5.2 Para-virtualized Block Optimizations

To reduce virtualization overhead, we added a polling

thread to QEMU as depicted in Figure 5. The thread

polls the vring (1) for I/O requests coming from the guest

and (2) for I/O completions coming from the host ker-

nel. The polling thread invokes the virtio-block BE code

on incoming I/Os and completions. This thread does not

necessarily need to reside in QEMU; if the storage con-

troller is polling-based, its polling thread may be used.

As discussed in Section 4, we added a thread to the

guest which polls the networking device. We utilize this

same thread to poll the vring for I/O completions. When

it detects an I/O completion event, it invokes the guest

I/O completion stack, which would normally be called

by the interrupt handler. By using polling on both sides

of the vring, we avoid all I/O-related exits, and thus also

avoid all of the pre- and post-guest execution code. We

also avoid locking the queue, since now only the polling

thread accesses it. For the 4KB direct I/O write, this im-

proves the latency from 50µs to 15.9µs.

Comparing Figures 4 and 5, we see that polling bet-

ter utilizes the CPU for I/O-related work. Additionally,

components that we didn’t directly optimize (such as the

VFS layer, for example) are more efficient thanks to bet-

ter cache utilization and less cache pollution due to fewer

context switches.

We performed two additional code optimizations in

QEMU to reduce latencies, whose impact is already in-

cluded in the above discussion. When accessing a guest’s

memory, QEMU must first translate the address using a

page-table–like data structure. This handles cases where

the guest’s memory can be remapped (for example, when

dealing with PCI devices). In our case, the memory lay-

out is static, rendering the translation unnecessary. Re-

moving unnecessary lookups improved performance by

4.6% for 4KB reads and 4.2% for 4KB writes. The sec-

ond optimization is to use a memory pool for internal

QEMU request structures. This saved 3% for 4KB reads

and 2.5% for 4KB writes.

5.3 Overall Performance Calculation

A storage controller running a new function in a VM that

uses interrupts for its internal communicationwould have

a rather significant performance penalty. Looking at Fig-

ure 4, the corresponding storage controller implementa-

tion would look similar, except that the AIO calls would

be replaced by asynchronous calls to the controller code.

We consider any work done from the time the applica-

tion submits the I/O until it reaches the controller to be

virtualization overhead (work that would not be done if

running directly on the host). In the unmodified case, the

overhead is 49µs (we subtract only the latency of the ap-

plication layer from the total).

If our techniques were integrated into a controller, we

would calculate the latency overhead as follows, based

on Figure 5. We begin with the total, 15.9µs, and sub-

tract the application layer, as we did in the previous case.

Further, we subtract the QEMU BDRV layer, and the

AIO system call and completion, because these would

be replaced by the controller code, and are therefore not

considered virtualization overhead. The final overhead is

therefore 7.7µs before the two QEMU optimizations, and

6.6µs after.

To put the overheads in context, we estimate our per-

formance impact on the fastest latencies published using

the SPC-1 benchmark since 2009 [34]. The fastest re-

sult was 130µs, and our virtualization technique would

add approximately 5% overhead to this case (the baseline

case would add approximately 38%). The average of the

27 controllers’ fastest latencies is 482µs, and in this av-

erage case, our virtualization techniques would add only

1.4% (the baseline would add over 10%).

Our improvements affect throughput in addition to

latency. To measure these effects, we ran micro-

benchmarks consisting of multi-threaded 4KB direct

I/Os. For multi-threaded 4KB direct I/Os, we improved

read IOPs by a factor of 7.3x (from 48.8K to 357.5K),

and write IOPS by 6.5x (from 43.8K to 284.1K).
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Figure 6: File server workload with 6 cores

6 File Server Workload

We next tested the end-to-end performance of running a

server in a VM on a storage controller. We ran a file

server in our VM, and used dbench [36] v4.00 to gen-

erate 4KB NFS read requests which all arrived at the

10Gb NIC, went through the local file system and block

layers, through the para-virtualized block interface, and

were satisfied by the ramdisk on the host side. We al-

ways allocated two cores to the controller function, and

either two or four to the file server (as specified). In the

virtualized cases, all file server cores were given to the

VM. All cores were fully utilized for all cases.

Figure 6 shows the results when running with six

cores: two for the controller function and four for the file

server. Bars 1 and 2 show the bare metal case without

polling and with, respectively. Roughly the same perfor-

mance is attained in both cases. The third bar shows the

baseline measurement for the guest, which is a signifi-

cant degradation as compared to the bare metal cases. We

identified three main causes for this performance drop.

First, we noticed a large number of page faults on

the host caused by the running VM. We mitigated this

using the Linux kernel’s HugePages mechanism, which

backs a given process with 2MB pages instead of 4KB

pages. This allows the OS to store fewer TLB page en-

tries, resulting in fewer TLB faults and fewer EPT table

lookups. HugePages improved performance by 10.5%, as

shown in the fourth bar of Figure 6. A feature in a recent

Linux kernel release makes the use of HugePages auto-

matic [10]. The second issue affecting performance was

halt exits, described in Section 4. We avoid these exits by

setting the guest scheduler to poll. This further improved

performance by 7.3% (fifth bar in Figure 6). The final

performance improvement was to add driver polling, for

both the network and block interfaces (described in Sec-

tions 4 and 5.2). This further improved performance by

19.7%, and brings the guest’s performance to be statisti-

cally indistinguishable from bare metal.

Next, we ran the same workload, but this time allo-

cated only two cores to the file server (four cores total).

This may be a more common deployment when running

multiple server VMs on a single physical host, for exam-

ple, because there are less cores available for each VM.

The bare metal results are depicted in Figure 7(a). The

first bar shows the bare metal baseline performance of

442.1 MB/s. We see in the second bar that performance
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Figure 7: File server workload with 4 cores

drops to 331.1 MB/s when using polling. This is because

the host now has only two cores, and the polling thread

utilizes a disproportionate amount of CPU resources as

compared to the file server. We remedied this by reducing

the CPU scheduling priority of the polling thread (bar 3),

and by setting the CPU affinities of the polling thread

and some of the file server processes so that they share

the same core (bar 4). These two changes bring the per-

formance back to baseline performance.

In the guest case, depicted in Figure 7(b), the baseline

(bar 1) is approximately 36% lower than the bare metal

case. Bar 2 includes the HugePages and idle polling op-

timizations previously described, and bar 3 adds driver

polling. Similar to the bare metal case, we adjusted the

polling thread scheduling priority and the affinities of the

relevant processes (bars 4 and 5). This brings us to results

that are statistically indistinguishable from bare metal. In

all cases, tuning was not difficult, and a wide range of

values provided the achieved performance.

7 Related Work

Several works explored the idea of running VMs on stor-

age controllers. The IBM DS8300 storage controller

uses logical partitions (LPARs) to enable the creation of

two fault-isolated and performance-isolated virtual stor-

age systems on one physical controller [12]. Pivot3 [24]

and ParaScale [22] are integrated virtualization and scale-

out SAN storage platforms that are geared to data centers.

Fido [8] investigated using shared memory to implement

zero-copy inter-VM communication in Xen in the con-

text of enterprise-class server appliances. Our focus is

different in that we investigate external communication,

zero-copy communication with the controller software,

and various techniques and methods to reduce overheads

caused by I/O virtualization.

Block Mason [21] used building blocks implemented

in VMs to extend block storage functionality. VMware



VSA [37] pools the internal storage resources of several

servers in a shared storage pool, using dedicated virtual

machines running on each server.

Several works explored off-loading I/O to dedicated

cores [3, 15, 16, 19]. The closest to ours is VPE [19],

which adds host-side polling to KVM’s virtio network

stack. The VPE thread polls the network device for in-

coming packets and polls the guest device driver for new

requests. However, the guest incurs exit overheads for

interrupts and I/O completions since its driver does not

poll. Dedicating cores for improving I/O performance

has also been explored in TCP onloading [25, 32, 33].

There have been several works that investigated reduc-

ing interrupt overhead. The Linux kernel uses NAPI to

disable interrupts of incoming packets as long as there

are packets to be processed [30, 31]. A hybrid approach

is to use interrupts under low load, and polling when

more throughput is needed [11]. With interrupt coalesc-

ing, a single interrupt is generated for a given number of

events or in a pre-defined time period [2, 27]. A series of

works compared these techniques qualitatively and quan-

titatively [28, 29]. Rather than polling for fixed intervals

or according to arrival rates, QAPolling uses the system

state as determined by applications’ receive queues [9].

The Polling Watchdog uses a hardware extension to trig-

ger interrupts only when polling fails to handle a message

in a timely manner [20].

ELI (ExitLess Interrupts [13]) is a recently-published

software-only approach for handling interrupts within

guest virtual machines directly and securely. ELI re-

moves the host from the interrupt handling paths, thereby

allowing guests to reach 97%–100% of bare-metal per-

formance for I/O-intensive workloads.

8 Conclusions and Future Work

We have shown how to use a hypervisor to host and iso-

late new storage system functionswith negligible runtime

performance overhead. The techniques we demonstrated

such as polling, dedicated cores, avoiding page lookups,

etc., while not general purpose are a good fit to our usage

scenario and have a significant payback.

There are several possible extensions. First, ELI [13]

is a promising new approach for exitless interrupts which

would remove the need to poll in the guest. We are in-

vestigating incorporating it into our system. Second, if

we stay with polling, we can explore ways to better uti-

lize the polling cores, e.g., to on-board the TCP stack

to a polling core. Third, we can also benchmark these

techniques when running multiple VMs. Finally, we can

examine how to leverage the fact that we have virtual-

ized the new storage function’s implementation to take

advantage of features such as VM migration to improve

performance and availability.
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