
Mitigating the Network Impact in Large Scale DFSs
Gustavo Bervian Brand, Adrien Lèbre

SCALUS EU Project, Mines de Nantes / INRIA / LINA - FRANCE

Most DFSs rely on a static model that does not take into account the scope and the requirements of each
application w.r.t the physical topology where they are deployed. However, considering the increasing trend of
using multiple sites to share data across applications, we propose the investigation of a new model of DFS
that consider LAN vs WAN traffic in order to mitigate the performance impact of the network exchanges.

Network Topology Impact

• Is it still relevant to use additional nodes to analyze data faster?
• How applications accessing data through the DFSs at LAN/WAN levels are impacted?
• Should locality be considered as a major concern to design a DFS?
• We investigated these points by conducting several experiments with HDFS and Lustre where Clients (C),

Datanodes (D) and a Metadata server (M) are deployed on a node, across a LAN (“-”) or a WAN (“/”).

Drawbacks of Current DFSs

Work in Progress

Next DFSs should consider the physical topology and the application's scope
to prevent performance impacts from the network exchanges. By avoiding
unsolicited traffic as much as possible, we promote:

• Group wide striping mechanism

 Data is spread according to the applications' access patterns (avoiding
alignment concerns) across nodes belonging to the same group.

• Distributed persistent LRU cache mechanism

 Once data has been pulled from one group to another one, it will never
be pulled again unless if it has been modified on the other site ("group-
wide LRU").

• Explicit reliability

 Applications should explicitly mention the factor replica and how wide
this data should be replicated (LAN or WAN).

• Do multi-applications environments increase the "locality" concern?

• Why “local scope” applications should suffer the penalty of external
server communications in charge of managing data or metadata?

• Why data should be pushed over the network if it will be used only
locally, or even worse, simply deprecated by the end of the
application's execution?

• Why data needs to be pushed from one location to another,
instead of using an on-demand pulling model?

• Can we consider the physical topology to improve the
performance as well the scalability of DFSs (like HDFS does for
reliability concerns)?

• Elasticity is a new aspect of distributed systems,

consisting on using external resources at any time
to compute and process data faster.

• Contacts: Gustavo.Bervian-Brand@mines-nantes.fr
Adrien.Lebre@mines-nantes.fr

Example of data blocks
placement according to
the applications behavior

(CD-M/CD)

In most cases, accessing data through WAN leads to worse performance.
It was better to use less nodes than trying to benefit from external WAN ones.

• The completion time for the local scenarios with 16 nodes (CD-M and C-D-M) is similar to the WAN
ones (CD/M, C-D/M, C/D-M, CD-M/CD and C-D-M/C) using 2x or 4x more nodes.

• The applications used were Hadoop based Grep, Text-writer and Sort benchmarks.

• The file size grew from 8GB to 128GB with up to 64 nodes at the Grid'5000 testbed.

ECOLE DES MINES DE NANTES

CD-M: client and datanode are at the same node, while the metadata server is reachable at the LAN
C/D-M: clients are separated from the datanodes and the metadata server through a WAN

attributes and the directories layout; the Object Storage Targets
(OSTs), that are the actual storage devices where the data
is written; the Lustre Distributed Lock Manager (DLM), as
the core of Lustre protocols it is responsible for decisions
like choosing between caching policies (write-back/through)
or synchronous metadata updates.

The Ceph system [?] runs at the user space via FUSE using
a pseudo-random data distribution function called CRUSH
(Controlled Replication Under Scalable Hashing) to make a
distributed data management that aims at having no centralized
metadata entity, using a cluster of unreliable object storage de-
vices (OSDs) as the final storage devices. It is also composed
by the metadata cluster (responsible for managing files and
directories) and the clients with a near-POSIX FS interface.
The files are stripped over many object files and grouped into
placement groups(PGs) that are distributed with CRUSH.

Blobseer [?] is a prototype implementation that focuses on
high scalable data management using versioning to improve
applications data access performance under heavy concurrency
to efficiently deal with parallel workflows. It’s architecture is
composed by several metadata providers, a provider manager,
data storage providers, a version manager and the clients. The
data is stored at file chunks called BLOBs (Binary Large
Objects) that can reach up to 1TB at the data storage providers,
while the provider manager handles the space to new chunks.
Each BLOB is stripped over several data storage providers.

The Hadoop FS (HDFS) [?] is designed to deal with large
datasets and intensive I/O applications. Its architecture main
components are the namenode, datanodes and clients. The
namenode is responsible for storing the inodes that represents
the files and directories, besides maintaining the namespace
tree and mapping of the datanodes file blocks. The datanodes
store the data itself and a piece of metadata that works as a
generation stamp [?] to find the block of data.

XtreemFS [?] focus at the grid level, over the cluster level
DFSs presented so far, being a distributed object-based FS for
wide-area infrastructures, designed to support file replication
and federated setups in Grid environments. Its architecture
is composed by clients, storage nodes (OSDs) and metadata
servers (MRCs). Its object based FS allows it to be able to
control where and how its clients access the files replicas,
even choosing the replica closest to the client, for example.
Besides, it allows the replicas to be physically de-synchronized
or lazily synchronized.

The Gfarm Grid FS [?] was designed to share files across
multiple domains providing a reasonable I/O performance
for data-intensive applications in a WAN. Its storage is a
federation of local FSs from compute nodes with commodity
hardware, what is different from systems like Lustre that
exploit dedicated clusters. The system does not federates an
entire FS but a particular directory of an existing local FS.

V. RESULTS OBTAINED SO FAR AND PERSPECTIVES

We conducted different experiments as mentioned at the
Section II, with the Tasks runtime shown at the Table I. As
expected, using more nodes improves the performance with

Systems HDFS Lustre
Scenarios Grep Writer Sort Grep Writer Sort

Tests with 16 nodes
CD-M 81 61 115 110 54 149
C-D-M 83 66 119 114 48 151
CD/M 135 76 153 110 52 148
C-D/M 134 76 164 125 55 159
CD-M/CD 162 60 240 113 76 316
C-D-M/C 116 104 582 201 114 314
C/D-M 169 408 715 345 194 590

Tests with 32 nodes
CD-M 76 45 73 89 41 87
C-D-M 76 57 77 89 45 81
CD/M 121 62 117 88 41 92
C-D/M 122 63 118 99 48 95
CD-M/CD 136 57 210 89 55 121
C-D-M/C 113 100 367 149 105 247
C/D-M 136 245 470 275 175 512

Tests with 64 nodes
CD-M 68 44 60 73 36 68
C-D-M 82 62 65 90 56 80
CD/M 110 63 102 80 36 92
C-D/M 127 72 105 101 60 90
CD-M/CD 107 51 176 79 38 66
C-D-M/C 116 94 257 182 117 151
C/D-M 141 224 354 272 176 525

TABLE I: Runtime of the tests with 8 GB file size

Systems HDFS Lustre
Scenarios Grep Writer Sort Grep Writer Sort

Tests with 64 nodes
CD-M 73 60 273 95 51 2374
C-D-M 92 71 192 94 56 384
CD/M 110 80 289 97 53 2175
C-D/M 112 78 242 98 53 366
CD-M/CD 184 85 1528 95 54 2311
C-D-M/C 120 53 1484 151 50 1333
C/D-M 142 1244 1863 234 165 2127

TABLE II: Runtime of the tests with 64 GB file size

Systems HDFS Lustre
Scenarios Grep Writer Sort Grep Writer Sort

Tests with 64 nodes
CD-M 87 93 194 119 77 2706
C-D-M 84 95 406 121 75 979
CD/M 124 110 257 120 74 2128
C-D/M 110 100 504 117 72 982
CD-M/CD 148 78 4903 119 109 1616
C-D-M/C 79 71 1448 194 71 1977
C/D-M 143 2442 6740 254 255 7267

TABLE III: Runtime of the tests with 128 GB file size

Sort Test HDFS Lustre
File size CD-M C/D-M CD-M C/D-M

Tests with 64 nodes
8 GB 63 327 61 543
16 GB 75 549 93 726
32 GB 109 999 179 1194
64 GB 177 1866 1166 2129
128 GB 202 3671 2075 7267

TABLE IV: Sort completion time from 8 GB to 128 GB file size

a better completion time. However, looking deeper, the more
nodes are used, the less significant the gain is since there are

Sort completion time
File sizes from 8 GB to 128 GB files

Completion time of the tests with 8 GB file size

HDFS / Sort / 8 GB file size

C
om

pl
et

io
n

Ti
m

e
(s

ec
.)

Number of nodes

Lustre / Sort / 8 GB file size

C
om

pl
et

io
n

Ti
m

e
(s

ec
.)

Number of nodes
Lustre / Sort

C
om

pl
et

io
n

Ti
m

e
(s

ec
.)

Size of generated data (GB)
HDFS / Sort

C
om

pl
et

io
n

Ti
m

e
(s

ec
.)

Size of generated data (GB)

0 1 32 4 5 76

D1 D2 D3 D4M

Round-Robin "infrastructure wide" striping strategy
Round-Robin "group wide" striping strategy

 Site A Site B

http://www.scalus.eu
ASCOLA Research Group - SCALUS

attributes and the directories layout; the Object Storage Targets
(OSTs), that are the actual storage devices where the data
is written; the Lustre Distributed Lock Manager (DLM), as
the core of Lustre protocols it is responsible for decisions
like choosing between caching policies (write-back/through)
or synchronous metadata updates.

The Ceph system [?] runs at the user space via FUSE using
a pseudo-random data distribution function called CRUSH
(Controlled Replication Under Scalable Hashing) to make a
distributed data management that aims at having no centralized
metadata entity, using a cluster of unreliable object storage de-
vices (OSDs) as the final storage devices. It is also composed
by the metadata cluster (responsible for managing files and
directories) and the clients with a near-POSIX FS interface.
The files are stripped over many object files and grouped into
placement groups(PGs) that are distributed with CRUSH.

Blobseer [?] is a prototype implementation that focuses on
high scalable data management using versioning to improve
applications data access performance under heavy concurrency
to efficiently deal with parallel workflows. It’s architecture is
composed by several metadata providers, a provider manager,
data storage providers, a version manager and the clients. The
data is stored at file chunks called BLOBs (Binary Large
Objects) that can reach up to 1TB at the data storage providers,
while the provider manager handles the space to new chunks.
Each BLOB is stripped over several data storage providers.

The Hadoop FS (HDFS) [?] is designed to deal with large
datasets and intensive I/O applications. Its architecture main
components are the namenode, datanodes and clients. The
namenode is responsible for storing the inodes that represents
the files and directories, besides maintaining the namespace
tree and mapping of the datanodes file blocks. The datanodes
store the data itself and a piece of metadata that works as a
generation stamp [?] to find the block of data.

XtreemFS [?] focus at the grid level, over the cluster level
DFSs presented so far, being a distributed object-based FS for
wide-area infrastructures, designed to support file replication
and federated setups in Grid environments. Its architecture
is composed by clients, storage nodes (OSDs) and metadata
servers (MRCs). Its object based FS allows it to be able to
control where and how its clients access the files replicas,
even choosing the replica closest to the client, for example.
Besides, it allows the replicas to be physically de-synchronized
or lazily synchronized.

The Gfarm Grid FS [?] was designed to share files across
multiple domains providing a reasonable I/O performance
for data-intensive applications in a WAN. Its storage is a
federation of local FSs from compute nodes with commodity
hardware, what is different from systems like Lustre that
exploit dedicated clusters. The system does not federates an
entire FS but a particular directory of an existing local FS.

V. RESULTS OBTAINED SO FAR AND PERSPECTIVES

We conducted different experiments as mentioned at the
Section II, with the Tasks runtime shown at the Table I. As
expected, using more nodes improves the performance with

Systems HDFS Lustre
Scenarios Grep Writer Sort Grep Writer Sort

Tests with 16 nodes

CD-M 81 61 115 110 54 149

C-D-M 83 66 119 114 48 151

CD/M 135 76 153 110 52 148

C-D/M 134 76 164 125 55 159

CD-M/CD 162 60 240 113 76 316

C-D-M/C 116 104 582 201 114 314

C/D-M 169 408 715 345 194 590

Tests with 32 nodes

CD-M 76 45 73 89 41 87

C-D-M 76 57 77 89 45 81

CD/M 121 62 117 88 41 92

C-D/M 122 63 118 99 48 95

CD-M/CD 136 57 210 89 55 121

C-D-M/C 113 100 367 149 105 247

C/D-M 136 245 470 275 175 512

Tests with 64 nodes

CD-M 68 44 60 73 36 68

C-D-M 82 62 65 90 56 80

CD/M 110 63 102 80 36 92

C-D/M 127 72 105 101 60 90

CD-M/CD 107 51 176 79 38 66

C-D-M/C 116 94 257 182 117 151

C/D-M 141 224 354 272 176 525

TABLE I: Runtime of the tests with 8 GB file size

Systems HDFS Lustre
Scenarios Grep Writer Sort Grep Writer Sort

Tests with 64 nodes
CD-M 73 60 273 95 51 2374
C-D-M 92 71 192 94 56 384
CD/M 110 80 289 97 53 2175
C-D/M 112 78 242 98 53 366
CD-M/CD 184 85 1528 95 54 2311
C-D-M/C 120 53 1484 151 50 1333
C/D-M 142 1244 1863 234 165 2127

TABLE II: Runtime of the tests with 64 GB file size

Systems HDFS Lustre
Scenarios Grep Writer Sort Grep Writer Sort

Tests with 64 nodes
CD-M 87 93 194 119 77 2706
C-D-M 84 95 406 121 75 979
CD/M 124 110 257 120 74 2128
C-D/M 110 100 504 117 72 982
CD-M/CD 148 78 4903 119 109 1616
C-D-M/C 79 71 1448 194 71 1977
C/D-M 143 2442 6740 254 255 7267

TABLE III: Runtime of the tests with 128 GB file size

Sort Test HDFS Lustre
File size CD-M C/D-M CD-M C/D-M

Tests with 64 nodes
8 GB 63 327 61 543
16 GB 75 549 93 726
32 GB 109 999 179 1194
64 GB 177 1866 1166 2129
128 GB 202 3671 2075 7267

TABLE IV: Sort completion time from 8 GB to 128 GB file size

a better completion time. However, looking deeper, the more
nodes are used, the less significant the gain is since there are

CD-M

Metadata
Server

Clients +
Datanodes

1 .. 64

C/D-M

Clients
1 .. 64 Metadata

Server

Datanodes
1 .. 64

WAN

