Adapting RAID Methods for Use in Object Storage Systems

David Bigelow, Scott A. Brandt, Carlos Maltzahn, Sage Weil University of California, Santa Cruz {dbigelow, scott, carlosm, sage}@cs.ucsc.edu

> FAST 2007 Work-In-Progress February 27, 2008

Motivation: OSD Reliability

- Mirroring is Expensive
 - System may have petabytes of data in thousands of devices
 - For two-way mirroring alone, the system cost doubles
 - Linear scaling of system cost for each additional degree of protection
- RAID (and other error-correction codes)
 - Simple RAID codes can reduce overhead to (N + 1)/N
 - More advanced error-correction codes (like Reed-Solomon) are available
 - How to adapt these methods for use in object-based storage?
- High-Performance Storage
 - Typical systems will have very high performance requirements
 - Can RAID maintain the necessary performance level?

Client-Based RAID

- The client alone determines how its data will be stored
- Storage system only responsible for storing and returning objects

RAID Across Objects

- No overhead to client -- storage system maintains own records
- Device failure can lead to large reconstruction times
- Very jagged performance curve in degraded mode

RAID Within Objects

- Always additional delay to the client for both reading and writing
- Device failure has smaller reconstruction times
- Smoother performance curve in degraded mode

Current Status

- Simulation
 - Measuring of relative performance
- Implementation
 - Applying techniques to Ceph Object Storage System
 - Initial approach of parity based RAID
- Continuing Work
 - More complex schemes to tolerate multiple failures
 - Hierarchical model to allow multiple reliability schemes