TierStore: A Distributed Filesystem for Challenged
Networks in Developing Regions

Michael Demmer, Bowei Du, and Eric Brewer
University of California, Berkeley
{demmer,bowei,brewer} @ cs.berkeley.edu

Abstract

TierStore is a distributed filesystem that simplifies the de-
velopment and deployment of applications in challenged
network environments, such as those in developing re-
gions. For effective support of bandwidth-constrained
and intermittent connectivity, it uses the Delay Toler-
ant Networking store-and-forward network overlay and
a publish/subscribe-based multicast replication protocol.
TierStore provides a standard filesystem interface and a
single-object coherence approach to conflict resolution
which, when augmented with application-specific han-
dlers, is both sufficient for many useful applications and
simple to reason about for programmers. In this paper,
we show how these properties enable easy adaptation
and robust deployment of applications even in highly in-
termittent networks and demonstrate the flexibility and
bandwidth savings of our prototype with initial evalua-
tion results.

1 Introduction

The limited infrastructure in developing regions both
hinders the deployment of information technology and
magnifies the need for it. In spite of the challenges, a
variety of simple information systems have shown real
impact on health care, education, commerce and produc-
tivity [19, 34]. For example, in Tanzania, data collection
related to causes of child deaths led to a reallocation of
resources and a 40% reduction in child mortality (from
16% to 9%) [4, 7].

Yet in many places, the options for network connec-
tivity are quite limited. Although cellular networks are
growing rapidly, they remain a largely urban and costly
phenomenon, and although satellite networks have cov-
erage in most rural areas, they too are extremely expen-
sive [30]. For these and other networking technologies,
power problems and coverage gaps cause connectivity to
vary over time and location.

To address these challenges, various groups have used
novel approaches for connectivity in real-world applica-
tions. The Wizzy Digital Courier system [36] distributes
educational content among schools in South Africa by
delaying dialup access until night time, when rates are
cheaper. DakNet [22] provides e-mail and web connec-
tivity by copying data to a USB drive or hard disk and
then physically carrying the drive, sometimes via mo-
torcycles. Finally, Ca:sh [1] uses PDAs to gather rural
health care data, also relying on physical device trans-
port to overcome the lack of connectivity. These projects
demonstrate the value of information distribution appli-
cations in developing regions, yet they all essentially
started from scratch and thus use ad-hoc solutions with
little leverage from previous work.

This combination of demand and obstacles reveals
the need for a flexible application framework for “chal-
lenged” networks. Broadly speaking, challenged net-
works lack the ability to support reliable, low-latency,
end-to-end communication sessions that typify both the
phone network and the Internet. Yet many important
applications can still work well despite low data rates
and frequent or lengthy disconnections; examples in-
clude e-mail, voicemail, data collection, news distribu-
tion, e-government, and correspondence education. The
challenge lies in implementing systems and protocols to
adapt applications to the demands of the environment.

Thus our central goal is to provide a general purpose
framework to support applications in challenged net-
works, with the following key properties: First, to adapt
existing applications and develop new ones with mini-
mal effort, the system should offer a familiar and easy-
to-use filesystem interface. To deal with intermittent net-
works, applications must operate unimpeded while dis-
connected, and easily resolve update conflicts that may
occur as a result. Finally, to address the networking chal-
lenges, replication protocols need to be able to leverage a
range of network transports, as appropriate for particular
environments, and efficiently distribute application data.

USENIX Association

FAST °08: 6th USENIX Conference on File and Storage Technologies

35

As we describe in the remainder of this paper, Tier-
Store is a distributed filesystem that offers these prop-
erties. Section 2 describes the high-level design of the
system, followed by a discussion of related work in Sec-
tion 3. Section 4 describes the details of how the system
operates. Section 5 discusses some applications we have
developed to demonstrate flexibility. Section 6 presents
an initial evaluation, and we conclude in Section 7.

2 TierStore Design

The goal of TierStore is to provide a distributed filesys-
tem service for applications in bandwidth-constrained
and/or intermittent network environments. To achieve
these aims, we claim no fundamentally new mechanisms,
however we argue that TierStore is a novel synthesis of
well-known techniques and most importantly is an effec-
tive platform for application deployment.

TierStore uses the Delay Tolerant Networking (DTN)
bundle protocol [11, 28] for all inter-node messag-
ing. DTN defines an overlay network architecture for
challenged environments that forwards messages among
nodes using a variety of transport technologies, includ-
ing traditional approaches and long-latency “sneakernet”
links. Messages may also be buffered in persistent stor-
age during connection outages and/or retransmitted due
to a message loss. Using DTN allows TierStore to adapt
naturally to a range of network conditions and to use so-
lution(s) most appropriate for a particular environment.

To simplify application development, TierStore im-
plements a standard filesystem interface that can be ac-
cessed and updated at multiple nodes in the network.
Any modifications to the shared filesystem state are both
applied locally and encoded as update messages that are
lazily distributed to other nodes in the network. Because
nodes may be disconnected for long periods of time, the
design favors availability at the potential expense of con-
sistency [12]. This decision is critical to allow applica-
tions to function unimpeded in many environments.

The filesystem layer implements traditional NFS-like
semantics, including close-to-open consistency, hard and
soft links, and standard UNIX group, owner, and per-
mission semantics. As such, many interesting and useful
applications can be deployed on a TierStore system with-
out (much) modification, as they often already use the
filesystem for communication of shared state between
application instances. For example, several implemen-
tations of e-mail, log collection, and wiki packages are
already written to use the filesystem for shared state and
have simple data distribution patterns, and are therefore
straightforward to deploy using TierStore. Also, these
applications are either already conflict-free in the ways
that they interact with shared storage or can be easily
made conflict-free with simple extensions.

Based in part on these observations, TierStore imple-
ments a single-object coherence policy for conflict man-
agement, meaning that only concurrent updates to the
same file are flagged as conflicts. We have found that this
simple model, coupled with application-specific conflict
resolution handlers, is both sufficient for many useful ap-
plications and easy to reason about for programmers. It
is also a natural consequence from offering a filesystem
interface, as UNIX filesystems do not naturally expose a
mechanism for multiple-file atomic updates.

When conflicts do occur, TierStore exposes all infor-
mation about the conflicting update through the filesys-
tem interface, allowing either automatic resolution by
application-specific scripts or manual intervention by a
user. For more complex applications for which single-
file coherence is insufficient, the base system is exten-
sible to allow the addition of application-specific meta-
objects (discussed in Section 4.12). These objects can be
used to group a set of user-visible files that need to be
updated atomically into a single TierStore object.

To distribute data efficiently over low-bandwidth net-
work links, TierStore allows the shared data to be par-
titioned into fine-grained publications, currently defined
as disjoint subtrees of the filesystem namespace. Nodes
can then subscribe to receive updates to only their pub-
lications of interest, rather than requiring all shared state
to be replicated. This model maps quite naturally to
the needs of real applications (e.g. users’ mailboxes
and folders, portions of web sites, or regional data col-
lection). Finally, TierStore nodes are organized into a
multicast-like distribution tree to limit redundant update
transmissions over low-bandwidth links.

3 Related Work

Several existing systems offer distributed storage ser-
vices with varying network assumptions; here we briefly
discuss why none fully satisfies our design goals.

One general approach has been to adapt traditional
network file systems such as NFS and AFS for use in
constrained network environments. For example, the
Low-Bandwidth File System (LBFS) [18] implements
a modified NFS protocol that significantly reduces the
bandwidth consumption requirements. However, LBFS
maintains NFS’s focus on consistency rather than avail-
ability in the presence of partitions [12], thus even
though it addresses the bandwidth problems, it is unsuit-
able for intermittent connectivity.

Coda [16] extends AFS to support disconnected oper-
ation. In Coda, clients register for a subset of files to be
“hoarded”, i.e. to be available when offline, and modi-
fications made while disconnected are merged with the
server state when the client reconnects. Due to its AFS
heritage, Coda has a client-server model that imposes re-

36

FAST ’08: 6th USENIX Conference on File and Storage Technologies

USENIX Association

strictions on the network topology, so it is not amenable
to cases in which there may not be a clear client-server
relationship and where intermittency might occur at mul-
tiple points in the network. This limits the deployability
of Coda in many real-world environments that we target.
Protocols such as rsync [33], Unison [24] and Of-
flineIMAP [20] can efficiently replicate file or applica-
tion state for availability while disconnected. These sys-
tems provide pairwise synchronization of data between
nodes, so they require external ad-hoc mechanisms for
multiple-node replication. More fundamentally, in a
shared data store that is being updated by multiple par-
ties, no single node has the correct state that should be
replicated to all others. Instead, it is the collection of
each node’s updates (additions, modifications, and dele-
tions) that needs to be replicated throughout the network
to bring everyone up to date. Capturing these update
semantics through pair-wise synchronization of system
state is challenging and in some cases impossible.
Bayou [23, 32] uses an epidemic propagation proto-
col among mobile nodes and has a strong consistency
model. When conflicts occur, it will roll back updates
and then roll forward to reapply them and resolve con-
flicts as needed. However, this flexibility and expressive-
ness comes at a cost: applications need to be rewritten to
use the Bayou shared database, and the system assumes
that data is fully replicated at every node. It also assumes
that rollback is always possible, but in a system with hu-
man users, the rollback might require undoing the actions
of the users as well. TierStore sacrifices the expressive-
ness of Bayou’s semantic level updates in favor of the
simplicity of a state-based system.
PRACTI [2] is a replicated storage system that uses
a Bayou-like replication protocol, enhanced with sum-
maries of aggregated metadata to enable multi-object
consistency without full database content replication.
However, the invalidation-based protocol of PRACTI im-
plies that for strong consistency semantics, it must re-
trieve invalidated objects on demand. Since these re-
quests may block during network outages, PRACTI ei-
ther performs poorly in these cases or must fall back
to simpler consistency models, thus no longer provid-
ing arbitrary consistency. Also, as in the case of Bayou,
PRACTI requires a new programming environment with
special semantics for reading and writing objects, in-
creasing the burden on the application programmer.
Dynamo [8] implements a key/value data store with
a goal of maximum availability during network parti-
tions. It supports reduced consistency and uses many
techniques similar to those used in TierStore, such as
version vectors for conflict detection and application-
specific resolution. However, Dynamo does not offer a
full hierarchical namespace, which is needed for some
applications, and it is targeted for data center environ-

ments, whereas our design is focused on a more widely
distributed topology.

Haggle [29] is a clean-slate design for networking and
data distribution targeted for mobile devices. It shares
many design characteristics with DTN, including a flexi-
ble naming framework, multiple network transports, and
late binding of message destinations. The Haggle system
model incorporates shared storage between applications
and the network, but is oriented around publishing and
querying for messages, not providing a replicated stor-
age service. Thus applications must be rewritten to use
the Haggle APIs or adapted using network proxies.

Finally, the systems that are closest to TierStore in de-
sign are optimistically concurrent peer-to-peer file sys-
tems such as Ficus [21] and Rumor [15]. Like TierStore,
Ficus implements a shared file system with single file
consistency semantics and automatic resolution hooks
for update conflicts. However the Ficus log-exchange
protocols are not well suited for long latency (i.e. sneak-
ernet) links, since they require multiple round trips for
synchronization. Also, update conflicts must be resolved
before the file becomes available, which can degrade
availability in cases where an immediate resolution to the
conflict is not possible. In contrast, TierStore allows con-
flicting partitions to continue to make progress.

Rumor is an external user-level synchronization sys-
tem that builds upon the Ficus work. It uses Ficus’ tech-
niques for conflict resolution and update propagation,
thus making it unsuitable in our target environment.

4 TierStore in Detail

This section describes the implementation of TierStore.
First we give a brief overview of the various components
of TierStore, shown in Figure 1, then we delve into more
detail as the section progresses.

4.1 System Components

As discussed above, TierStore implements a standard
filesystem abstraction, i.e., a persistent repository for file
objects and a hierarchical namespace to organize those
files. Applications interface with TierStore using one of
two filesystem interfaces, either FUSE [13] (Filesystem
in Userspace) or NFS [27]. Typically we use NFS over
a loopback mount, though a single TierStore node could
export a shared filesystem to a number of users in a well-
connected LAN environment over NFS.

File and system data are stored in persistent storage
repositories that lie at the core of the system. Read ac-
cess to data passes through the view resolver that han-
dles conflicts and presents a self-consistent filesystem to
applications. Modifications to the filesystem are encap-
sulated as updates and forwarded to the update manager

USENIX Association

FAST ’08: 6th USENIX Conference on File and Storage Technologies

37

Applications
FUSE /NFS } Filesystem Interface

View Resolver

} Conflict Management

Object / Metadata /

Version Repositories } Persistent Storage

Subscription Update o
Manager " Manager : Replication

TierStore Daemon '

Figure 1: Block diagram showing the major components
of the TierStore system. Arrows indicate the flow of infor-
mation between components.

where they are applied to the persistent repositories and
forwarded to the subscription manager.

The subscription manager uses the DTN network to
distribute updates to and from other nodes. Updates that
arrive from the network are forwarded to the update man-
ager where they are processed and applied to the persis-
tent repository in the same way as local modifications.

4.2 Objects, Mappings, and Guids

TierStore objects derive from two basic types: data ob-
Jjects are regular files that contain arbitrary user data, ex-
cept for symbolic links that have a well-specified for-
mat. Containers implement directories by storing a set
of mappings: tuples of (guid, name, version, view).

A guid uniquely identifies an object, independent from
its location in the filesystem, akin to an inode number in
the UNIX filesystem, though with global scope. Each
node in a TierStore deployment is configured with a
unique identity by an administrator, and guids are defined
as a tuple (node, time) of the node identity where an object
was created and a strictly increasing local time counter.

The name is the user-specified filename in the con-
tainer. The version defines the logical time when the
mapping was created in the history of system updates,
and the view identifies the node the created the mapping
(not necessarily the node that originally created the ob-
ject). Versions and views are discussed further below.

4.3 Versions

Each node increments a local update counter after ev-
ery new object creation or modification to the filesystem
namespace (i.e. rename or delete). This counter is used
to uniquely identify the particular update in the history of
modifications made at the local node, and is persistently
serialized to disk to survive reboots.

A collection of update counters from multiple nodes
defines a version vector and tracks the logical ordering
of updates for a file or mapping. As mentioned above,
each mapping contains a version vector. Although each
version vector conceptually has a column for all nodes
in the system, in practice, we only include columns for
nodes that have modified a particular mapping or the cor-
responding object, which is all that is required for the
single-object coherence model.

Thus a newly created mapping has only a single entry
in its version vector, in the column of the creating node.
If a second node were to subsequently update the same
mapping, say by renaming the file, then the new map-
ping’s version vector would include the old version in
the creating node’s column, plus the newly incremented
update counter from the second node. Thus the new vec-
tor would subsume the old one in the version sequence.

We expect TierStore deployments to be relatively
small-scale (at most hundreds of nodes in a single sys-
tem), which keeps the maximum length of the vectors to
a reasonable bound. Furthermore, most of the time, files
are updated at an even smaller number of sites, so the
size of the version vectors should not be a performance
problem. We could, however, adopt techniques similar to
those used in Dynamo [8] to truncate old entries from the
vector if this were to become a performance limitation.

We also use version vectors to detect missing updates.
The subscription manager records a log of the versions
for all updates that have been received from the net-
work. Since each modification causes exactly one update
counter to be incremented, the subscription manager de-
tects missing updates by looking for holes in the version
sequence. Although the DTN network protocols retrans-
mit lost messages to ensure reliable delivery, a fallback
repair protocol detects missing updates and can request
them from a peer.

4.4 Persistent Repositories

The core of the system has a set of persistent repositories
for system state. The object repository is implemented
using regular UNIX files named with the object guid. For
data objects, each entry simply stores the contents of the
given file. For container objects, each file stores a log
of updates to the name/guid/view tuple set, periodically
compressed to truncate redundant entries. We use a log

38

FAST ’08: 6th USENIX Conference on File and Storage Technologies

USENIX Association

guid guid TierStore
type TierStore source Metadata
version Metadata
blication id name
pu container guid Mapping 1
mode 1 view apping
uid Fil version
- ile
g_ld Metadata name
mt.|me container guid Mabping 2
ctime) view pping
i version
. File
bject dat .
object data } Contents
CREATE MAP

Figure 2: Contents of the core TierStore update mes-
sages. CREATE updates add objects to the system; MAP
updates bind objects to location(s) in the namespace.

instead of a vector of mappings for better performance
on modifications to large directories.

Each object (data and container) has a corresponding
entry in the metadata repository, also implemented using
files named with the object guid. These entries contain
the system metadata, e.g. user/group/mode/permissions,
that are typically stored in an inode. They also contain a
vector of all the mappings where the object is located in
the filesystem hierarchy.

With this design, mapping state is duplicated in the en-
tries of the metadata table, and in the individual container
data files. This is a deliberate design decision: knowing
the vector of objects in a container is needed for efficient
directory listing and path traversal, while storing the set
of mappings for an object is needed to update the object
mappings without knowing its current location(s) in the
namespace, simplifying the replication protocols.

To deal with the fact that the two repositories might be
out of sync after a system crash, we use a write ahead
log for all updates. Because the updates are idempo-
tent (as discussed below), we simply replay uncommit-
ted updates after a system crash to ensure that the system
state is consistent. We also implement a simple write-
through cache for both persistent repositories to improve
read performance on frequently accessed files.

4.5 Updates

The filesystem layer translates application operations
(e.g. write, rename, creat, unlink) into two basic
update operations: CREATE and MAP, the format of which
is shown in Figure 2. These updates are then applied lo-
cally to the persistent repository and distributed over the
network to other nodes.

CREATE updates add new objects to the system but do
not make them visible in the filesystem namespace. Each

CREATE is a tuple (object guid, object type, version, publica-
tion id, filesystem metadata, object data). These updates have
no dependencies, so they are immediately applied to the
persistent database upon reception, and they are idem-
potent since the binding of a guid to object data never
changes (see the next subsection).

MAP updates bind objects into the filesystem names-
pace. Each MAP update contains the guid of an object
and a vector of (name, container.guid, view, version) tuples
that specify the location(s) where the object should be
mapped into the namespace. Although in most cases a
file is mapped into only a single location, multiple map-
pings may be needed to properly handle hard links and
some conflicts (described below).

Because TierStore implements a single-object coher-
ence model, MAP updates can be applied as long as a node
has previously received CREATE updates for the object
and the container(s) where the object is to be mapped.
This dependency is easily checked by looking up the rel-
evant guids in the metadata repository and does not de-
pend on other MAP messages having been received. If the
necessary CREATE updates have not yet arrived, the MAP
update is put into a deferred update queue for later pro-
cessing when the other updates are received.

An important design decision related to MAP messages
is that they contain no indication of any obsolete map-
ping(s) to remove from the namespace. That is because
each MAP message implicitly removes all older mappings
for the given object and for the given location(s) in the
namespace, computed based on the logical version vec-
tors. As described above, the current location(s) of an
object can be easily looked up in the metadata repository
using the object guid.

Thus, as shown in Figure 3, to process a MAP message,
TierStore first looks up the object and container(s) using
their respective guids in the metadata repository. If they
both exist, then it compares the versions of the mappings
in the message with those stored in the repository. If the
new message contains more recent mappings, TierStore
applies the new set of relevant mappings to the repos-
itory. If the message contains old mappings, it is dis-
carded. In case the versions are incomparable (i.e. up-
dates occurred simultaneously), then there is a conflict
and both conflicting mappings are applied to the repos-
itory to be resolved later (see below). Therefore, MAP
messages are also idempotent, since any obsolete map-
pings contained within them are ignored in favor of the
more recent ones that are already in the repository.

4.6 Immutable Objects and Deletion

These two message types are sufficient because TierStore
objects are immutable. A file modification is imple-
mented by copying an object, applying the change, and

USENIX Association

FAST °08: 6th USENIX Conference on File and Storage Technologies

39

Update Arrives

Y

Object
and Container(s)
Exist?

No —p

Add Update to
Deferred Queue

Yes
.

Get Current Mappings

Y Discard
No — 7| Update

pdate
Version More
Recent?

Yes .| Discard Old
Mapping(s)

Neither

Install New Mapping |«

Figure 3: Flowchart of the decision process when apply-
ing MAP updates.

installing the modified copy in place of the old one (with
a new CREATE and MAP). Thus the binding of a guid to
particular file content is persistent for the life of the sys-
tem. This model has been used by other systems such as
Oceanstore [26], for the advantage that write-write con-
flicts are handled as name conflicts (two objects being
put in the same namespace location), so we can use a
single mechanism to handle both types of conflicts.

An obvious disadvantage is the need to distribute
whole objects, even for small changes. To address this
issue, the filesystem layer only “freezes” an object (i.e.
issues a CREATE and MAP update) after the application
closes the file, not after each call to write. In addition,
we plan to integrate other well-known techniques, such
as sending deltas of previous versions or encoding the
objects as a vector of segments and only sending modi-
fied segments (as in LBFS [18]). However, when using
these techniques, care would have to be taken to avoid
round trips in long-latency environments.

When an object is no longer needed, either because
it was explicitly removed with unlink or because a new
object was mapped into the same location through an edit
or rename, we do not immediately delete it, but instead
we map it into a special trash container. This step is nec-
essary because some other node may have concurrently
mapped the object into a different location in the names-
pace, and we need to hold onto the object to potentially
resolve the conflict.

In our current prototype, objects are eventually re-
moved from the trash container after a long interval (e.g.
multiple days), after which we assume no more updates
will arrive to the object. This simple method has been

sufficient in practice, though a more sophisticated dis-
tributed garbage collection such as that used in Ficus [21]
would be more robust.

4.7 Publications and Subscriptions

One of the key design goals for TierStore is to en-
able fine-grained sharing of application state. To that
end, TierStore applications divide the overall filesystem
namespace into disjoint covering subsets called publica-
tions. Our current implementation defines a publication
as a tuple (container, depth) that includes any mappings
and objects in the subtree that is rooted at the given con-
tainer, up to the given depth. Any containers that are
created at the leaves of this subtree are themselves the
root of new publications. By default, new publications
have infinite depth; custom-depth publications are cre-
ated through a special administrative interface.

TierStore nodes then have subscriptions to an arbitrary
set of publications; once a node is subscribed to a publi-
cation, it receives and transmits updates for the objects
in that publication among all other subscribed nodes.
The subscription manager component handles register-
ing and responding to subscription interest and informing
the DTN layer to set up forwarding state accordingly. It
interacts with the update manager to be notified of lo-
cal updates for distribution and to apply updates received
from the network to the data store.

Because nodes can subscribe to an arbitrary set of pub-
lications and thus receive a subset of updates to the whole
namespace, each publication defines a separate version
vector space. In other words, the combination of (node,
publication, update counter) is unique across the system.
This means that a node knows when it has received all
updates for a publication when the version vector space
is fully packed and has no holes.

To bootstrap the system, all nodes have a default sub-
scription to the special root container *“/” with a depth of
1. Thus whenever any node creates an object (or a con-
tainer) in the root directory, the object is distributed to
all other nodes in the system. However, because the root
subscription is at depth 1, all containers within the root
directory are themselves the root for new publications, so
application state can be partitioned.

To subscribe to other publications, users create a sym-
bolic link in a special /.subscriptions/ directory to
point to the root container of a publication. This opera-
tion is detected by the Subscription Manager, which then
sets up the appropriate subscription state. This design al-
lows applications to manage their interest sets without
the need for a custom programming interface.

40

FAST ’08: 6th USENIX Conference on File and Storage Technologies

USENIX Association

4.8 Update Distribution

To deal with intermittent or long-delay links, the Tier-
Store update protocol is biased heavily towards avoiding
round trips. Thus unlike systems based on log exchange
(e.g. Bayou, Ficus, or PRACTI), TierStore nodes proac-
tively generate updates and send them to other nodes
when local filesystem operations occur.

TierStore integrates with the DTN reference imple-
mentation [9] and uses the bundle protocol [28] for all
inter-node messaging. The system is designed with min-
imal demands on the networking stack: simply that all
updates for a publication eventually propagate to the sub-
scribed nodes. In particular, TierStore can handle dupli-
cate or out-of-order message arrivals using the version-
ing mechanisms described above.

This design allows TierStore to take advantage of the
intermittency tolerance and multiple transport layer fea-
tures of DTN. In contrast with systems based on log-
exchange, TierStore does not assume there is ever a low-
latency bidirectional connection between nodes, so it can
be deployed on a wide range of network technologies in-
cluding sneakernet or broadcast links. Using DTN also
naturally enables optimizations such as routing smaller
MAP updates over low-latency, but possibly expensive
links, while sending large CREATE updates over less ex-
pensive but long-latency links, or configuring different
publications to use different DTN priorities.

Howeyver, for low-bandwidth environments, it is also
important that updates be efficiently distributed through-
out the network to avoid overwhelming low-capacity
links. Despite some research efforts on the topic of mul-
ticast in DTNs [38], there currently exists no implemen-
tation of a robust multicast routing protocol for DTNs.

Thus in our current implementation, TierStore nodes
in a given deployment are configured by hand in a static
multicast distribution tree, whereby each node (except
the root) has a link to its parent node and to zero or more
child nodes. Nodes are added or removed by editing con-
figuration files and restarting the affected nodes. Given
the small scale and simple topologies of our current de-
ployments, this manual configuration has been sufficient
thus far. However we plan to investigate the topic of a
general publish/subscribe network protocol suitable for
DTNs in future work.

In this simple scheme, when an update is generated,
TierStore forwards it to DTN stack for transmission to
the parent and to each child in the distribution tree. DTN
queues the update in persistent storage, and ensures re-
liable delivery through the use of custody transfer and
retransmissions. Arriving messages are re-forwarded to
the other peers (not back to the sending node) so updates
eventually reach all nodes in the system.

4.9 Views and Conflicts

Each mapping contains a view that identifies the Tier-
Store node that created the mapping. During normal op-
eration, the notion of views is hidden from the user, how-
ever views are important when dealing with conflicts. A
conflict occurs when operations are concurrently made at
different nodes, resulting in incomparable logical version
vectors. In TierStore’s single-object coherence model,
there are only two types of conflicts: a name conflict oc-
curs when two different objects are mapped to the same
location by different nodes, while a location conflict oc-
curs when the same object is mapped to different loca-
tions by different nodes.

Recall that all mappings are tagged with their respec-
tive view identifiers, so a container may contain multiple
mappings for the same name, but in different views. The
job of the View Resolver (see Figure 1) is to present a co-
herent filesystem to the user, in which two files can not
appear in the same location, and a single file can not ap-
pear in multiple locations. Hard links are an obvious ex-
ception to this latter case, in which the user deliberately
maps a file in multiple locations, so the view resolver is
careful to distinguish hard links from location conflicts.

The default policy to manage conflicts in TierStore ap-
pends each conflicting mapping name with . #X, where X
is the identity of the node that generated the conflicting
mapping. This approach retains both versions of the con-
flicted file for the user to access, similar to how CVS han-
dles an update conflict. However, locally generated map-
pings retain their original name after view resolution and
are not modified with the . #X suffix. This means that the
filesystem structure may differ at different points in the
network, yet also that nodes always “see” mappings that
they have generated locally, regardless of any conflicting
updates that may have occurred at other locations.

Although it is perhaps non-intuitive, we believe this
to be an important decision that aids the portability of
unmodified applications, since their local file modifica-
tions do not “disappear” if another node makes a con-
flicting update to the file or location. This also means
that application state remains self-consistent even in the
face of conflicts and most importantly, is sufficient to
handle conflicts for many applications. Still, conflict-
ing mappings would persist in the system unless resolved
by some user action. Resolution can be manual or auto-
matic; we describe both in the following sections.

4.10 Manual Conflict Resolution

For unstructured data with indeterminate semantics (such
as the case of general file sharing), conflicts can be man-
ually resolved by users at any point in the network by
using the standard filesystem interface to either remove

USENIX Association

FAST ’08: 6th USENIX Conference on File and Storage Technologies

41

(01 quid,, "A" (Cz: guidy "B"

guid2‘ "ffoo" J

Step

view B, ver (B,1)

1: gwd1 "ffoo", 2:
view A, ver (A1

[a: guid, "/oar"] @

view A, ver (A,2)(B,1)

@ write(/foo, “A")
@ receive Cz M:

@ rename(/foo.#B,

Node A Node B

Action FS View Action FS View
ffoo = “A”" write(/foo, “B") ffoo = “B"
/f “pr I g

00 = receive C1, My 00 =
ffoo.#B = “B” ffoo #A = “A”
ffoo = “A” ffoo = “B”
/bar) /oar = “B” ffoo #A = “A”
ffoo = “A” . ffoo = “A”

receive M3

/oar = “B” /oar = “B”

Figure 4: Update sequence demonstrating a name conflict and a user’s resolution. Each row in the table at right shows
the actions that occur at each node and the nodes’ respective views of the filesystem. In step 1, nodes A and B make
concurrent writes to the same file /foo. generating separate create and mapping updates (C;, M; C,, and M) and
applying them locally. In step 2, the updates are exchanged, causing both nodes to display conflicting versions of the
file (though in different ways). In step 3, node A resolves the conflict by renaming /foo. #B to /bar, which generates a
new mapping (M3). Finally, in step 4, M3 is received at B and the conflict is resolved.

or rename the conflicting mappings. Figure 4 shows an
example of how a name conflict is caused, what each
filesystem presents to the user at each step, and how the
conflict is eventually resolved.

When using the filesystem interface, applications do
not necessarily include all the context necessary to in-
fer user intent. Therefore an important policy decision is
whether operations should implicitly resolve conflicts or
let them linger in the system by default. As in the ex-
ample shown in Figure 4, once the name conflict occurs
in step 2, if the user were to write some new contents to
/foo, should the new file contents replace both conflict-
ing mappings or just one of them?

The current policy in TierStore is to leave the con-
flicting mappings in the system until they are explicitly
resolved by the user (e.g. by removing the conflicted
name), as shown in the example. Although this policy
means that conflicting mappings may persist indefinitely
if not resolved, it is the most conservative policy and we
believe the most intuitive as well, though it may not be
appropriate for all environments or applications.

4.11 Automatic Conflict Resolution

Application writers can also configure a custom per-
container view resolution routine that is triggered when
the system detects a conflict in that container. The inter-
face is a single function with the following signature:

resolve(local view, locations, names) — resolved

The operands are as follows: local view is the local
node identity, locations is a list of the mappings that are
in conflict with respect to location and names is a list
of mappings that are in conflict with respect to names.

The function returns resolved, which is the list of non-
conflicting mappings that should be visible to the user.
The only requirements on the implementation of the re-
solve function are that it is deterministic based on its
operands and that its output mappings have no conflicts.

In fact, the default view resolver implementation de-
scribed above is implemented as a resolve function that
appends the disambiguating suffix for visible filenames.
In addition, the maildir resolver described in Section
5.1 is another example of a custom view resolver that
safely merges mail file status information encoded in the
maildir filename. Finally, a built- in view resolver de-
tects identical object contents with conflicting versions
and automatically resolves them, rather than presenting
them to the user as vacuous conflicts.

An important feature of the resolve function is that it
creates no new updates, rather it takes the updates that
exist and presents a self- consistent file system to the user.
This avoids problems in which multiple nodes indepen-
dently resolve a conflict, yet the resolution updates them-
selves conflict [14]. Although a side effect of this design
is that conflicts may persist in the system indefinitely,
they are often eventually cleaned up since modifications
to merged files will obsolete the conflicting updates.

4.12 Object Extensions

Another way to extend TierStore with application-
specific support is the ability to register custom types for
data objects and containers. The current implementation
supports C++ object subclassing of the base object and
container classes, whereby the default implementations
of file and directory access functions can be overridden
to provide alternative semantics.

42

FAST ’08: 6th USENIX Conference on File and Storage Technologies

USENIX Association

For example, this extension could be used to imple-
ment a conflict-free, append-only “log object”. In this
case, the log object would in fact be a container, though it
would present itself to the user as if it were a normal file.
If a user appends a chunk of data to the log (i.e. opens
the file, seeks to the end, writes the data, and closes the
file), the custom type handlers would create a new object
for the appended data chunk and add it to the log object
container with a unique name. Reading from the log ob-
ject would simply concatenate all chunks in the container
using the partial order of the contained objects’ version
vectors, along with some deterministic tiebreaker. In this
way multiple locations may concurrently append data to
a file without worrying about conflicts, and the system
would transparently merge updates into a coherent file.

4.13 Security

Although we have not focused on security features
within TierStore itself, security guarantees can be effec-
tively implemented at complementary layers.

Though TierStore nodes are distributed, the system is
designed to operate within a single administrative scope,
similar to how one would deploy an NFS or CIFS share.
In particular, the system is not designed for untrusted,
federated sharing in a peer-to-peer manner, but rather
to be provisioned in a cooperative network of storage
replicas for a particular application or set of applications.
Therefore, we assume that configuration of network con-
nections, definition of policies for access control, and
provisioning of storage resources are handled via exter-
nal mechanisms that are most appropriate for a given de-
ployment. In our experience, most organizations that are
candidates to use TierStore already follow this model for
their system deployments.

For data security and privacy, TierStore supports the
standard UNIX file access-control mechanisms for users
and groups. For stronger authenticity or confidentiality
guarantees, the system can of course store and replicate
encrypted files as file contents are not interpreted, except
by an application-specific automatic conflict resolver that
depends on the file contents.

At the network level, TierStore leverages the recent
work in the DTN community on security protocols [31]
to protect the routing infrastructure and to provide mes-
sage security and confidentiality.

4.14 Metadata

Currently, our TierStore prototype handles metadata up-
dates such as chown, chmod, or ut imes by applying them
only to the local repository. In most cases, the opera-
tions occur before updates are generated for an object, so
the intended modifications are properly conveyed in the

CREATE message for the given object. However if a meta-
data update occurs long after an object was created, then
the effects of the operation are not known throughout the
network until another change is made to the file contents.

Because the applications we have used so far do not
depend on propagation of metadata, this shortcoming has
not been an issue in practice. However, we plan to add a
new META update message to contain the modified meta-
data as well as a new metadata version vector in each ob-
ject. A separate version vector space is preferable to al-
low metadata operations to proceed in parallel with map-
ping operations and to not trigger false conflicts. Con-
flicting metadata updates would be resolved by a deter-
ministic policy (e.g. take the intersection of permission
bits, later modification time, etc).

S5 TierStore Applications

In this section we describe the initial set of applications
we have adapted to use TierStore, showing how the sim-
ple filesystem interface and conflict model allows us to
leverage existing implementations extensively.

5.1 E-mail Access

One of the original applications that motivated the devel-
opment of TierStore was e-mail, as it is the most popular
and fastest-growing application in developing regions. In
prior work, we found that commonly used web-mail in-
terfaces are inefficient for congested and intermittent net-
works [10]. These results, plus the desire to extend the
reach of e-mail applications to places without a direct
connection to the Internet, motivate the development of
an improved mechanism for e-mail access.

It is important to distinguish between e-mail delivery
and e-mail access. In the case of e-mail delivery, one
simply has to route messages to the appropriate (single)
destination endpoint, perhaps using storage within the
network to handle temporary transmission failures. Ex-
isting protocols such as SMTP or a similar DTN-based
variant are adequate for this task.

For e-mail access, users need to receive and send mes-
sages, modify message state, organize mail into folders,
and delete messages, all while potentially disconnected,
and perhaps at different locations, and existing access
protocols like IMAP or POP require clients to make a
TCP connection to a central mail server. Although this
model works well for good-quality networks, in chal-
lenged environments users may not be able to get or send
new mail if the network happens to be unavailable or is
too expensive at the time when they access their data.

In the TierStore model, all e-mail state is stored in
the filesystem and replicated to any nodes in the sys-
tem where a user is likely to access their mail. An off-

USENIX Association

FAST ’08: 6th USENIX Conference on File and Storage Technologies

43

the-shelf IMAP server (e.g. courier [6]) runs at each of
these endpoints and uses the shared TierStore filesystem
to store users’ mailboxes and folders. Each user’s mail
data is grouped into a separate publication, and via an
administrative interface, users can instruct the TierStore
daemon to subscribe to their mailbox.

We use the maildir [3] format for mailboxes, which
was designed to provide safe mailbox access without
needing file locks, even over NFS. In maildir, each mes-
sage is a uniquely named independent file, so when a
mailbox is replicated using TierStore, most operations
are trivially conflict free. For example, a disconnected
user may modify existing message state or move mes-
sages to other mailboxes while new messages are simul-
taneously arriving without conflict.

However, it is possible for conflicts to occur in the case
of user mobility. For example, if a user accesses mail at
one location and then moves to another location before
all updates have fully propagated, then the message state
flags (i.e. passed, replied, seen, draft, etc) may be out of
sync on the two systems. In maildir, these flags are en-
coded as characters appended to the message filename.
Thus if one update sets a certain state, while another con-
currently sets a different state, the TierStore system will
detect a location conflict on the message object.

To best handle this case, we wrote a simple conflict
resolver that computes the union of all the state flags
for a message, and presents the unified name through the
filesystem interface. In this way, the fact that there was
an underlying conflict in the TierStore object hierarchy
is never exposed to the application, and the state is safely
resolved. Any subsequent state modifications would then
subsume both conflicting mappings and clean up the un-
derlying (yet invisible) conflict.

5.2 Content Distribution

TierStore is a natural platform to support content distri-
bution. At the publisher node, an administrator can ar-
bitrarily manipulate files in a shared repository, divided
into publications by content type. Replicas would be
configured with read-only access to the publication to en-
sure that the application is trivially conflict-free (since all
modifications happen at one location). The distributed
content can then be served by a standard web server or
simply accessed directly through the filesystem.

As we discuss further in Section 6.2, using TierStore
for content distribution is more efficient and easier to ad-
minister than traditional approaches such as rsync [33].
In particular, TierStore’s support for multicast distribu-
tion provides an efficient delivery mechanism for many
networks that would require ad-hoc scripting to achieve
with point-to-point synchronization solutions. Also, the
use of the DTN overlay network enables easier integra-

tion of transport technologies such as satellite broad-
cast [17] or sneakernet and opens up potential optimiza-
tions such as sending some content with a higher priority.

5.3 Offline Web Access

Although systems for offline web browsing have existed
for some time, most operate under the assumption that
the client node will have periodic direct Internet access,
i.e. will be “online”, to download content that can later
be served when “offline”. However, for poorly connected
sites or those with no direct connection at all, TierStore
can support a more efficient model, where selected web
sites are crawled periodically at a well-connected loca-
tion, and the cached content is then replicated.

Implementing this model in TierStore turned out to be
quite simple. We configured the wwwoffle proxy [37] to
use TierStore as its filesystem for its cache directories.
By running web crawls at a well-connected site through
the proxy, all downloaded objects are put in the ww-
woffle data store, and TierStore replicates them to other
nodes. Because wwwoffle uses files for internal state, if
a remote user requests a URL that is not in cache, ww-
woffle records the request in a file within TierStore. This
request is eventually replicated to a well-connected node
that will crawl the requested URL, again storing the re-
sults in the replicated data store.

We ran an early deployment of TierStore and wwwof-
fle to accelerate web access in the Community Informa-
tion Center kiosks in rural Cambodia [5]. For this de-
ployment, the goal was to enable accelerated web access
to selected web sites, but still allow direct access to the
rest of the Internet. Therefore, we configured the ww-
woffle servers at remote nodes to always use the cached
copy of the selected sites, but to never cache data for
other sites, and at a well-connected node, we periodi-
cally crawled the selected sites. Since the sites changed
much less frequently than they were viewed, the use of
TierStore, even on a continuously connected (but slow)
network link, was able to accelerate the access.

5.4 Data Collection

Data collection represents a general class of applica-
tions that TierStore can support well. The basic data
flow model for these applications involves generating
log records or collecting survey samples at poorly con-
nected edge nodes and replicating these samples to a
well-connected site.

Although at a fundamental level, it may be sufficient to
use a messaging interface such as e-mail, SMS, or DTN
bundling for this application, the TierStore design offers
a number of key advantages. In many cases, the local
node wants or needs to have access to the data after it

44

FAST ’08: 6th USENIX Conference on File and Storage Technologies

USENIX Association

CREATE READ WRITE GETDIR STAT RENAME
Local 1.72 (0.04) | 16.75 (0.08) | 1.61 (0.01) | 7.39 (0.01) | 3.00 (0.01) | 27.00 (0.2)
FUSE | 3.88 (0.1) | 20.31 (0.08) | 1.90 (0.8) | 8.46 (0.01) | 3.18 (0.005) | 30.04 (0.07)
NFS | 11.69 (0.09) | 19.75 (0.06) | 42.56 (0.6) | 8.17 (0.01) | 3.76 (0.01) | 36.03 (0.03)

TierStore | 7.13 (0.06) | 21.54 (0.2) | 2.75 (0.3) | 15.38 (0.01) | 3.19 (0.01) | 38.39 (0.05)

Table 1: Microbenchmarks for various file system operations for local Ext3, loopback-mounted NFS, passthrough FUSE
layer and TierStore. Runtime is in seconds averaged over five runs, with the standard error in parenthesis.

has been collected, thus some form of local storage is
necessary anyway. Also, there may be multiple desti-
nations for the data; many situations exist in which field
workers operate from a rural office that is then connected
to a larger urban headquarters, and the pub/sub system of
replication allows nodes at all these locations to register
data interest in any number of sample sets.

Furthermore, certain data collection applications can
benefit greatly from fine-grained control over the units of
data replication. For example, consider a census or med-
ical survey being conducted on portable devices such as
PDAs or cell phones by a number of field workers. Al-
though replicating all collected data samples to every de-
vice will likely overwhelm the limited storage resources
on the devices, it would be easy to set up publications
such that the list of which samples had been collected
would be replicated to each device to avoid duplicates.

Finally, this application is trivially conflict free. Each
device or user can be given a distinct directory for sam-
ples, and/or the files used for the samples themselves can
be named uniquely in common directories.

5.5 Wiki Collaboration

Group collaboration applications such as online Wiki
sites or portals generally involve a set of web scripts that
manipulate page revisions and inter-page references in
a back-end infrastructure. The subset of common wiki
software that uses simple files (instead of SQL databases)
is generally quite easy to adapt to TierStore.

For example, PmWiki [25] stores each Wiki page as
an individual file in the configured wiki.d directory.
The files each contain a custom revision format that
records the history of updates to each file. By configuring
the wiki.d directory to be inside of TierStore, multiple
nodes can update the same shared site when potentially
disconnected.

Of course, simultaneous edits to the same wiki page at
different locations can easily result in conflicts. In this
case, it is actually safe to do nothing at all to resolve
the conflicts, since at any location, the wiki would still
be in a self-consistent state. However, users would no
longer easily see each other’s updates (since one of the
conflicting versions would be renamed as described in

Section 4.9), limiting the utility of the application.

Resolving these types of conflicts is also straightfor-
ward. PmWiki (like many wiki packages) contains built
in support for managing simultaneous edits to the same
page by presenting a user with diff output and asking for
confirmation before committing the changes. Thus the
conflict resolver simply renames the conflicting files in
such a way that the web scripts prompt the user to man-
ually resolve the conflict at a later time.

6 Evaluation

In this section we present some initial evaluation results
to demonstrate the viability of TierStore as a platform.
First we run some microbenchmarks to demonstrate that
the TierStore filesystem interface has competitive perfor-
mance to traditional filesystems. Then we describe ex-
periments where we show the efficacy of TierStore for
content distribution on a simulation of a challenged net-
work. Finally we discuss ongoing deployments of Tier-
Store in real-world scenarios.

6.1 Microbenchmarks

This set of experiments compares TierStore’s filesystem
interface with three other systems: Local is the Linux
Ext3 file system; NFS is a loopback mount of an NFS
server running in user mode; FUSE is a fusexmp instance
that simply passes file system operations through the user
space daemon to the local file system. All of the bench-
marks were run on a 1.8 GHz Pentium 4 with 1 GB of
memory and a 40GB 7200 RPM EIDE disk, running De-
bian 4.0 and the 2.6.18 Linux kernel.

For each filesystem, we ran several benchmark tests:
CREATE creates 10,000 sequentially named empty files.
READ performs 10,000,000 16 kilobyte read () calls at
random offsets of a one megabyte file. WRITE performs
10,000,000 16k write () calls to append to a file; the file
was truncated to O bytes after every 1,000 writes. GET-
DIR issues 1,000 getdir () requests on a directory con-
taining 800 files. STAT issues 1,000,000 stat calls to a
single file. Finally, RENAME performs 10,000 rename ()
operations to change a single file back and forth between
two filenames. Table 1 summarizes the results of our ex-

USENIX Association

FAST °08: 6th USENIX Conference on File and Storage Technologies

45

Villages

Root .-~ O3 77" -C%_E_E_E_E_E_E_E_E_E_E

O - satellite
~<_ 128kb/s, 300ms

fiber A =~ f_ ______________
100Mb/s, (/):ns O' “'CI—‘_::::::::::

Figure 5: Network model for the emulab experiments.

periments. Run times are measured in seconds, averaged
over five runs, with the standard error in parentheses.

The goal of these experiments is to show that exist-
ing applications, written with standard filesystem per-
formance in mind, can be deployed on TierStore with-
out worrying about performance barriers. These results
support this goal, as in many cases the TierStore sys-
tem performance is as good as traditional systems. the
cases where the TierStore performance is worse are due
to some inefficiencies in how we interact with FUSE and
the lack of optimizations on the backend database.

6.2 Multi-node Distribution

In another set of experiments, we used the Emulab [35]
environment to evaluate the TierStore replication proto-
col on a challenged network similar to those found in
developing regions.

To simulate this target environment, we set up a net-
work topology consisting of a single root node, with a
well-connected “fiber” link (100 Mbps, 0 ms delay) to
two nodes in other “cities”. We then connect each of
these city nodes over a “satellite” link (128 kbps, 300
ms delay) to an additional node in a “village”. In turn,
each village connects to five local computers over “di-
alup” links (56 kbps, 10 ms delay). Figure 5 shows the
network model for this experiment.

To model the fact that real-world network links are
both bandwidth-constrained and intermittent, we ran a
periodic process to randomly add and remove firewall
rules that block transfer traffic on the simulated dialup
links. Specifically, the process ran through each link
once per second, comparing a random variable to a
threshold parameter chosen to achieve the desired down-
time percentage, and turning on the firewall (blocking
the link) if the threshold was met. It then re-opened a
blocked link after waiting 20 seconds to ensure that all
transport connections closed.

We ran experiments to evaluate TierStore’s perfor-
mance for electronic distribution of educational content,
comparing TierStore to rsync [33]. We then measured
the time and bandwidth required to transfer 7MB of mul-
timedia data from the root node to the ten edge nodes.

250 ERsync e2e Rsync hop [TierStore

0% down 10% down

25% down

0% down 10% down

Multiple Subscriptions

25% down

Figure 6: Total network traffic consumed when synchro-
nizing educational content on an Emulab simulation of a
challenged network in developing regions. As the net-
work outage increases, the performance of TierStore rel-
ative to both end to end and hop by hop rsync improves.

We ran two sets of experiments, one in which all data
is replicated to all nodes (single subscription), and an-
other in which portions of the data are distributed to dif-
ferent subsets of the edge nodes (multiple subscriptions).
The results from our experiments are shown in Figure 6.

We compared TierStore to rsync in two configurations.
The end-to-end model (rsync e2e) is the typical use case
for rsync, in which separate rsync processes are run from
the root node to each of the edge nodes until all the data
is transferred. As can be seen from the graphs, however,
this model has quite poor performance, as a large amount
of duplicate data must be transferred over the constrained
links, resulting in more total traffic and a corresponding
increase in the amount of time to transfer (not shown).
As aresult, TierStore uses less than half of the bandwidth
of rsync in all cases. This result, although unsurprising,
demonstrates the value of the multicast-like distribution
model of TierStore to avoid sending unnecessary traffic
over a constrained network link.

To offer a fairer comparison, we also ran rsync in a
hop-by-hop mode, in which each node distributed con-
tent to its downstream neighbor. In this case, rsync per-
forms much better, as there is less redundant transfer of
data over the constrained link. Still, TierStore can adapt
better to intermittent network conditions as the outage
percentage increases. This is primarily because rsync
has no easy way to detect when the distribution is com-
plete, so it must repeatedly exchange state even if there
is no new data to transmit. This distinction demonstrates
the benefits of the push-based distribution model of Tier-
Store as compared to state exchange when running over
bandwidth-constrained or intermittent networks.

Finally, although this latter mode of rsync essentially
duplicates the multicast-like distribution model of Tier-
Store, rsync is significantly more complicated to admin-
ister. In TierStore, edge nodes simply register their inter-
est for portions of the content, and the multicast repli-
cation occurs transparently, with the DTN stack tak-
ing care of re-starting transport connections when they

46

FAST ’08: 6th USENIX Conference on File and Storage Technologies

USENIX Association

break. In contrast, multicast distribution with rsync re-
quired end-to-end application-specific synchronization
processes, configured with aggressive retry loops at each
hop in the network, making sure to avoid re-distributing
partially transferred files multiple times, which was both
tedious and error prone.

6.3 Ongoing Deployments

We are currently working on several TierStore deploy-
ments in developing countries. One such project is
supporting community radio stations in Guinea Bissau,
a small West African country characterized by a large
number of islands and poor infrastructure. For many
of the islands’ residents, the main source of informa-
tion comes from the small radio stations that produce and
broadcast local content.

TierStore is being used to distribute recordings from
these stations throughout the country to help bridge the
communication barriers among islands. Because of the
poor infrastructure, connecting these stations is challeng-
ing, requiring solutions like intermittent long-distance
WiFi links or sneakernet approaches like carrying USB
drives on small boats, both of which can be used trans-
parently by the DTN transport layer.

The project is using an existing content management
system to manage the radio programs over a web inter-
face. This system proved to be straightforward to inte-
grate with TierStore, again because it was already de-
signed to use the filesystem to store application state,
and replicating this state was an easy way to distribute
the data. We are encouraged by early successes with the
integration and are currently in the process of preparing
a deployment for some time in the next several months.

7 Conclusions

In this paper we described TierStore, a distributed
filesystem for challenged networks in developing re-
gions. Our approach stems from three core beliefs: the
first is that dealing with intermittent connectivity is a nec-
essary part of deploying robust applications in develop-
ing regions, thus network solutions like DTN are critical.
Second, a replicated filesystem is a natural interface for
applications and can greatly reduce the burden of adapt-
ing applications to the intermittent environment. Finally,
a focus on conflict avoidance and a single-object coher-
ence model is both sufficient for many useful applica-
tions and also eases the challenge of programming. Our
initial results are encouraging, and we hope to gain addi-
tional insights through deployment experiences.

Acknowledgements

Thanks to anonymous reviewers and to our shepherd,
Margo Seltzer, for providing insightful feedback on ear-
lier versions of this paper.

Thanks also to Pauline Tweedie, the Asia Foundation,
Samnang Yuth Vireak, Bunhoen Tan, and the other oper-
ators and staff of the Cambodia CIC project for providing
us with access to their networks and help with our proto-
type deployment of TierStore.

This material is based upon work supported by the Na-
tional Science Foundation under Grant Number 0326582
and by the Defense Advanced Research Projects Agency
under Grant Number 1275918.

Availability

TierStore is freely available open-source software.
Please contact the authors to obtain a copy.

References

[1] Vishwanath Anantraman, Tarjei Mikkelsen, Reshma
Khilnani, Vikram S Kumar, Rao Machiraju, Alex Pent-
land, and Lucila Ohno-Machado. Handheld computers
for rural healthcare, experiences in a large scale imple-
mentation. In Proc. of the 2nd Development by Design
Workshop (DYDO02), 2002.

[2] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nay-
ate, Arun Venkataramani, Praveen Yalagandula, and Jian-
dan Zheng. PRACTI replication. In Proc. of the 3rd
ACM/Usenix Symposium on Networked Systems Design
and Implementation (NSDI), San Jose, CA, May 2006.

[3] D.J. Bernstein. Using maildir format.
http://cr.yp.to/proto/maildir.html.

[4] Eric Brewer, Michael Demmer, Bowei Du, Melissa Ho,
Matthew Kam, Sergiu Nedevschi, Joyojeet Pal, Rabin Pa-
tra, Sonesh Surana, and Kevin Fall. The case for technol-
ogy in developing regions. IEEE Computer, 38(6):25-38,
June 2005.

[5] Cambodia Community Information Centers.
http://www.cambodiacic.info.

[6] Courier Mail Server. http://www.courier-mta.org.

[7] Don de Savigny, Harun Kasale, Conrad Mbuya, and Gra-
ham Reid. In Focus: Fixing Health Systems. International
Research Development Centre, 2004.

[8] Giuseppe DeCandia, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Lakshman, Alex
Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s Highly Avail-
able Key-value Store. In Proc. of the 21st ACM Sympo-
sium on Operating Systems Principles (SOSP), Steven-
son, WA, 2007.

[9] Delay Tolerant Networking Reference Implementation.
http://www.dtnrg.org/wiki/Code.

USENIX Association

FAST ’08: 6th USENIX Conference on File and Storage Technologies

47

(10]

(11]

[12]

[13]
(14]

[15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

Bowei Du, Michael Demmer, and Eric Brewer. Analy-
sis of WWW Traffic in Cambodia and Ghana. In Proc.
of the 15th international conference on World Wide Web
(WWW), 2006.

Kevin Fall. A Delay-Tolerant Network Architecture
for Challenged Internets. In Proc. of the ACM Sym-
posium on Communications Architectures & Protocols
(SIGCOMM), 2003.

Armando Fox and Eric Brewer. Harvest, yield and scal-
able tolerant systems. In Proc. of the 7th Workshop on
Hot Topics in Operating Systems (HotOS), 1999.

Fuse: Filesystem in Userspace. http://fuse.sf.net.

Michael B. Greenwald, Sanjeev Khanna, Keshav Kunal,
Benjamin C. Pierce, and Alan Schmitt. Agreeing to
Agree: Conflict Resolution for Optimistically Replicated
Data. In Proc. of the International Symposium on Dis-
tributed Computing (DISC), 2006.

Richard G. Guy, Peter L. Reiher, David Ratner, Michial
Gunter, Wilkie Ma, and Gerald J. Popek. Rumor: Mobile
Data Access Through Optimistic Peer-to-Peer Replica-
tion. In Proc. of ACM International Conference on Con-
ceptual Modeling (ER) Workshop on Mobile Data Access,
pages 254-265, 1998.

James J. Kistler and M. Satyanarayanan. Disconnected
Operation in the Coda File System. In Proc. of the
13th ACM Symposium on Operating Systems Principles
(SOSP), 1991.

Dirk Kutscher, Janico Greifenberg, and Kevin Loos. Scal-
able DTN Distribution over Uni-Directional Links. In
Proc. of the SIGCOMM Workshop on Networked Systems
in Developing Regions Workshop (NSDR), August 2007.

Athicha Muthitacharoen, Benjie Chen, and David
Mazieres. A Low-Bandwidth Network File System. In
Proc. of the 18th ACM Symposium on Operating Systems
Principles (SOSP), 2001.

Sergiu Nedevschi, Joyojeet Pal, Rabin Patra, and Eric
Brewer. A Multi-disciplinary Approach to Studying Vil-
lage Internet Kiosk Initiatives: The case of Akshaya. In
Proc. of Policy Options and Models for Bridging Digital
Divides, March 2005.

OfflineIMAP.
http://software.complete.org/offlineimap.

T. W. Page, R. G. Guy, J. S. Heidemann, D. Ratner,
P. Reiher, A. Goel, G. H. Kuenning, and G. J. Popek.
Perspectives on optimistically replicated peer-to-peer fil-
ing. Software—Practice and Experience, 28(2):155-180,
February 1998.

Alex (Sandy) Pentland, Richard Fletcher, and Amir Has-
son. DakNet: Rethinking Connectivity in Developing Na-
tions. IEEE Computer, 37(1):78-83, January 2004.

Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Mar-
vin M. Theimer, and Alan J. Demers. Flexible Update
Propagation for Weakly Consistent Replication. In Proc.
of the 16th ACM Symposium on Operating Systems Prin-
ciples (SOSP), 1997.

[24]

[25]
[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]
(35]

(36]
[37]

(38]

Benjamin C. Pierce and Jerome Vouillon. What’s in Uni-
son? A Formal Specification and Reference Implementa-
tion of a File Synchronizer. Technical Report MS-CIS-
03-36, Univ. of Pennsylvania, 2004.

PmWiki. http://www.pmwiki.org/.

Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weath-
erspoon, Ben Zhao, and John Kubiatowicz. Pond: the
OceanStore Prototype. In Proc. of the 2nd USENIX Con-
ference on File and Storage Technologies (FAST), March
2003.

Russel Sandberg, David Goldberg, Steve Kleiman, Dan
Walsh, and Bob Lyon. Design and Implementation of the
Sun Network Filesystem. In Proc. of the USENIX Sum-
mer Technical Conference, Portland, OR, 1985.

Keith Scott and Scott Burleigh. RFC 5050: Bundle Pro-
tocol Specification, 2007.

Jing Su, James Scott, Pan Hui, Eben Upton, Meng How
Lim, Christophe Diot, Jon Crowcroft, Ashvin Goel, and
Eyal de Lara. Haggle: Clean-slate Networking for Mobile
Devices. Technical Report UCAM-CL-TR-680, Univer-
sity of Cambridge, Computer Laboratory, January 2007.

Lakshminarayanan Subramanian, Sonesh Surana, Rabin
Patra, Sergiu Nedevschi, Melissa Ho, Eric Brewer, and
Anmol Sheth. Rethinking Wireless in the Developing
World. In Proc. of the 5th Workshop on Hot Topics in
Networks (HotNets), November 2006.

Susan Symington, Stephen Farrell, and Howard Weiss.
Bundle Security Protocol Specification. Internet
Draft draft-irtf-dtnrg-bundle-security-04.txt,
September 2007. Work in Progress.

Douglas B. Terry, Marvin M. Theimer, Karin Petersen,
Alan J. Demers, Mike J. Spreitzer, and Carl H. Hauser.
Managing Update Conflicts in Bayou, a Weakly Con-
nected Replicated Storage System. In Proc. of the
15th ACM Symposium on Operating Systems Principles
(SOSP), 1995.

A. Tridgell and P. MacKerras. The rsync algorithm. Tech-
nical Report TR-CS-96-05, Australian National Univ.,
June 1996.

Voxiva. http://www.voxiva.com/.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,
Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad
Barb, and Abhijeet Joglekar. An Integrated Experimental
Environment for Distributed Systems and Networks. In
Proc. of the 5th USENIX Symposium on Operating Sys-
tems Design and Implementation, December 2002.

Wizzy Digital Courier. http://www.wizzy.org.za/.
WWWOFFLE: World Wide Web Offline Explorer.
http://www.gedanken.demon.co.uk/wwwoffle/.

Wenrui Zhao, Mostafa Ammar, and Ellen Zegura. Mul-
ticasting in Delay Tolerant Networks: Semantic Models
and Routing Algorithms. In Proc. of the ACM SIGCOMM
Workshop on Delay-Tolerant Networking (WDTN), 2005.

All Internet URLSs in citations are valid as of January 2008.

48

FAST ’08: 6th USENIX Conference on File and Storage Technologies

USENIX Association

