

Context-based Online Configuration Error Detection

Ding Yuan[§], Yinglian Xie[¶], Rina Panigrahy[¶], Junfeng Yang^г, Chad Verbowski[¶], Arunvijay Kumar[¶]

[¶]Microsoft Research, [§]UIUC and UCSD, [「]Columbia University,

- Configuration errors are caused by erroneous settings in the software system
- Huge impact
- Configuration error is a major root cause of today's system failures
 - 25% 50% of system outages are caused by configuration error [Gray85,Jiang09,Kandula09]
 - This percentage is likely increasing

- Existing work focused on configuration error diagnosis
 - ConfAid[Attariyan10]
 - AutoBash[Su07]
 - Finding the Needle in the Haystack[Whitaker04]
 - PeerPressure [Wang04]
 - Self history constraint [Kiciman04]

Require manual error detection

Early Detection of Configuration Error

Why we need early detection?

Configuration Error

Failure

Windows Auto-Update disabled

Attacked by malware

- Prevent error propagation
- Hints for failure diagnosis
- Especially useful in monitoring servers

Our goal: Automatically Detect Configuration Errors

First thought: report any configuration change

- 10⁴ writes/day per machine to Windows Registry
 - Majority are modifications to temporary Registry

Challenge

- First thought: report any configuration change
 - 10⁴ writes/day per machine to Windows Registry
 - Majority are modifications to temporary Registry
- Only monitor the changes to 'important' configuration?
 - Too complicated: 200K Registry entries on single machine [WangOSDI04]

Change user previledge

- Only those configurations that are *read* matter
 - Analyze read configuration *access event*

- Only those configurations that are *read* matter
 - Analyze read configuration access event
- Event sequences are repetitive and predictable
 - Externalize program's control flow
 - Report deviation from repetitive sequence

- CODE: online configuration error detection tool
 - Effective: detect configuration errors on-the-fly
 - Comprehensive: automatically monitor all the processes in OS (including kernel processes)
 - Reasonable false positive rate
 - Rich diagnostic information
 - Low overhead: < 1% CPU usage for 99% of time</p>

Motivations

- Background and Example
- Design and implementation
- Evaluation
- Related Work
- Limitations
- Conclusion

- Centralized configuration storage
 - Software, hardware and user settings
 - Key-Value pair
 - Standard interfaces for access Registry

- Centralized configuration storage
 - Software, hardware and user settings
 - Key-Value pair
 - Standard interfaces for access Registry

Auto-Update Example

Periodically checks for Windows update.

Auto-Update Example – Error case

Only when the modified Registry entry is read!

Expected: AutoUpdate = True Observed: AutoUpdate = False Modified by: explore.exe, at 2:03 PM, 4/6/2011

... ...

Analysis module

Design Overview

- Monitor the configuration access events
 - Sequences faithful to the program's control flow
 - Based on FDR [Verbowski08]
 - Negligible runtime & space overhead

Learn the frequent sequences

- Frequent Sequence Mining
 - Efficiency: streaming based method
- Sequitur algorithm [Manning97]
 - Streaming algorithm
 - Flexible pattern length

Deriving *Context -> Event* rules

Put every frequent sequence into a prefix tree

Not every candidate edge represents a rule

Report rule edge violation

- What is the expected event
 - Help to recover from the error

Diagnostic Information

- What is the expected event
 - Help to recover from the error
- The context of the violation
 - Understand the error root
 a b c e · · · b b c k
 b c b c c h

Diagnostic Information

- What is the expected event
 - Help to recover from the error
- The context of the violation
- Which process modified the Registry that caused the error? And when?
 - Write buffer
- Examine the side effect of rolling back the Registry to its old data
 - All the other rules involving the new Registry data

Evaluation methodology

- False negative rate
 - Real configuration errors
 - Error injection
- False positive rate
 - Deployed on 10 actively using desktops and a server cluster with 8 servers running
- Performance

How many real world errors do we catch?

	Error Description	machines reproduced		# of cases detected	
1	explorer-double- click	5		5	
2	ie-advanceoptions	5		5	
3	ie-search	2		2	
4	ie-smbrandbitmap	1		1	
5	ie-brandbitmap	1		1	
6	ie-title	5		5	
7	explorer-policy	5		5	
8	explorer-shortcut	5		5	
9	ie-password	4		4	Missing only
10	ie-workoffline	5		4	1 out of 42
11	outlook-emptytrash	4		4	
Total:		42		41	

Exhaustive Registry Corruption

- Exhaustively corrupted every Registry Key frequently accessed by Internet Explorer
 - Among 387 successfully corrupted Keys, CODE detected 374 (97%) of them
- CODE can effectively detect most of the Registry related configuration errors

- Deployed on 10 actively used desktop machines, 8 production servers
 - Over 30 days
 - Includes 78 software updates

Warnings/ day	Average	Max	Min
Server	0.06	0.27	0
Desktop	0.26	0.96	0

In all machines, CPU overhead is negligible

- 1% over 99% of time
- 10% 25% peak usage

- In all machines, CPU overhead is negligible
- Memory Usage between 500MB 900MB
- We can use one CODE process to monitor multiple servers with similar configuration setting

- Configuration error diagnosis
 - Key value pair based approaches [Wang04, Kiciman04]
 - Virtual Machine based [Whitaker04]
 - ConfAid[Attariyan10]
 - AutoBash[Su07]
- Sequence Analysis [Hofmeyr98,Wagner01]
 - Used in security
 - Different design
- Bug detection tools using symbolic execution
 - KLEE[OSDI08]

- Cannot detect errors during installation
- Windows only
 - Key challenge on other systems: incercepting configuration accesses
- Still non-zero false positive rate
 - Limitation in truly differentiate user's rare intentional changes from errors

- CODE: Automatic online configuration error detection tool
 - Simple observation: key configuration access events form highly repetitive sequence
 - Effective and Efficient

Thanks

Top five causes for False Positives

Name	Description	Percentage
File Association	The default program used to open different file types is changed.	24.1%
MRU List	MRU List Changes to most recently accessed files tracked by applications (e.g., explorer and IE)	
IE Cache	The meta-data for the IE Cache entities is changed.	3.8%
Session	The statistics for a user login session is updated	3.8%
Environment Variable	Environment Variable Changes	2.5%

Intentional configuration change that occurs infrequently

Impact of Software Updates

- During the month-long deployment on 10 desktops, only 5 warnings were due to software Updates (out of total 78)
 - 2 environment variable updates, one display icon update, one DLL update, one daylight saving time
- There was one most intrusive update
 - Office update from SP2 to SP3
 - 200 patches, modified 20,000 keys
 - Only 10 keys overlapped with CODE's rule, causing only 1 warning

Comparison with state-based approach

	CODE			State-based
Num/day/machine	Average	Max	Min	Average
Server	0.06	0.27	0	13.67
Desktop	0.26	0.96	0	153.83