ORDER: Object centRic
DEterministic Replay for Java

ZheMin Yang, Min Yang, Lvcai Xu, Haibo Chen and
Binyu Zang

Parallel Processing Institute, Fudan University

2011 USENIX Annual Technical Conference (USENIX ATC’11)

Debugging

Buggy Execution

Run again...

T
T2
T3
T4

Deterministic Replay

Record Mode

Checkpoint A Checkpoint B Checkpoint C

Re p I a y M O d e Replaying from

log B, C

=10

Read Checkpoint B

ted [« [o [m [T » [m

FAULT-TOLERANCE PROGRAM ANALYSIS

Primary Backup

. ANALY§I§

State-of-the-art

Mostly focus on native systems

Address-based dependency tracking

Special hardware support (FDR ISCA03, Bugnet ISCAQS5,
Lreplay ISCA'10, etc.)

Software approach: large overhead, inscalable (SMP-Reuvirt,
VEE'07, etc.)

Replay for managed runtime
Not counting data race (JaRec, SPE'04)

Not cover external dependency, large overhead (Leap,
FSE'10)

Not cover non-determinism inside managed runtime

Contribution

Key observations
False positive in garbage collection
Access locality in object level

ORDER

Record and replay at object-level
Eliminate false positive in GC
Good locality and less contention

Scalable performance (108% for JRuby, SpecJBB,
SPECJVM)

Cover more non-determinisms than before
Good bug reproducibility

Outline

Why object centric deterministic replay?
Recording object access timeline
Non-determinism mitigated
Optimizations

Evaluation Result

Java Runtime Behavior

Garbage Collection
Movement of object is quite often

Object-oriented design
Inherently good access locality

Address-based dependency
tracking

« Ordering shared memory accesses:

— Two instructions are tracked if:
1) They both access the same memory

2) At least one of them Is a write

3) They are operated in different threads

Dependencies Introduced by GC

« Write operations in GC introduce
dependencies...
— Two Instructions are tracked If:

1) They both access the same memory gf

GC operates on the same heap space as the
original application

2) At least one of them is a write ¢
Huge write operations in GC

3) They are operated in different threads Qp
GC threads are always different from Java threads

Dependencies Introduced by GC

 They DO affect the address-based dependency
tracking system
— Root cause: object movement
— So they can not be ignhored

Inconsistent

5o

Replay System

I Dependency
Tracking
Information

J

]
-
[

Free block

Allocated

block

Write
operation

False Positives by GC

GC Generated Dependencies

g:}t]x
E 8X more dependency by GC
L 20x b -
E
£ S
o
% 10x -
°
E o
= oSt
oy oy 0y 0y 0y 25 ,L
g ffmfﬁ% e
16-core q%b .;;%; %% 5 ,:% %} %,

oF

16-threads %ﬁfy

Interleaving of Object Accesses

Java programs are commonly designed around
objects

Objects accessed by a thread are very likely to be
accessed by the same thread soon

Interleaving of Object Accesses

[Case Interleaving Access Rate(%) Case Interleaving Access Rate(%)
compiler.compiler | 53997073 3678311937 1.46 compress 448683851 | 34015732971 1.31
comiler.sunflow 159104781 7589140476 2.09 crypto.aes 3725080365 | 59999629461 6.21
fft.small 6281 12283085730 [<0.01 Crypto.rsa 135072884 | 21917377595 0.62
fft.large 3447 16312951356 <().01 crypto.signverify 33185584 | 23327050394 0.14
lu.small 6500 34325013828 < (.01 derby 2444646763 | 49325408866 4.95
lu.large 3311 277302000000 | <0.01 mpegaudio 022855001 | 63774976691 1.45
sor.small 4446 24581389638 <0.01 serial 315661230 | 17466253036 1.80
| sor.large 3358 104319000000 | <0.01 xml.validation 96681920 6296521288 1.53
sparse.small 4201 29899769674 <().01 xml.transform 1409648652 | 65924269984 2.13
sparse.large 3055 104576000000 | <0.01 SPECjbb2005 TRE56923 1.88456E+15 <0.01
[monte_carlo 3503 96019240895 =<0.01 JRuby 161801036 | 1.34541E+12 0.01
——

Object level interleaving rate: All less than 7%!

Object Centric Deterministic Replay

Reveal new granularity: object
Reduction of GC dependencies
Reduced contention of synchronization
Improved locality

Outline

Why Obiject centric deterministic replay?
Recording object access timeline
Non-determinism mitigated
Optimizations

Evaluation Result

Design of ORDER

Dynamic Instrumentation in Java compilation pipeline
Handle dynamic loaded library and external code by default

Extend object header with accessing information
Obiject identifier (Ol)
Accessing thread identifier (AT)
Access counter (AC)
Object level lock
Read-write flag

Recording Object Access Timeline

Thread 1(t1)

Thread 2(t2)

I:af(entry klass.get()—this
&& name.equals.k;(fntry.name}}

J:entry.method=...

|
7

-

2:entry.method.get()

entry
(tl{i}
= @l
(t1,1)

Recording Timeline

Thread 1(t1) Thread 2(t2)
| :if(entry.klass.get()==this CTID: - timeline (entry)
&& name.equals(entry.name))
(t1,2)
3:entry.method=... h‘:aTl:ii]ir (t2,1)
AC:1 (t151)

2:entry.method. get()

Replaying timeline

Thread 1(t1) Thread 2(12)

|:if(entry.klass.get()==this

&& name.equals(entry.name))

. 3:entry.method=...

. —
v .1
2:entry.method eetf)

Outline

Why Object centric deterministic replay?
Recording object access timeline
Non-determinism mitigated
Optimizations

Evaluation Result

Handling Non-determinisms

Interleaved object accesses

L ock acqu irement } Recording object access timeline

Garbage collection } Recording interfaces between
GC/Java threads
In paper:
Signal

Program Input

Library invocation
Configuration of OS/JVM
Adaptive Compilation
Class Initialization

Outline

Why Object centric deterministic replay?
Recording object access timeline
Non-determinism mitigated
Optimizations

Evaluation Result

Opt: Unnecessary Timeline Recording

Thread-local objects
|dentified by Escape Analysis [OOPSLA99]

Assigned-once objects
Continuous write operations during initialization

After initialization, no thread will write to the fields of
these objects

|dentified by modifying the Escape Analysis

Outline

Why Object centric deterministic replay?
Recording object access timeline
Non-determinism mitigated
Optimizations

Evaluation Result

Evaluation Environments

Implemented in Apache Harmony
By modifying the compilation pipeline

Machine setup
16-core Xeon machine (1.6GHz, 32G Memory)
Linux 2.6.26

Benchmarks
SPECjvm2008, Pseudojbb2005, JRuby

Evaluation Questions

How much overhead ORDER incurs in record and
replay?
 How does it compare to the state-of-the-art?

How large is the log size?

How about the bug reproducibility?

Evaluation Results: Record Slowdown

Normalized Execution Time

16-threads

10.4 B2 1941 25

CORDER (before-opt)

[— ORDER/(after-opt)

- W ORDER(wo-disk)
ORDER (wo-timeling) -
| I Harmony(wo-adaptive)]

Lo I " T =R o | B o - B N+ = = []
1 1T T 1
1

Fan, ED’?ZO’E‘& " ;3;"0.% %%a%éf *W*’a 9“’%%@ Y4y,
-:';‘

iy - g, <Ol O, "‘ﬂffa%"*%ﬁ. i,

c?n‘,r-l,i_

“Sor, Sor

OO%’ ’fa» "*‘f&,r &‘q',i;ﬁ ﬁ‘f# f:-'r,b Wk

By
%fbr Yo, ey “ge gy e My ’%-E 'S "Ers %;;G‘f-“e 5,

About 2x slowdown, overhead most comes from
tracing timeline in memory

Record slowdown(compared to LEAP)

16-threads
2 12
= oL W ORDER |
S BN | FAP
5 B -
o
N 7
B -
s 2 -
S 0 '

Sy, Scy, Sy S0y S0y Sgy Sgy
Mark s ;?Tarﬁl I ;nn?#rl 1y :r':aﬁ:,: hr’??aml -sgﬂ&#f- %ﬂ:?am‘ -
SMay " Malyge Sy Brge Se g, iSe,
gy e

1.5x to 3x faster than LEAP
ORDER records more non-determinism

Performance Slowdown

Scalability(Record Phase)

(from 1 thread to 16 threads)

10x%
gx #thread=16 i
I s #hread=8

8X - mman #thread=4 -
¥ - #thread=2 .
I #hread=1

Bx I -
X .
4x -
3x .
2% .

1% -
!

+
%@r%;fr %’-‘i' %;;{_ '?? "ﬁ" fo’q"‘q. 4 c‘r‘q. &D%r,i. ’aﬂ% %rg. o’é‘q. Dhr @’ofo;gf?ﬂ %f %3%% Hbf"é‘%?:; :5%_# 6‘4"\"

Almost scalable

Performance Slowdown

Replay Slowdown

(from 1 thread to 16 threads)

116 183 &1
50x
#thread=186
s ithread=8
40X - men #thread=4
#thread=2
. ithread=1
30x
20%
10%
0

Be
%@r o, %f&q&;%’%&p ok, %""r&, o ”"% ”’% "on,, o q”""'fo K %fa %5’9 i

%
Ui Sy Jg. &ﬂ‘r r - % g q.-;,‘, Teg -"?# 0%
%”bﬁb oy, "y e Mgy g Vo Omy, ‘@@E o S a J@% ar

Log size

Case Log Size | Log Size | Case Log Size Log Size
(imeline) | (others) (timeline) (others)
compiler.compiler 88(m/h) 35(m/h) | scimark.monte-carlo | 0.013(m/h) | 0.22(m/h)
compiler.sunflow 61(m/h) 58(m/h) | compress 4(m/h) 44(m/h)
scimark.fft.small 0.60(m/h) | 10(m/h) | crypto.aes 1.4(m/h) 9(m/h)
scimark. fft.large 0.47(m/h) | 7(m/h) crypto.rsa 26(m/h) 6(m/h)
scimark.lu.small 0.37(m/h) | 6(m/h) crypto.signverify 10(m/h) 8(m/h)
scimark.lu.large 0.35(m/h) | 5(m/h) mpegaudio 511{m/h) 2(m/h)
scimark.sor.small 2(m/h) 40(m/h) | serial 1553(m/h) | 121(m/h)
scimark.sor.large 0.68(m/h) | 11{m/h) | xml.validation 632(m/h) 31(m/h)
scimark.sparse.small | 2(m/h) 36(m/h) | Pseudojbb 1085(m/h) | 5350(m/h)
scimark.sparse.large | 0.56(m/h) | 10(m/h) | JRuby 0.8(m/h) 1 70(m/h)

Bug Reproducibility

Bug ID Category | Bug description
JRuby-931 atomic Non-atomic traversing
violation | of container triggers
ConcurrentModification-
Exception.
JRuby-1382 | atomic Non-atomic read from
violation | memory cache causes
system crash.
JRuby-2483 | atomic Concurrent bug caused by
violation | using thread unsafe library
code.
JRuby-879 | order List threads before thread 1s
JRuby-2380 | violation | registered causes
non-deterministic result.
JRuby-2545 | dead Lock on the same object

lock

twice causes deadlock.

Real-world concurrent bugs
reproduced by ORDER. Each of
them comes from open source
communities and causes real-world
buggy execution.

Bug reproducibility(JRuby-2483)

Concurrent bug caused by thread unsafe library

HashMap

Non-determinism in Library is also important

Some discussion before:

HashMap. get () can cause an infinite loop!

Jul 25th, 2005
by plightbo.

Yes, it is true. HashMap. get() can cause an infinite loop. Evervone I’ ve talked to didn” 1t
believe it either, but vet there it is right in front of myv very eves. Now, before anvone jumps up
and shouts that HashMap isn’ t synchronized, I want to make it clear that I know that. In fact, here
is the paragraph from the JavaDocs:

Note that this implementation is not synchronized. If multiple threads access this map
concurrently, and at least one of the threads modifies the map structurally, it must be
synchronized externally. (A structural modification is any operation that adds or deletes
one or more mappings; merely changing the value associated with a kev that an instance
already contains is not a structural modification.) This is typically accomplished by
synchronizing on some object that naturally encapsulates the map.

Conclusion

Java Deterministic Replay Is unique
Two observations on Java Runtime Behavior

Object centric deterministic replay
Reveal new granularity: Object
Cover more non-determinisms than before
Record timeline

Performance
About 108% performance slowdown, and scalable.

Thanks

ORDER Questions?

Object-centRic
Deterministic Replay for
Java

Parallel Processing Institute
http://ppi.fudan.edu.cn

Backup Slides

Comparison with Leap

LEAP uses static instrumentation

Cannot reproduce concurrent bugs caused by external
code

such as libraries or class files dynamically loaded during
runtime.

LEAP does not distinguish between instances of
the same type

may lead to large performance overhead when a class
IS massively instantiated

Dependency-based Deterministic Replay:
JRuby

Whether 1->3 is recorded depends on:
Whether 1 and 3 access a shared memory
Depends on the record granularity

Correct
Thread 1 Threa Thread 1 Thread 2
1:if(entry.klass.get()==this && l:1f(entry klass.get()==this &&

name.equals(entry.name)) name.cquals(entry.name))
true | / %

true
2:entry.method.get() f 3 1E“ti{ﬂwth0d=...

/
B " L ¥
3:entry.metho{ 2:entry.method.get()

In dependency based replay, 2->3 or 3->2 is normally recorded
Shared-memory(entry.method) is accessed in both 2 and 3
One of them(instruction 3) is write

Opt: Unnecessary Timeline Recording

Use soot to annotate such objects offline
Reduce record/replay overhead as well as log size

Static analysis is imprecise, so further log reduction is
necessary

Use a log compressor to eliminate the remaining
thread local/assigned once objects after recording

— Used to reduce replay overhead as well as log size

Handling Other Non-Det (1/2)

Signal

Usually wrapped to walit, notify, and interrupt operations
for thread

Records return values and status of the pending queue

Program Input
Log the content of input

Library invocation

E.g., System.getCurrentTimeMillis(),
Random/SecureRandom classes

Logs return values of these methods

Handling Other Non-Det (2/2)

Configuration of OS/JVM
records the configuration of OS/JVM

Class Initialization
Records initialization thread identifier
Forces same thread initialize same class in replay

Adaptive Compilation

Not supported yet, can be done similarly as Ogata et al.
OOPLSA2006

