
SiLo: A Similarity-Locality based Near-
Exact Deduplication Scheme with

Low RAM Overhead and High
Throughput

Wen Xia† Hong Jiang‡ Dan Feng† Yu Hua†,‡

† Huazhong University of Science and Technology
‡ University of Nebraska-Lincoln

2

Data Deduplication

Why deduplication ?

 Reduces the storage space overheads.

 Minimizes the network transmission of
redundant data.

Deduplication Technique.

 Data fingerprints: MD5, SHA-1, SHA-256.

 Remove duplicate data by checking its
fingerprints.

Deduplication granularity.

 File-level.

 Chunk-level.

• Fixed-length Chunking; Content Defined Chunking.

Deduplication Challenges

Files Chunks Fingerprints Store
Chunking Hashing Indexing

3

The Scalability of

Deduplication Indexing

Deduplicate 800

TB unique data.

SHA-1 signature.

Avg. 8KB Chunk.

2TB Fingerprints

are generated .

Global indexing.

Disk bottleneck.

Locality-based Approaches (1)

4

RAM

DISK

A B C A
A B C

F G H

Input data stream

Locality Cache

L M N

Hit

Global index on the disk

F G

Hit

A B C

Miss Hit

A G N Q

Input data stream

Locality based approaches (2)

 DDFS, Sparse Indexing, ChunkStash.

Exploit locality of backup streams.

 It maximizes the RAM utilization and reduces

frequent accesses to on-disk index by retaining

access locality in the locality cache.

Limitations.

 Work poorly when backup stream lacks locality.

 High RAM consumed.

5

Similarity-based Approaches (1)

6

A B C D

E F G H

File 1

File 2

DISK

A B C J

Backup File 3

RAM

Similarity Index

F C

extract the similarity

characteristics of File 3

Lookup C in the

Similarity Index

Deduplicate File 3 with

File 1
Achieve a single on-disk index access

for chunk lookup per file thus avoid

global index on the disk.

7

Limitation of These Approaches (2)

Exploit similarity of backup streams.

 Avoid global indexing and achieve a single disk read.

Minimize the RAM overhead for indexing fingerprints.

Limitation.

 Degradation of Deduplication efficiency.

1 2
1 2

1 2

| |
Pr[min(()) min(())]

| |

S S
H S H S

S S


 



Theorem 1: Consider two files S1 and S2, Let min(H(S))

denote the similarity characteristic of file S. Then
similarity degree between the two files is quantified by
the probability that min(H(S1))= min(H(S2)), which is

dependent on the percentage of data common to both files:

8

Evaluation of Similarity Approach

Similarity based Deduplication efficiency is dependent on the similarity degree of data stream

9

Observation

 The deduplication of small files and large files.

Small files

(≤ 64KB)

Large files

(≥ 2 MB)

Percentage of
total file number

≥ 80% ≤ 20%

Percentage of
total space

≤ 20% ≥ 80%

Grouping many highly

correlated small files

into a segment to

minimize dedupe

overheads

Dividing the large

files into many small

segments to expose

more similarity

characteristics

10

Intuition

 The combination of similarity and locality.

(a) Similarity approach

Similar Similar

Existing data stream

Input data stream

Locality Enhancement

Potential duplicate

11

System Architecture Overview

 A disk-inline backup storage system.

Chunking

User Interface

File Agent Job Agent Deduplication Metadata Agent

Storage Agent

Contain Store
……

Job MetaData Cache HashTable Block Store

File Deamon

Storage Server

MDS

Storage Agent

Contain Store

Storage Agent

Contain Store

Backup Server Deduplication Server

Disk Disk Disk ……

Network

Deduplication Server

is to store and look up

all fingerprints of files

and chunks.

Backup Server is the

manager of the backup

system that directs all File

Agents and Storage Servers.

Storage Server is the

repository for backed-

up data.

File Deamon is a deamon

program providing a

functional interface in

users‘ computers.

12

Deduplication Server

 Deduplication Server.

 It is most likely the performance bottleneck.

Block Block ……

Block Block ……

Block Block ……

Seg Key

……

……

……

DISK

 RAM

SHTable
Read Cache

Write Buffer

……

……

Block

Block

RepChunk ID

Block ID

……

……

Chunk ID

……

LHTable

…

…

Segment

……

Similarity

Hash Table

Locality

Cache

The similarity

unit, (sequence

of chunks)

The locality unit,

(sequence of

segments)

13

The Similarity Algorithm

 Structuring data from backup streams into segments
according to the following three principles.

 P1. Correlated small files in a backup stream are to be grouped into
a segment.

 P2. A large file in a backup stream is divided into several
independent segments.

 P3. All segments are of approximately the same size (e.g., 2MB).

……

Small File1

Segment1 Metadata Block

Metadata

……

Segment3

Segment2

Segment1

Block

Metadata

……

Segment3

Segment2

Segment1

Small File2

Small File3 ……

Segment2 Metadata

Part 1 of large file L1

Segment3 Metadata

Part 2 of large file L1

Reduce

RAM usage

Eliminate

more data

Block Block

14

The Locality Algorithm

 The locality algorithm groups several contiguous
segments into a block and preserves their
locality-layout on the disk.

 It maximizes the RAM utilization and reduces frequent

accesses to on-disk index by retaining access locality

in the locality cache.

 By exploiting the inherent locality in backup streams,

the block-based SiLo locality algorithm can eliminate

more duplicate data.

S11 S12 S13 S14 ….. S1k

S21 S22 S23 S24 ….. S2k

Segment Similar Block

Similar

B1

B2

S14

S24

Duplicate

more data

15

SiLo Workflow

 The locality algorithm helps detect more potentially duplicate
chunks that are missed by the similarity algorithm.

(a) Input backup stream

(big file)
(Small files)

(big file)

(b) Segmenting large files and grouping small files

(c) Similarity detection

 (block)

 (segment)

(d) Locality-enhanced similartity detection by chunks filtering

N N NNN

(potentially duplicate) (potentially duplicate)

 (segment)

(dup chunks) (new chunks) (dup chunks)

similar similar

Input segments

Segments in cache or on disk

16

RAM Consideration

 RAM usage of SiLo:

 The locality cache? A small portion.

 The similarity hash table? The main portion.

 RAM usage analysis:

 SiLo requires only 30 MB for deduplicating 1TB unique data.

 Extreme Binning requires 300 MB for deduplicating 1TB unique

data. (Avg. file size of 200KB).

 Sparse Indexing uses 170 MB of RAM space for a TB-scale

deduplication system, whereas the Sparse Indexing paper

estimates that DDFS would require 360 MB RAM to maintain a

partial index depending on locality in backup streams.

17

Performance Evaluation

 Interplay of similarity and locality algorithms.

 Quantitative analysis of our similarity and locality

algorithms.

 Comparison of state-of-the-art work.

 Locality approach: ChunkStash-HDD.

 Similarity approach: Extreme Binning.

 Four datasets.

Feature One-set Inc-set Linux-set Full-set

Locality Weak Weak Strong Strong

Similarity Weak Strong Strong Strong

Small files

……

Small File1

Segment1 Metadata Block

Metadata

……

Segment3

Segment2

Segment1

Block

Metadata

……

Segment3

Segment2

Segment1

Small File2

Small File3 ……

Segment2 Metadata

Part 1 of large file L1

Segment3 Metadata

Part 2 of large file L1

18

Interplay of Similarity and Locality

Segment size

Segment size

Locality

unit

Similarity

unit

 Percentage of duplicate data
eliminated and Time overhead
of SiLo deduplication as a
function of block size and
segment size.

 The larger the block size is, the

more locality can be retained.

 The smaller the segment size is,

the more similarity can be

exposed.

19

Locality Enhancement Evaluation

The full Exploitation of locality jointly with similarity can
remove almost all of the redundant data missed by the
similarity detection.

Duplicate data removed by

similarity-only approach.

Duplicate data removed by

Locality-enhanced approach.

Duplicate data missed by our

SiLo approach.

20

Duplicate Elimination

SiLo achieves near-exact duplicate elimination
under all workloads.

SiLo with segment size of 4MB

The similarity

approach:

Extreme

Binning

Locality approach: ChunkStash-HDD

21

RAM Usage for Indexing

SiLo consumes a RAM capacity that is only 1/41∼1/60 and
1/3∼1/90 respectively of that consumed by ChunkStash
and Extreme Binning.

Extreme Binning

performs poorly

on the Linux-set.

22

Deduplication Throughput

Our evaluations on deduplication throughput suggest that
SiLo outperforms ChunkStash by a factor of about 3 and
Extreme Binning by a factor of about 1.5.

23

Summary

 SiLo, a near-exact deduplication system.

 effectively and complementarily exploits similarity and locality

 achieve high duplicate elimination and throughput at extremely low RAM

overheads.

 Combination of similarity and locality.

 SiLo proposes a new similarity algorithm that groups many small

strongly correlated files into a segment and segments a large file to

better expose and exploit their similarity characteristics.

 SiLo proposes an effective locality approach that captures more similar

and duplicate data missed by the probabilistic similarity detection and

also improve the deduplication throughput.

 Our experimental evaluation of SiLo.

 Quantitative analysis and demonstration of our similarity and locality

algorithms.

 SiLo system consistently and significantly outperforms two existing

state-of-the-art systems.

www.themegallery.com

Questions?

Acknowledgements

973 Program of China under Grant No. 2011CB302301,

(“863” Program) of China under Grant No.2009AA01A401 and 2009AA01A402,

NSFC No.61025008,60933002,60873028,60703046,

Changjiang innovative group of Education of China No. IRT0725,

Fundamental Research Funds for the central universities, HUST, under grant 2010MS043,

The US NSF under Grants NSF-IIS-0916859, NSF-CCF-0937993 and NSF-CNS-1016609.

