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Internet applications are increasingly 
geo-distributed 
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•  Large web apps no longer at a single site 

•  They are geo-distributed 
Geo-distributed: distributed over multiple sites 

(site=data center) 
•  Reasons 

– Scalability 
– Reliability 
– Access locality: data close to its user 



Geo-distributed storage systems 
needs to support migration 

•  Best site for data may change 
–  Users relocate 
–  Workload changes 
–  New sites, new network links 

•  Migration mechanism 
–  Online: data is available and consistent during migration 
–  Support for canceling migration or changing target 
–  Integrated with caching and replication 
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Sample use case 

Redmond 

Cambridge UK 

Silicon Valley 

China 

cache 



Existing approaches: locking, logging 
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old site new site 

Writes are blocked during migration 
Migration may take a long time!!! 

•  Locking [Ceph OSDI’06] [GFS SOSP’03] [Farsite OSDI’06] 



Existing approaches: locking, logging 
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old site new site 

write log 

Read/Write 

•  Locking [Ceph OSDI’06] [GFS SOSP’03] [Farsite OSDI’06] 

– Disallow writes during migration 
•  Logging [AFS TOCS’88] [Farsite OSDI’06] 



Existing approaches: locking, logging 

7 

•  Locking [Ceph OSDI’06] [GFS SOSP’03] [Farsite OSDI’06] 

– Disallow writes during migration 
•  Logging [AFS TOCS’88] [Farsite OSDI’06] 

– Disallow writes while transferring log 
– Reads and writes go to old site during migration 

We want reads and writes on new site, otherwise 
•  Wastes bandwidth 
•  Delays migration benefit  

•  Both require additional complexity to 
support caching and replication consistently 
– E.g., cache coherence protocol 
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New approach:  
distributed data overlay 

•  Data is accessible at all times 
•  Migration benefit is realized quickly 

•  Writes go to new site instantly 
•  Reads are served at new site as soon as possible 
•  Intuition: read first at new site 
                 and redirect if data not there 

•  Seamlessly support caching and replication 
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Overlay: a simple abstraction 

Overlays 

final image 
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Overlay stack structure for an object 

Data segments 
 Redmond 
 Silicon Valley 
 Cambridge UK 

overlays 
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Semantics of overlay operations:  
Create, Read, Write, Migrate 
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Overlay operation: CREATE 
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READ 

Overlay operation: READ 
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Overlay operation: WRITE 

WRITE 



15 

Overlay operation: MIGRATE 
from      to     

WRITE 
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Using overlays 

Redmond 

Cambridge UK 

Silicon Valley Overlay stack 

cache 

China 

cache 
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Overlay implementation 
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Overlay internals 

Server side Client side 
Cache the overlay  

stack structure 
At each overlay, maintain local pointers  

to the above and below overlays 

Missing  
from  

cache 

Parent 
pointers 

Children 
pointers 
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Local pointers are used to redirect R/W 

WRITE 
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Challenges of  
concurrent overlay operations  
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Update pointers in CREATE operation 

Update order: create pointers at the new overlay before 
pointers at its parent, before pointer at its child 

Challenges: pointers are at different machines.  
              Do we need 2PC?          Answer: NO 

Pointers need to be updated 
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Nomad’s architecture 

Storage server 

Storage server 

Storage server Directory service 

Object ID → (site, local ID) of  the root overlay 

Client library 
(Object storage interface) 

Application Nomad FS 
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Evaluation of overlays 
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Comparison with locking, logging 
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•  Object of 50 MB is initially at Redmond 
•  Client at Silicon Valley issues 1 Read and 1 Write every 200 msec 
•  Migrate object from Redmond to Silicon Valley after 50 sec 

  Read, Locking  
  Write, Locking 
  Read, Logging 
  Write, Logging 

   Read, Nomad 
  Write, Nomad 

Migrate from Redmond 
to Silicon Valley 
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Nomad provides flexible migration 
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•  User is initially at UK  
•  She has 50MB of data 
•  Her working set is 2MB 

•  She moves to Boston (MA) 
•  A cache is created for her working set at MA   
•  Her data is migrated to MA 

•  She moves to Redmond (WA) 
•  Her cache is migrated from MA to WA   
•  Her data is still migrated from UK to MA 

•  She moves to Mountain View (CA)  
•  Her cache is migrated from WA to CA   
•  Her data is still migrated from UK to MA 

Read 
Write 
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Policies to drive migration 



Migration policies 
•  Goal 

–   Study when and what to migrate based on cost and 
predicted benefits 

–  Web mail application 

•  Suppose user travels and closest site changes. 
When should we trigger migration of her data? 

•  Two simple policies 
– Count policy: # of accesses at new site is >Tcount 
–  Time policy: user stays at new site for longer than Ttime 
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Evaluation of migration policies 

•  Based on trace of Hotmail usage 
– 50,000 random users (Aug-Sept 2009) 
– Each user: login time, IP address 
– Convert IP addresses to locations 
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Hotmail users’ movement 

•  User changes sites if she moves more 
than t miles  

•  Data center granularity 
– Large-DC: t = 2000 miles 
– Small-DC: t = 450 miles 
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Count policy vs time policy 

•  Count policy is better than time policy 
•  At a given time, migrating data for users with more remote accesses 

yields more benefits 

Percentage of users migrated (function of thresholds) 
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Count, Large-DC 
Count, Small-DC 
Time, Large-DC 
Time, Small-DC 
Migration cost 

Higher Tcount   
higher benefit 

Smaller Tcount    
smaller benefit 
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Summary 

•  Overlays: mechanism for online migration, 
caching, and replication 
– More flexible and efficient than prior methods 

•  Nomad: object storage system with 
overlays 

•  Study policies to drive migration for 
Hotmail application 


