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Internet applications are increasingly
geo-distributed

* Large web apps no longer at a single site
~d Hotmail €35 Google
* They are geo-distributed

Geo-distributed.: distributed over multiple sites
(site=data center)

* Reasons
— Scalability
— Reliability
— Access locality: data close to its user



Geo-distributed storage systems
needs to support migration

» Best site for data may change
— Users relocate
— Workload changes
— New sites, new network links

* Migration mechanism
— Online: data is available and consistent during migration
— Support for canceling migration or changing target
— Integrated with caching and replication



Sample use case
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Existing approaches: locking, logging

e Locki NJ [Ceph OSDI06] [GFS SOSP'03] [Farsite OSDI'06]

old site new site

Writes are blocked during migration
Migration may take a long time!!!



Existing approaches: locking, logging
e Locki NJ [Ceph OSDI06] [GFS SOSP'03] [Farsite OSDI'06]

— Disallow writes during migration

o Logging [AFS TOCS'88] [Farsite OSDI'06]
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Existing approaches: locking, logging

e Locki NJ [Ceph OSDI06] [GFS SOSP'03] [Farsite OSDI'06]

— Disallow writes during migration

o Logging [AFS TOCS'88] [Farsite OSDI'06]
— Disallow writes while transferring log

— Reads and writes go to old site during migration
We want reads and writes on new site, otherwise

» Wastes bandwidth
« Delays migration benefit
* Both require additional complexity to
support caching and replication consistently

— E.g., cache coherence protocol



New approach:
distributed data overlay

» Data is accessible at all times
» Migration benefit is realized quickly
* Writes go to new site instantly
* Reads are served at new site as soon as possible
* Intuition: read first at new site
and redirect if data not there
« Seamlessly support caching and replication



Overlay: a simple abstraction
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Overlay stack structure for an object

overlays
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Semantics of overlay operations:
Create, Read, Write, Migrate
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Overlay operation: CREATE




Overlay operation: READ
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Overlay operation: WRITE
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Overlay operation: MIGRATE
from 8 to L

(WRITE)
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Using overlays
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Overlay implementation
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Overlay internals

Missing
from
cache l
Client side

Cache the overlay
stack structure
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Server side

At each overlay, maintain local pointers
to the above and below overlays
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Local pointers are used to redirect R/W
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Challenges of
concurrent overlay operations
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Update pointers in CREATE operation

Pointers need to be updated
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Challenges: pointers are at different machines.
Do we need 2PC? Answer: NO
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Update order: create pointers at the new overlay before
pointers at its parent, before pointer at its child
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Nomad’s architecture

Directory service

Object ID — (site, local ID) of the root overlay
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Nomad FS
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Client library

(Object storage interface)

Storage server
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Evaluation of overlays
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Comparison with locking, logging
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Object of 50 MB is initially at Redmond
Client at Silicon Valley issues 1 Read and 1 Write every 200 msec
Migrate object from Redmond to Silicon Valley after 50 sec
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Nomad provides flexible migration
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* She moves to Mountain View (CA)
» Her cache is migrated from WA to CA
* Her data is still migrated from UK to MA
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Policies to drive migration
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Migration policies

 Goal

— Study when and what to migrate based on cost and
predicted benefits

— Web mail application

« Suppose user travels and closest site changes.
When should we trigger migration of her data”
 Two simple policies
— Count policy: # of accesses at new site is >T_,
— Time policy: user stays at new site for longer than T

time
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Evaluation of migration policies

» Based on trace of Hotmail usage
— 50,000 random users (Aug-Sept 2009)
— Each user: login time, |P address
— Convert IP addresses to locations
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Hotmail users’ movement

» User changes sites if she moves more
than t miles

« Data center granularity
— Large-DC: t = 2000 miles
— Small-DC: t = 450 miles
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Remote accesses saved

per migrated user

Count policy vs time policy
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Percentage of users migrated (function of thresholds)

Count policy is better than time policy

At a given time, migrating data for users with more remote accesses
yields more benefits
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Summary

* Overlays: mechanism for online migration,
caching, and replication

— More flexible and efficient than prior methods

 Nomad: object storage system with
overlays

« Study policies to drive migration for

Hotmail application m
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