
1

 Nomad: online migration for
geo-distributed storage systems

Nguyen Tran‡, Marcos K. Aguilera†, and
Mahesh Balakrishnan†

† Microsoft Research Silicon Valley
‡ New York University

Internet applications are increasingly
geo-distributed

2

•  Large web apps no longer at a single site

•  They are geo-distributed
Geo-distributed: distributed over multiple sites

(site=data center)
•  Reasons

– Scalability
– Reliability
– Access locality: data close to its user

Geo-distributed storage systems
needs to support migration

•  Best site for data may change
–  Users relocate
–  Workload changes
–  New sites, new network links

•  Migration mechanism
–  Online: data is available and consistent during migration
–  Support for canceling migration or changing target
–  Integrated with caching and replication

3

4

Sample use case

Redmond

Cambridge UK

Silicon Valley

China

cache

Existing approaches: locking, logging

5

old site new site

Writes are blocked during migration
Migration may take a long time!!!

•  Locking [Ceph OSDI’06] [GFS SOSP’03] [Farsite OSDI’06]

Existing approaches: locking, logging

6

old site new site

write log

Read/Write

•  Locking [Ceph OSDI’06] [GFS SOSP’03] [Farsite OSDI’06]

– Disallow writes during migration
•  Logging [AFS TOCS’88] [Farsite OSDI’06]

Existing approaches: locking, logging

7

•  Locking [Ceph OSDI’06] [GFS SOSP’03] [Farsite OSDI’06]

– Disallow writes during migration
•  Logging [AFS TOCS’88] [Farsite OSDI’06]

– Disallow writes while transferring log
– Reads and writes go to old site during migration

We want reads and writes on new site, otherwise
•  Wastes bandwidth
•  Delays migration benefit

•  Both require additional complexity to
support caching and replication consistently
– E.g., cache coherence protocol

8

New approach:
distributed data overlay

•  Data is accessible at all times
•  Migration benefit is realized quickly

•  Writes go to new site instantly
•  Reads are served at new site as soon as possible
•  Intuition: read first at new site
 and redirect if data not there

•  Seamlessly support caching and replication

9

Overlay: a simple abstraction

Overlays

final image

10

Overlay stack structure for an object

Data segments
 Redmond
 Silicon Valley
 Cambridge UK

overlays

11

Semantics of overlay operations:
Create, Read, Write, Migrate

12

Overlay operation: CREATE

13

READ

Overlay operation: READ

14

Overlay operation: WRITE

WRITE

15

Overlay operation: MIGRATE
from to

WRITE

16

Using overlays

Redmond

Cambridge UK

Silicon Valley Overlay stack

cache

China

cache

17

Overlay implementation

18

Overlay internals

Server side Client side
Cache the overlay

stack structure
At each overlay, maintain local pointers

to the above and below overlays

Missing
from

cache

Parent
pointers

Children
pointers

19

Local pointers are used to redirect R/W

WRITE

20

Challenges of
concurrent overlay operations

21

Update pointers in CREATE operation

Update order: create pointers at the new overlay before
pointers at its parent, before pointer at its child

Challenges: pointers are at different machines.
 Do we need 2PC? Answer: NO

Pointers need to be updated

22

Nomad’s architecture

Storage server

Storage server

Storage server Directory service

Object ID → (site, local ID) of the root overlay

Client library
(Object storage interface)

Application Nomad FS

23

Evaluation of overlays

24

Comparison with locking, logging

Time [sec]

La
te

nc
y

[m
ill

is
ec

]

•  Object of 50 MB is initially at Redmond
•  Client at Silicon Valley issues 1 Read and 1 Write every 200 msec
•  Migrate object from Redmond to Silicon Valley after 50 sec

 Read, Locking
 Write, Locking
 Read, Logging
 Write, Logging

 Read, Nomad
 Write, Nomad

Migrate from Redmond
to Silicon Valley

25

Nomad provides flexible migration

Time [sec]

La
te

nc
y

[m
ill

is
ec

]

•  User is initially at UK
•  She has 50MB of data
•  Her working set is 2MB

•  She moves to Boston (MA)
•  A cache is created for her working set at MA
•  Her data is migrated to MA

•  She moves to Redmond (WA)
•  Her cache is migrated from MA to WA
•  Her data is still migrated from UK to MA

•  She moves to Mountain View (CA)
•  Her cache is migrated from WA to CA
•  Her data is still migrated from UK to MA

Read
Write

26

Policies to drive migration

Migration policies
•  Goal

–  Study when and what to migrate based on cost and
predicted benefits

–  Web mail application

•  Suppose user travels and closest site changes.
When should we trigger migration of her data?

•  Two simple policies
– Count policy: # of accesses at new site is >Tcount
–  Time policy: user stays at new site for longer than Ttime

27

Evaluation of migration policies

•  Based on trace of Hotmail usage
– 50,000 random users (Aug-Sept 2009)
– Each user: login time, IP address
– Convert IP addresses to locations

28

Hotmail users’ movement

•  User changes sites if she moves more
than t miles

•  Data center granularity
– Large-DC: t = 2000 miles
– Small-DC: t = 450 miles

29

30

Count policy vs time policy

•  Count policy is better than time policy
•  At a given time, migrating data for users with more remote accesses

yields more benefits

Percentage of users migrated (function of thresholds)

R
em

ot
e

ac
ce

ss
es

 s
av

ed

pe
r m

ig
ra

te
d

us
er

Count, Large-DC
Count, Small-DC
Time, Large-DC
Time, Small-DC
Migration cost

Higher Tcount
higher benefit

Smaller Tcount
smaller benefit

31

Summary

•  Overlays: mechanism for online migration,
caching, and replication
– More flexible and efficient than prior methods

•  Nomad: object storage system with
overlays

•  Study policies to drive migration for
Hotmail application

