- Nomad: online migration for
geo-distributed storage systems

Nguyen Tran+, Marcos K. Aguilerat, and
Mahesh Balakrishnant

T Microsoft Research Silicon Valley
+New York University

m

Internet applications are increasingly
geo-distributed

* Large web apps no longer at a single site
~d Hotmail €35 Google
* They are geo-distributed

Geo-distributed.: distributed over multiple sites
(site=data center)

* Reasons
— Scalability
— Reliability
— Access locality: data close to its user

Geo-distributed storage systems
needs to support migration

» Best site for data may change
— Users relocate
— Workload changes
— New sites, new network links

* Migration mechanism
— Online: data is available and consistent during migration
— Support for canceling migration or changing target
— Integrated with caching and replication

Sample use case

L 5u6 J ’_(' h
== ’

Cambridge UK

&
S
&

Redmond

Silicon Valley 4

Existing approaches: locking, logging

e Locki NJ [Ceph OSDI06] [GFS SOSP'03] [Farsite OSDI'06]

old site new site

Writes are blocked during migration
Migration may take a long time!!!

Existing approaches: locking, logging
e Locki NJ [Ceph OSDI06] [GFS SOSP'03] [Farsite OSDI'06]

— Disallow writes during migration

o Logging [AFS TOCS'88] [Farsite OSDI'06]

Read/Write

(@)

*

write log —— rﬂj

oId S|te new site

Existing approaches: locking, logging

e Locki NJ [Ceph OSDI06] [GFS SOSP'03] [Farsite OSDI'06]

— Disallow writes during migration

o Logging [AFS TOCS'88] [Farsite OSDI'06]
— Disallow writes while transferring log

— Reads and writes go to old site during migration
We want reads and writes on new site, otherwise

» Wastes bandwidth
« Delays migration benefit
* Both require additional complexity to
support caching and replication consistently

— E.g., cache coherence protocol

New approach:
distributed data overlay

» Data is accessible at all times
» Migration benefit is realized quickly
* Writes go to new site instantly
* Reads are served at new site as soon as possible
* Intuition: read first at new site
and redirect if data not there
« Seamlessly support caching and replication

Overlay: a simple abstraction

[

ovoyns
/@

final image »/‘/

Overlay stack structure for an object

overlays

§ '1

Redmond
Data segments
L Silicon Valley

B Cambridge UK

10

Semantics of overlay operations:
Create, Read, Write, Migrate

11

Overlay operation: CREATE

Overlay operation: READ

(READ |

Overlay operation: WRITE

(WRITE |

14

Overlay operation: MIGRATE
from 8 to L

(WRITE)

15

Using overlays

Cambridge UK

&
S
&

Silicon Valley Overlay stack

Overlay implementation

17

Overlay internals

Missing
from
cache l
Client side

Cache the overlay
stack structure

Parent Children
pointers

o / i
— V——l

R ———— |

Server side

At each overlay, maintain local pointers
to the above and below overlays

18

Local pointers are used to redirect R/W

1T,y

|

(WRITE

19

Challenges of
concurrent overlay operations

20

Update pointers in CREATE operation

Pointers need to be updated

| N\ 1=

! | 1 =

:

Challenges: pointers are at different machines.
Do we need 2PC? Answer: NO

4

Update order: create pointers at the new overlay before
pointers at its parent, before pointer at its child

21

Nomad’s architecture

Directory service

Object ID — (site, local ID) of the root overlay

éa)

Nomad FS

\. W,

Client library

(Object storage interface)

Storage server

22

Evaluation of overlays

23

Comparison with locking, logging

80 - ' ' === Read, Locking
70 + i Write, Locking
. Migrate from Redmond === Read, Logging
= 507 . = Read, Nomad
E 40 | 1 Write, Nomad
%)
c 30 i 7
9 i :
CU 20 !_l .]
— i
10 .~ :
,li--o—-o--,-o--o---c'f'"‘“'o---o,-o---o'—"-;o--o"‘ R >

S

0 50 100 150 200 250 300 350 400
Time [seC]

Object of 50 MB is initially at Redmond
Client at Silicon Valley issues 1 Read and 1 Write every 200 msec
Migrate object from Redmond to Silicon Valley after 50 sec

24

Nomad provides flexible migration

300

250

Latency [millisec]
= % S
) O)

(9
o
T

0

 She moves to
* A cache is cre;
* Her data is mif

60 120

 She moves to
 Her cache is n
* Her data is stil

?x Read —+—
Write Wenenns

WA 4 ca

180 240 300 360 420

* She moves to Mountain View (CA)
» Her cache is migrated from WA to CA
* Her data is still migrated from UK to MA

25

Policies to drive migration

26

Migration policies

 Goal

— Study when and what to migrate based on cost and
predicted benefits

— Web mail application

« Suppose user travels and closest site changes.
When should we trigger migration of her data”
 Two simple policies
— Count policy: # of accesses at new site is >T_,
— Time policy: user stays at new site for longer than T

time

27

Evaluation of migration policies

» Based on trace of Hotmail usage
— 50,000 random users (Aug-Sept 2009)
— Each user: login time, |P address
— Convert IP addresses to locations

28

Hotmail users’ movement

» User changes sites if she moves more
than t miles

« Data center granularity
— Large-DC: t = 2000 miles
— Small-DC: t = 450 miles

29

Remote accesses saved

per migrated user

Count policy vs time policy

430 ' - Cbunt, L'arge-'DC]
400 - Count, Small-DC i
Higher T Time, Large-DC o
_ 9 count Time, Small-DC %
350 | higher benefit Migration cost - - - - - i
300 1
Smaller T g
250 - _ i
smaller benefit
200 ;-_ i i
150 | e |
- O
100 F---------"---"-----"-"““-----------"=+ Eé ““““““““““
U o
50 o O 0 0O O 0o 000 00 -0] .
O ORN®)
¥ X X X X %%%%%%%%%%O%OQQQ%&EE
0 L 1 L L L L L L L L
10 100

Percentage of users migrated (function of thresholds)

Count policy is better than time policy

At a given time, migrating data for users with more remote accesses
yields more benefits

30

Summary

* Overlays: mechanism for online migration,
caching, and replication

— More flexible and efficient than prior methods

 Nomad: object storage system with
overlays

« Study policies to drive migration for

Hotmail application m

31

