IBM Research

FVD: A High-Performance Virtual
Machine Image Format for Cloud

Chungiang (CQ) Tang

IBM T.J. Watson Research Center
ctang@us.ibm.com

June 2011

IBM Research

Virtual Disk Benefits from Copy-on-write,
Copy-on-read, and Adaptive Prefetching

Network Attached Storage

Virtual Machine Virtual Machine
E Host i } { Host i }
Local Disk Local Disk

m A new VM's virtual disk is created as a copy-on-write
Image based on a shared, read-only image template

m Copy-on-read and adaptive prefetching avoid repeatedly
read unmodified data from network attached storage

IBM Research

Challenges in Achieving High Performance
for a Virtual Disk

How QCOW?2 works

2-level Lookup
Table in QCOW2

Virtual Block
Address

Block Layout
in QCOW2 Image

L1 Table L2 Tables DataBlocks

' Ll

Why a virtual disk is slower than a

physical disk?

Address translation destroies locality
Overhead in reading metadata
Overhead in writing metadata
Overhead of a host file system

Implementation inefficiency, e.g.,
blocking metadata access

IBM Research

FVD Uses a Bitmap to Implement Copy-on-
write, Copy-on-read, and Adaptive Prefetching

Base Image

original
disk
data

FVD Image

header

bitmap

space
for disk
data

space for
expanded
disk data

= No address translation and hence keeps

data locality

s Small bitmap size allows easy caching

(2MB for 1TB disk)

m Several techniques eliminate metadata

writes in common cases
» Fee write to expanded disk space
» Free write to zero-filled blocks
» Free copy-on-read and prefetching

» Zero overhead once prefetching
finishes

m Benefit: a CoW FVD image can be as
efficient as a raw image

» due to minimal metadata reads and writes,
and no address translation

IBM Research

FVD Can Optionally Uses a Lookup Table to
Support Compact Image

FVD Image
header
bitmap
lookup

Base Image table
Cl
cr o)
/ C3
C2
C3

Mol | M | e | | e
Q O O O Q Q Q O
Ll |l el el Rl
o | 5| o | ||| | >
_ N J
V V

data chunk C1 data chunk C2

A chunk consists of multiple blocks

One entry of the lookup table maps the
address of a chunk

One bit in the bitmap indicates whether a
block was written before

Benefit: small metadata size
» FVD 6MB vs. QCOW2 128MB for 1TB disk

IBM Research

Journal and Snapshot in FVD

FVD Image
header m Journal allows efficient metadata updates
journal » batching, sequential writes, concurrent writes
refcount » No journal cleaning overhead
table
bitmap 1
lookup m The refcount table supports
table 1 efficientinternal snapshots
bitmap 2

» Creating/deleting a snapshot amounts to
lookup iIncrementing/decrementing reference counts

table 2
» More efficient thant QCOW2 snapshot

® The refcount table is never updated during normal
execution of VM

Data

IBM Research

Experimental Result

1000
= -
B 249% higher -
S 800 H| . =
7 o
k]
g 600 7 _ =
o oz i
% 400 s - -
2 k)
o 200 HE e = 1 S
: o : i -] ol = [“ [
zE8 & A = 2 zZ8 & 285 285
=E2 =52 : SES 252 RS
o [ks] % %
& & 2 &
virtio-partition virtio-extd |IDE-partition = virtio-partition virtio-ext3 | IDE-partition
(a) File creation throughput (b) Transaction throughput

Figure 6: Performance of PostMark under different image formats.

m FVD is implemented in KVM/QEMU 0.12.30

m The throughput of FVD is 249% higher than that of QCOW2
when using the PostMark benchmark to create files

IBM Research

Copy-on-read Helps Reduce Network Traffic

E 10
3
= Boot Reljoot
% 6 1 |Linux Start Lintix Restart
£ 44 WAS WAS
£ 2
E 0 n T |II |I T T
z 0 50 100 150 200 250
7 Time (seconds)

(2) QCOW2

—
=
|

0 50 100 150 200 250
Time (seconds)

(b) FVD

Network Traffic (MB/sec)
[I ST EN o I v]

Figure 13: FVD’s copy-on-read feature helps reduce net-
work traffic and I/O load on the NAS server.

IBM Research

Summary of FVD

m FVD on-disk metadata

» bitmap implements copy-on-write, copy-on-read, and adaptive prefetching
» lookup table optionally implements compact image (i.e., address translation)
» journal allows efficientmetadata updates

» refcount table implements efficient internal snapshot

m Other Features of FVD

- Storage thin provisioning without a host file system

- Encryption
- Fully asynchronous implementation

- Autoated testing with deterministic replay for debugging

m Source code available at https:/sites.google.com/site/tangchg/gemu-fvd

m Longer version of the paper available at https://sites.google.com/site/tangchg/publications

