
Device-Transparent Personal
Storage

Jacob Strauss, Justin Mazzola Paluska, Chris Lesniewski-Laas ���
Bryan Ford, Robert Morris, Frans Kaashoek

 Quanta Research Cambridge MIT Yale

June 17, 2011

Personal Data Management: ���
Point-to-point Synchronization

• Good Properties:
–  Local connection: fast & inexpensive
–  Simple to use

2

1. Take photos

2. Go home, sync new photos to desktop

Synchronization Among Multiple
Devices

• Single server to hold & organize entire
collection

• Requires hub be reachable

3

 Store & Fetch from Cloud

4

or or …

• More flexibility than a single hub
• Not always reachable, can be slow

Ad-hoc Manual Management
• Push manually to nearby device for more

storage

• Upload to cloud later ���
when connected

• Problem: user must track where objects
are

5

local wifi

6

Ideal: Device Transparent Storage

Same global view of data collection from each device

Device-Transparency: Impossible?

• Limited Storage Capacity
– Can’t put everything everywhere

• Devices might be disconnected
– Can’t use files stored on unreachable

devices

7

Approach: Split Metadata from
Content

8

• Fully replicate all metadata
–  Small: fits everywhere

• Partially replicate all content
– Not small: place where needed

Metadata is Useful Alone

9

• When disconnected & without content:
–  View complete collections of objects
– Move objects between collections
–  Identify devices that do hold the content

Device-Transparent Storage Approach

• Separate Metadata from Content
– Global Metadata Replication
– Partial Content Replication

• Peer-to-peer Continuous Synchronization
– Approximate global store as connectivity

permits

• Automate Conflict Resolution
–  Eventually consistent metadata collection

10

Eyo Overview

11

Local
storage

Eyo
Music Player

Photo Editor

Mail Client

User Application

Overlay
Network:
UIA
[OSDI’06]

Personal Data & Device Collections

Eyo API Design

• Challenge: Automated Conflict
Resolution

• API Properties
–  First-class version history
–  Explicit metadata and content split
– Placement policy

• Borrows mechanisms from existing work
– Distributed File Systems, Optimistic

Replication, Version Control Systems
12

Using the Eyo Storage API

No naming���
hierarchy

Attribute queries:
List of objects  lookup(has key ‘content-type’ with value ‘image’)

13

Local Storage

User Interface Application Core
Object A

Object B

Object C
Eyo

Content Store
A,B,C

Metadata Store
A,B,C

Get(ID) &
Put(object)

Queries
& Notifications

Network
Updates

Eyo API

Using the Eyo Storage API

Eyo manages���
network transfers

Notifies interested���
applications when updates arrive

14

Local Storage

User Interface Application Core
Object A

Object B

Object C
Eyo

Content Store
A,B,C

Metadata Store
A,B,C

Get(ID) &
Put(object)

Queries
& Notifications

Network
Updates

Eyo API

Content Store

• Content block per object
–  Immutable after writing

• Device holds subset of all content
– Guided by placement rules [Cimbiosys,

Perspective]
– Application specified query mapping objects

to set of devices
• Ex: songs with tag “top-rated”  ipod

15

16

Metadata Store

Content-type: audio
Size: 1234
Artist: U2
Album: The Joshua Tree
Playlists: 80’s
Rating: 4/5

• Metadata includes:
–  everything users need to name���

and find objects
–  album, song name, artist, ���

location, etc.

•  Eyo replicates metadata store to all of user’s
devices
–  Each device knows about all objects

•  Small enough to store everywhere
–  Small updates: quick, frequent transfers

17

Concurrent Updates to Metadata

• Disconnected
changes lead to
conflicts

• When and where
should these be
resolved?

create file A

Edit
 A  B

Edit
A  C

unreachable

?

tim
e

X

18

Handling Conflicts
•  Track common ancestor
•  Eyo provides version history

to applications
•  Applications specify

predecessors when replacing
old versions

•  Compare to branches in
version control systems

•  Permits many concurrency
strategies

Version A

Version B Version C

Final state on
desktop

Object ID: 1234

19

Handling Conflicts
• Do nothing: fork history
• Pick arbitrarily (based on

timestamp)
• Let the user pick a

version
– Media player: ���

song title: AB and AC
– Write a new version that

replaces both B and C���

Version A

Version B Version C

Version D

Final state on
desktop

Object ID: 1234

20

Handling Conflicts Automatically
• Use application-specific

knowledge
–  Media Player:

• play song in two places,
• increment playcount on each
• Merge to total sum

–  Photo Editor:
• Tag photos concurrently;

merge to include both
– User never aware a conflict

occurred

Version A

Version B Version C

Version D

Final state on
desktop

Object ID: 1234

Storage API Summary

21

Eyo Objects

Object ID: 12 Object ID: 34 Object ID: 56 …
Object ID: 56

Version ID: 34

Version ID: 56 Version ID: 78

Version ID: 21

Version ID: 87 Version ID: 65

Version 87
Metadata

Keys Values
Content-type Image/jpg
Content-length 5000
Aperture f/5.6
Resolution 1024x768
ISO equiv 400
Name dog.jpg
Date 4/27/10
Predecessor Version 21
Content ID Content 41

Content Store
ID: 41 Value:

API Implementation Challenges

• Device to Device Connectivity
– Which devices?
– Where are they?
–  Secure communication

• Continuous Synchronization
– Approximates device transparency
–  Send updates between all reachable peers
– How to do so efficiently?

22

Provided by
UIA [OSDI’06]

Separate Synchronization
Protocols

• Metadata
–  Fast, frequent, small changes
– Result in identical collections
– Use metadata to track content

• Content
– Can be big, slow to move
– Place objects where they belong

23

24

Metadata Synchronization
•  Find and send only

changed objects from
large set of
unchanged objects

• Group updates into
an immutable
Generation

•  Single Generation
Vector describes set
of updates each
device has seen

•  Single lookup
identifies state to
send

tim
e

GV: <C:0 L:0> GV: <C:0 L:0>

Store new photo:

get_updates(<C:1 L:0>)
[]

get_updates(<C:0 L:0>)

GV: <C:1 L:0> Generation: C:1
GV: < C:1 L:0 >
Metadata about: GV: <C:1 L:0>

25

Passing Content Responsibility

•  Exchange
responsibility for
storing objects

• Does not rely on
correct placement
rules

• Guarantees at least
one live copy
–  Assuming no lost

or failed devices

25

tim
e

GV: <C:0 L:0> GV: <C:0 L:0>

Store new photo:

GV: <C:1 L:0>

GV: <C:1 L:0>

Generation: C:1
GV: < C:1 L:0 >
Metadata about:

Content:
present,
not preserved

26

Passing Content Responsibility

•  Exchange
responsibility for
storing objects

• Does not rely on
correct placement
rules

• Guarantees at least
one live copy
–  Assuming no lost

or failed devices

Camera can safely delete photo
26

tim
e

GV: <C:1 L:0>

GV: <C:1 L:0>

Generation: C:1
GV: < C:1 L:0 >
Metadata about:

Photo Content:
present but
won’t preserve

Generation: L:1
GV: < C:1 L:1 >
Photo Content:
present and
will preserve

Fetch Photo Content

GV: <C:1 L:1> GV: <C:1 L:1>

27

Eyo: Implementation
•  Python per-device daemon

–  RPC for metadata sync
–  http for fetching content (no swarming yet)

•  Python and C client libraries
–  Sqlite for metadata storage & queries
–  D-bus for event notifications

• UIA for group identity and communication
–  Users create a group of “my” devices
–  Tracks current locations, builds overlay network
–  Authenticates & Encrypts communication

28

Evaluation Questions

• What can we do with Eyo that we couldn’t
do otherwise?

•  Is Eyo’s API a good fit for real applications?
– How difficult is adapting applications?
– Usability of explicit version histories?

•  Is the metadata-everywhere model feasible?
–  Storage costs?
– Bandwidth overhead?

29

Evaluation Approach

• Modify applications to use Eyo
– Rhythmbox & Quodlibet media players
–  gPodder podcast manager
–  IMAP email gateway
– Rawstudio photo editor

• Examine new features & scope and types
of changes needed

New Ability: Device Transparency
• From a disconnected���

 device
• Browse and organize���

 the entire collection
–  Search for tags
– View thumbnail images
– Add and edit tags for all images
–  Show which devices hold objects

• View and edit locally-cached full size
image originals

30

31

Few Application Changes Needed
• Rawstudio photo editor (C & C++):

– No User Interface changes in these values

• Remaining example applications:
– Changes limited to <10% of codebase

Original
#lines of code

Eyo Version
#lines

#lines
added

#lines
removed

59,767 59,851 1851 (~3%) 1596 (~3%)

Different ‘line’ definitions

Applications already have Metadata split

32

Local Filesystem:
File A, File B, File C,

File: Metadata DB

User Interface
Application Core Object A

Object B

Object C

Metadata
A,B,C

Content
A,B,C

Filesystem API

Eyo API Makes Split Explicit

33

Local Storage

User Interface Application Core
Object A

Object B

Object C
Eyo

Content Store
A,B,C

Metadata Store
A,B,C

Reads &
Writes

Queries &
Notifications

Network
Updates

Eyo API

34

Metadata Storage Cost

• How much metadata?
• Look at one personal collection:

objects total size Metadata per
object

Email 724,230 4.3 GB 245B

Music 5,278 26 GB 511B

Photos 72,380 122.8 GB 328B

Not very different

35

Storage Costs: Reasonable for
portable devices

• Store collections in Eyo
• Look at resulting metadata size

objects total size Eyo metadata
store size

Email 724,230 4.3 GB 529 MB

Music 5,278 26 GB 5.8 MB

Photos 72,380 122.8 GB 53 MB

Total: <600MB, mostly from email

Related Work

• Optimistic Replication
– Cimbiosys, Perspective
– Coda, Ficus, Bayou, PRACTI, EnsemBlue,

Tierstore, Podbase, Ivy

• Point-to-point replication: Rsync, Unison
• Version Control Systems

– Git, SVN

• Centralized Cloud Topologies
– MobileMe/iCloud, Gmail/Gears, LiveMesh

36

Summary

• Device Transparency
• View and mange complete collection

–  From disconnected, storage limited devices

• Eyo
–  Storage API with explicit version histories
– Continuous peer-to-peer synchronization
– Good fit for existing applications

37

