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Talk overview

> At OSDI'10:

> Technique targeted at highly threaded servers
> Doubled performance of Apache

> Event-driven servers are popular

> Faster than threaded servers

We show that
make event-driven server faster

> memcached speeds up by 25-35%
> nginx speeds up by 70-120%
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Event-driven server architectures

> Supports I/O concurrency with a single
execution context

> Alternative to thread based architectures
> At a high-level:

> Divide program flow into non-blocking
> After each stage register interest in event(s)

> Notification of event is asynchronous, driving next
stage in the program flow

> To avoid idle time, applications multiplex execution
of multiple independent stages
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Example: simple network server

void server() {
%é.= accept();
read (£d) ;
write(£d);

close(fd);
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Example: simple network server

void server() ({ S1
S |
fd = accept(); St UNIX options:
... S2 Non-blocking 1/0
read (fd); i poll ()
S8 |:> S3 select ()
write (£d); ¢ epoll ()

S4
S4 Async |/0
close(fd);

5 '

} S5
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Performance: events vs. threads

ApacheBench
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nginx delivers 1.7x the throughput of Apache;
gracefully copes with high loads
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Issues with UNIX event primitives

> Do not cover all system calls
> Mostly work with file-descriptors (files and sockets)
> Overhead

> Tracking progress of 1/O involves both application
and kernel code

> Application and kernel communicate frequently

Previous work shows that fine-grain mode
switching can processor efficiency
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FlexSC component overview

FlexSC

. —
(exception-less

FlexSC and FlexSC-Threads presented at OSDI 2010

This work: libflexsc for event-driven servers
1) memcached throughput increase of up to 35%
2) nginx throughput increase of up to 120%
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Benefits for event-driven applications

1) General purpose
> Any/all system calls can be asynchronous

2) Non-intrusive kernel implementation
> Does not require per syscall code

3) Facilitates multi-processor execution
> OS work is automatically distributed

4) Improved processor efficiency

> Reduces frequent user/kernel mode switches
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Summary of exception-less syscalls

®

Exception-less
system call
interface

2 22 2 @ Syscall threads
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Exception-less interface: syscall page

write(fd, buf, 4096);

syscall fnumber| args return
entry = free syscall entry(); number SIS
entry->num_args = 3;

entry->args|[0] fd; :
entry->args[1l] = buf;
4096;

entry->args|[2]
entry->status = SUBMIT;

/* write syscall */
entry->syscall = 1;

while (entry->status !'= DONE)
do _something else();

return entry->return_code;
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Exception-less interface: syscall page

write(fd, buf, 4096);

4

/* write syscall */

syscall fnumber| args return
entry = free syscall entry(); number SIS
entry->syscall = 1;
entry->num_args = 3;

entry->args|[0] fd; :
entry->args[1] buf; fd, buf,
4096; L 3 | 4096

entry->args|[2]
entry->status = SUBMIT;

while (entry->status !'= DONE)
do _something else();

return entry->return_code;
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Exception-less interface: syscall page

write(fd, buf, 4096);

4

/* write syscall */

syscall fnumber| args return
entry = free syscall entry(); number SIS
entry->syscall = 1;
entry->num_args = 3;

entry->args|[0] fd; :
entry->args[1] buf; fd, buf,

entry->args|[2]
entry->status = SUBMIT;

while (entry->status !'= DONE)
do _something else();

return entry->return_code;
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Syscall threads

> Kernel-only threads

> Part of application process
> Execute requests from syscall page

> Schedulable on a per-core basis
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Dynamic multicore specialization

User 2 Sys
———————— call
Kernel page

Core 0

Core 2

1) FlexSC makes specializing cores simple
2) Dynamically adapts to workload needs

Livio Soares | Exception-Less System Calls for Event-Driven Servers 15



libflexsc: async syscall library

> Async syscall and notification library

> Similar to /ibevent

> But operates on syscalls instead of file-descriptors

> Three main components:

1) Provides main loop (dispatcher)

2) Support asynchronous syscall with associated
callback to notify completion

3) Cancellation support
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Main API: async system call

1 struct flexsc cb {

2 void (*callback) (struct flexsc cb *); /* event handler */
3 void *arg; /* auxiliary var */
4 int64_t ret; /* syscall return */
5 1}

6

7 int flexsc HH#SYSCALL(struct flexsc cb *, ... /*syscall args*/);
8 /* Example: asynchronous accept */

9 struct flexsc cb cb;

10 cb.callback = handle accept;

11 flexsc accept(&cb, master sock, NULL, 0);

12

13 wvoid handle accept(struct flexsc cb *cb) {

14 int £fd = cb->ret;

15 if (£4 1= -1) {

16 struct flexsc cb read cb;

17 read cb.callback = handle read;

18 flexsc read(&read cb, fd, read buf, read count);

19 }

20 }
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memcached port to libflexsc

> memcached: in-memory key/value store

> Simple code-base: 8K LOC
> Uses libevent

> Modified 293 LOC

> Transformed libevent calls to libflexsc

> Mostly in one file: memcached.c

> Most memcached syscalls are socket based
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nginx port to libflexsc

> Most popular event-driven webserver

> Code base: 82K LOC

> Natively uses both non-blocking (epoll) I/0 and

asynchronous /O

> Modified 255 LOC
> Socket based code a
> Not all file-system cal

ready asynchronous
s were asynchronous

> e.g., open, fstat, getdents
> Special handling of stack allocated syscall args
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Evaluation

> Linux 2.6.33
> Nehalem (Core i7) server, 2.3GHz

> 4 cores
> Client connected through 1Gbps network

> Workloads

> memslap on memcached (30% user, 70% kernel)
> httperf on nginx (25% user, 75% kernel)

> Default Linux (* ") vs.
libflexsc (“ ")
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memcached on 4 cores
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memcached processor metrics
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httperf on nginx (1 core)
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nginx processor metrics
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Concluding remarks
> Current event-based primitives add overhead

> |/O operations require frequent communication
between OS and application

> . exception-less syscall library

1) General purpose
2) Non-intrusive kernel implementation
3) Facilitates multi-processor execution

4) Improved processor efficiency
> Ported memcached and nginx to libflexsc
> Performance improvements of 30 - 120%
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Difference in improvements

Why does nginx improve more than memcached?

1) Frequency of mode switches:

Server memcached nginx
Frequency of syscalls
(in instructions) 3,750 1,460

2) nginx uses greater diversity of system calls
> More interference in processor structures (caches)

3) Instruction count reduction
> nginx with epoll() has connection timeouts
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Limitations

> Scalability (number of outstanding syscalls)

> |Interface: operations perform linear scan

> Implementation: overheads of syscall threads
non-negligible

> Solutions
> Throttle syscalls at application or OS
> Switch interface to scalable message passing

> Provide exception-less versions of async |/O
> Make kernel fully non-blocking
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Latency (ApacheBench)
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