Exception-Less System Calls for
Event-Driven Servers

Livio Soares and Michael Stumm

University of Toronto

Talk overview

> At OSDI'10:

> Technique targeted at highly threaded servers
> Doubled performance of Apache

> Event-driven servers are popular

> Faster than threaded servers

We show that
make event-driven server faster

> memcached speeds up by 25-35%
> nginx speeds up by 70-120%

Livio Soares | Exception-Less System Calls for Event-Driven Servers

Event-driven server architectures

> Supports I/O concurrency with a single
execution context

> Alternative to thread based architectures
> At a high-level:

> Divide program flow into non-blocking
> After each stage register interest in event(s)

> Notification of event is asynchronous, driving next
stage in the program flow

> To avoid idle time, applications multiplex execution
of multiple independent stages

Livio Soares | Exception-Less System Calls for Event-Driven Servers 3

Example: simple network server

void server() {
%é.= accept();
read (£d) ;
write(£d);

close(fd);

Livio Soares | Exception-Less System Calls for Event-Driven Servers

Example: simple network server

void server() ({ S1
S |
fd = accept(); St UNIX options:
... S2 Non-blocking 1/0
read (fd); i poll ()
S8 |:> S3 select ()
write (£d); ¢ epoll ()

S4
S4 Async |/0
close(fd);

5 '

} S5

Livio Soares | Exception-Less System Calls for Event-Driven Servers 5

Performance: events vs. threads

ApacheBench
14000
- 12000 n——.___A
& 10000
@ 8000
2 6000 n—-—-\-
ag; 4000 -+ nginx (events)
o 2003 # Apache (threads)
0 100 200 300 400 500
Concurrency

nginx delivers 1.7x the throughput of Apache;
gracefully copes with high loads

Livio Soares | Exception-Less System Calls for Event-Driven Servers

Issues with UNIX event primitives

> Do not cover all system calls
> Mostly work with file-descriptors (files and sockets)
> Overhead

> Tracking progress of 1/O involves both application
and kernel code

> Application and kernel communicate frequently

Previous work shows that fine-grain mode
switching can processor efficiency

Livio Soares | Exception-Less System Calls for Event-Driven Servers 7

FlexSC component overview

FlexSC

. —
(exception-less

FlexSC and FlexSC-Threads presented at OSDI 2010

This work: libflexsc for event-driven servers
1) memcached throughput increase of up to 35%
2) nginx throughput increase of up to 120%

Livio Soares | Exception-Less System Calls for Event-Driven Servers 8

Benefits for event-driven applications

1) General purpose
> Any/all system calls can be asynchronous

2) Non-intrusive kernel implementation
> Does not require per syscall code

3) Facilitates multi-processor execution
> OS work is automatically distributed

4) Improved processor efficiency

> Reduces frequent user/kernel mode switches

Livio Soares | Exception-Less System Calls for Event-Driven Servers

Summary of exception-less syscalls

®

Exception-less
system call
interface

2 22 2 @ Syscall threads

Livio Soares | Exception-Less System Calls for Event-Driven Servers 10

Exception-less interface: syscall page

write(fd, buf, 4096);

syscall fnumber| args return
entry = free syscall entry(); number SIS
entry->num_args = 3;

entry->args|[0] fd; :
entry->args[1l] = buf;
4096;

entry->args|[2]
entry->status = SUBMIT;

/* write syscall */
entry->syscall = 1;

while (entry->status !'= DONE)
do _something else();

return entry->return_code;

Livio Soares | Exception-Less System Calls for Event-Driven Servers 11

Exception-less interface: syscall page

write(fd, buf, 4096);

4

/* write syscall */

syscall fnumber| args return
entry = free syscall entry(); number SIS
entry->syscall = 1;
entry->num_args = 3;

entry->args|[0] fd; :
entry->args[1] buf; fd, buf,
4096; L 3 | 4096

entry->args|[2]
entry->status = SUBMIT;

while (entry->status !'= DONE)
do _something else();

return entry->return_code;

Livio Soares | Exception-Less System Calls for Event-Driven Servers 12

Exception-less interface: syscall page

write(fd, buf, 4096);

4

/* write syscall */

syscall fnumber| args return
entry = free syscall entry(); number SIS
entry->syscall = 1;
entry->num_args = 3;

entry->args|[0] fd; :
entry->args[1] buf; fd, buf,

entry->args|[2]
entry->status = SUBMIT;

while (entry->status !'= DONE)
do _something else();

return entry->return_code;

Livio Soares | Exception-Less System Calls for Event-Driven Servers 13

Syscall threads

> Kernel-only threads

> Part of application process
> Execute requests from syscall page

> Schedulable on a per-core basis

Livio Soares | Exception-Less System Calls for Event-Driven Servers 14

Dynamic multicore specialization

User 2 Sys
———————— call
Kernel page

Core 0

Core 2

1) FlexSC makes specializing cores simple
2) Dynamically adapts to workload needs

Livio Soares | Exception-Less System Calls for Event-Driven Servers 15

libflexsc: async syscall library

> Async syscall and notification library

> Similar to /ibevent

> But operates on syscalls instead of file-descriptors

> Three main components:

1) Provides main loop (dispatcher)

2) Support asynchronous syscall with associated
callback to notify completion

3) Cancellation support

Livio Soares | Exception-Less System Calls for Event-Driven Servers 16

Main API: async system call

1 struct flexsc cb {

2 void (*callback) (struct flexsc cb *); /* event handler */
3 void *arg; /* auxiliary var */
4 int64_t ret; /* syscall return */
5 1}

6

7 int flexsc HH#SYSCALL(struct flexsc cb *, ... /*syscall args*/);
8 /* Example: asynchronous accept */

9 struct flexsc cb cb;

10 cb.callback = handle accept;

11 flexsc accept(&cb, master sock, NULL, 0);

12

13 wvoid handle accept(struct flexsc cb *cb) {

14 int £fd = cb->ret;

15 if (£4 1= -1) {

16 struct flexsc cb read cb;

17 read cb.callback = handle read;

18 flexsc read(&read cb, fd, read buf, read count);

19 }

20 }

Livio Soares | Exception-Less System Calls for Event-Driven Servers

17

memcached port to libflexsc

> memcached: in-memory key/value store

> Simple code-base: 8K LOC
> Uses libevent

> Modified 293 LOC

> Transformed libevent calls to libflexsc

> Mostly in one file: memcached.c

> Most memcached syscalls are socket based

Livio Soares | Exception-Less System Calls for Event-Driven Servers 18

nginx port to libflexsc

> Most popular event-driven webserver

> Code base: 82K LOC

> Natively uses both non-blocking (epoll) I/0 and

asynchronous /O

> Modified 255 LOC
> Socket based code a
> Not all file-system cal

ready asynchronous
s were asynchronous

> e.g., open, fstat, getdents
> Special handling of stack allocated syscall args

Livio Soares | Exception-Less System Calls for Event-Driven Servers 19

Evaluation

> Linux 2.6.33
> Nehalem (Core i7) server, 2.3GHz

> 4 cores
> Client connected through 1Gbps network

> Workloads

> memslap on memcached (30% user, 70% kernel)
> httperf on nginx (25% user, 75% kernel)

> Default Linux (* ") vs.
libflexsc (“ ")

Livio Soares | Exception-Less System Calls for Event-Driven Servers

20

memcached on 4 cores

140000
S 120000
0
£ 100000
Q 0/
S 80000 30% improvement
QO
-
= 60000
-
2 40000
> 20000 = flexsc
@)
£ -+ epoll
= 0
0 200 400 600 800 1000
Request Concurrency

Livio Soares | Exception-Less System Calls for Event-Driven Servers 21

memcached processor metrics

1.2
User Kernel
Q 1
(3]
&
—~ 0.8
¥
L © 0.6
m —
o o
o X 0.4
o
> =
-
®© 0.2
@
0
|cache i-cache
CPI d-cache CPI d-cache

Livio Soares | Exception-Less System Calls for Event-Driven Servers 22

httperf on nginx (1 core)

120
#*flexsc

+epoll

100

80

60

40 100% improvement

20

Throughput (Mbps)

0 10000 20000 30000 40000 50000 60000

Requests/s

Livio Soares | Exception-Less System Calls for Event-Driven Servers 23

nginx processor metrics

1.2
User Kernel
O 1
O
% 0.8
£3
£ §- 0.6
e 9
0 5 0.4
g
@
0
i-cache d-cache Branch
CPI d cache Branch L2 i-cache

Livio Soares | Exception-Less System Calls for Event-Driven Servers 24

Concluding remarks
> Current event-based primitives add overhead

> |/O operations require frequent communication
between OS and application

> . exception-less syscall library

1) General purpose
2) Non-intrusive kernel implementation
3) Facilitates multi-processor execution

4) Improved processor efficiency
> Ported memcached and nginx to libflexsc
> Performance improvements of 30 - 120%

Livio Soares | Exception-Less System Calls for Event-Driven Servers 25

Exception-Less System Calls for
Event-Driven Servers

Livio Soares and Michael Stumm

University of Toronto

Backup Slides

Difference in improvements

Why does nginx improve more than memcached?

1) Frequency of mode switches:

Server memcached nginx
Frequency of syscalls
(in instructions) 3,750 1,460

2) nginx uses greater diversity of system calls
> More interference in processor structures (caches)

3) Instruction count reduction
> nginx with epoll() has connection timeouts

Livio Soares | Exception-Less System Calls for Event-Driven Servers 28

Limitations

> Scalability (number of outstanding syscalls)

> |Interface: operations perform linear scan

> Implementation: overheads of syscall threads
non-negligible

> Solutions
> Throttle syscalls at application or OS
> Switch interface to scalable message passing

> Provide exception-less versions of async |/O
> Make kernel fully non-blocking

Livio Soares | Exception-Less System Calls for Event-Driven Servers 29

Latency (ApacheBench)

30
¥ epoll

25 M flexsc
£
C>)~ 15
o
+ 10 50% latency
- ; reduction

0
1 core 2 cores

Livio Soares | Exception-Less System Calls for Event-Driven Servers 30

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

