Autonomous Storage Management for Personal Devices with PodBase

Ansley Post Petr Kuznetsov Juan Navarro Peter Druschel

MPI-SWS TU Berlin/Deutsche Telekom Labs TU Munich

Outline

- Motivation
- Problem Statement
- System: PodBase
- Evaluation
- Conclusion

Enterprise Data Management

Redundancy

Offline Storage

Offsite Storage

All professionally managed!

Personal Data Management

- Heterogeneous devices, connectivity, use cases
- User are inexperienced and reluctant administrators

Personal Data Management

• Use available storage/connectivity to replicate for durability

Personal Data Management

• Use available storage/connectivity to replicate for availability

Outline

- Motivation
- Problem Statement
- System: PodBase
- Evaluation
- Conclusion

PodBase

- Automated, transparent data management for personal devices
- OS and vendor neutral.
- Transparent replication for durability, availability
- Seeks to opportunistically and transparently exploit available resources while requiring minimal user attention
- Linear programming approach allows the system to adapt to changing conditions

System Goals

- On a set of intermittently connected personal devices:
- Opportunistically propagate information
- Replicate for availability and durability
 - Files should be k durable:

durability = $min|\{d \in D : f \in store-files(d)\}|$. $f \in F$

Files should be available on all devices where it might be useful

Availability = $\sum |like-files(d) \cap store-files(d)|$. $d \in D$

Minimal User Interaction

- Add new device
- Report loss of device (optional)
- Restore data
- Low storage warning
- Device and type specific functionality through plug-ins
 - Archive data
 - Synchronization/reconciliation

Storage Devices

- Each storage device contains:
 - User files
 - Metadata
 - Replicas

 PodBase data is stored securely in device's file system

Device Interaction

- Reconciles approximate global view
- Works even when devices are very small

Example: Automatic Sneakernets

Office

Home

Outline

- Motivation
- Problem Statement
- System: PodBase
- Evaluation
- Conclusion

Podbase: Implementation

- Implementation in Java
 - Small customization required per supported OS (Windows, OS X, Linux)
- Use off the shelf linear programming solver

Evaluation

- Performed both a controlled evaluation and two user studies
- Controlled evaluation validates basic functionality
- User study
 - 10 household deployed PodBase on a majority of the storage devices
 - System designed to unobtrusively provide availability and durability

User Study: Summary

• 10 Households, 25 devices, 30 days

Replication Results

- PodBase successfully replicates data without user attention
- Adaptive replication improves durability

Bandwidth Results

Evaluation Summary

- PodBase transparently provides increased durability and availability for personal devices

 Availability in the paper
- User study shows that the system is deployable and useful
- Adapts and takes advantage of free space and high bandwidth device connections

Conclusions

- Podbase: Automated storage management
 - Transparently increase the durability and availability of data
 - Uses free storage space and opportunistic connectivity
- Prototype evaluated in user study

Questions?