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Motivation v

e Computing platforms are ubiquitous
— Sensors, mobile devices, PCs to data centers
— Significant consumers of energy, slated to grow significantly

e Reducing energy consumption

— Battery powered devices: goal of all day computing
— Mains powered devices: reduce energy costs, carbon footprint



Detailed Power Characterization is Key Y

e Managing energy consumption within platforms

— Requires visibility into where energy is being consumed

e Granularity of power characterization matters

— “Total System Power” or “Individual Subsystem Power”
— Depends on level of power optimizations desired

 Defining question, from the software stack perspective:

— How can power consumption be characterized effectively
— What are the limits: accuracy, granularity, complexity?

e Power characterization has been well studied

— Need to revisit given the characteristics of modern platforms
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Modern Systems - Larger Dynamic Range Y
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* Prior generation of computing platforms:
— Systems with high base power -> small dynamic range
— Dynamic component not critical to capture

e Modern platforms:
— Increasing dynamic fraction

— Critical to capture dynamic component for accuracy,



Power Characterization: Measure or Model v

Training
Data

 Two options: Directly measured, or indirectly modeled
— Modeling preferred because of less hardware complexity

 Many different power models have been proposed

— Linear regression, learning, stochastic, ..

e Question: how good are these models?

— Component level as well as system level power predictions



Outline

* Describe power measurement infrastructure
— Fine grained, per component breakdown

* Present different power models
— Linear regression (prior work), complex models
e Compare models with real measurements
— Different workloads (SpecCPU, PARSEC, synthetic)

e Results: Power modeling -> high error
— Reasons range from complexity, hidden states
— Modeling errors will only get worse with variability



Power Measurement Infrastructure
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* Highly instrumented Intel “Calpella” Platform

— Nehalem core i7, core i5, 50 sense resistors
— High precision NI DAQs, 16bit / 1.25MS/s, 32 ADCs



Prior Work in Power Modeling

e Total System Power Modeling
— [Economou MOBS’06] - Regression model, MANTIS

e AMD blade: < 9% error across benchmarks

e |tanium server: <21% error

— [Riviore HotPower ‘08] — Compare regression models
e Core2Duo/XEON, Itanium, Mobile FileServer, AMD Turion
* Mean error < 10% across SPEC CPU/JBB benchmarks

e Subsystem Models
— [Bircher ISPASS ‘07] — linear regression models

e P4 XEON system: Error < 9% across all subsystems

Prior work: single-threaded workloads, systems
with high base power, less complex systems.



Power Modeling Methodology
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e Counters: CPU + OS/Device counters

— For CPU: measure only 4 (programmable) + 2 (fixed)
— Remove uncorrelated counters, add based on coefficients

e Benchmarks: “training set” and “testing set”

— k X 2-fold cross-validation (do this n =10 times)
— Removes any bias in choosing training and testing set
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Power Consumption Models

e “MANTIS” [Prior Work] — Linear Regression
— Uses domain knowledge for counter selection

e “Linear-lasso” — Linear Regression
— Counters selection: “MANTIS” + Lasso/GLMNET

 “nl-poly-lasso” — Non Linear Regression (NLR)
— Counters selection: “MANTIS” + Lasso/GLMNET

e “nl-poly-exp-lasso” — NLR + Poly term + Exp. Term
— Counters selection: “MANTIS” + Lasso/GLMNET

e “svm_rbf” —Support Vector Machines
— Unlike Lasso, SVM does not force model to be sparse.
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Benchmarks J

e “SpecCPU” —22 Benchmarks, single-threaded
— More CPU centric

e “PARSEC” — emerging multi-core workloads

— Include file-dedup, x264 encoding

e Specific workloads — specific subsystems

— “Bonnie” —1/0 heavy benchmark
— “Linux Burld” - Multithreaded parallel build
— StressTestApp, CPULoad, memcached
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“Calpella” Platform — Power Breakdown Y
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e Subsystem level power breakdown
— PSU power not shown, GPU constant
— Large dynamic range — 23W (ldle) to 57W (stream)!
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Modeling Total System Power \¢ 4

Singlecore Total Power Error Multicore Total Power Error
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* Increased Complexity -> Single core to Multi-Core
— Modeling error increases significantly
— Mean Modeling Error < 10%, worse error > 15%
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Modeling Subsystem Power — CPU \¢ 4

Singlecore CPU Power Error

5 Multicore CPU Power Error
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* Increased Complexity -> Single core to Multi-Core
— CPU Power modeling error increases significantly
— Multicore - Mean Error ~20%, worst case > 150%
— Simplest case: HT and TurboBoost are Disabled 14



CPU Power: Single -> Multicore
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CMP inherently increases prediction complexity



Accurate Power Modeling is Challenging Y/

e Hidden system states
— SSDs: wear leveling, TRIM, delayed writes, erase cycles
— Processors: aggressive clock gating, “Turbo Boost”

* |ncreasing system complexity
— Too many states: Nehalem CPU has hundreds of counters
— Interactions hard to capture: resource contention

e E.g.consider SSDs vs traditional HDDs

HDD X-25M SSD

E=NINWW
SHrStey

ean Rel Err (%)

{ | Power Prediction Error
1 on SSD is 2X higher than HDD!

M
ul

16



Adding Hardware Variability to the Mix
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Variability in hardware is increasing

— Identical parts, not necessarily identical in power, perf.
— Can be due to: manufacturing, environment, aging, ...
— “Model one, apply to other instances” may not hold

 Experiment: Measure CPU power variability

— ldentical dual-core Core i5-540M -- 540M-1, 540M-2
— Same benchmark, different configurations, 5 runs each
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Variability Leads to Higher Modeling Error Y

Processor Power Variability on 1 benchmark
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e 12% Variability across 540M-1 and 540M-2
— 20% modeling error + 12% variability =2 34% error!

e Part variability slated to increase in the future
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Summary \¢ 4

 Power characterization using modeling
— Becoming infeasible for complex modern platforms
— Total power: 1%-5% (single core) to 10%-15% error (multi-core)

— Per-component model predictions even worse:
e CPU 20% - 150% error
e Memory 2% - 10% error, HDD 3% - 22% error, and SSD 5% - 35% error

e Challenge: hidden state and system complexity
e Variability in components makes it even worse

Need low cost instrumentation solutions
for accurate power characterization.
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Questions?
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Total Power: Single -> Multicore

Single-core:
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Multi-core:
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Increase in error, sensitivity to individual benchmarks



