In-situ MapReduce for Log
Processing

Dionysios Logothetis, Kevin Webb, Kenneth Yocum
UC San Diego

Chris Trezzo
Salesforce Inc.

USENIX Annual Technical Conference
June 2011

UCSDCSE

Computer Science and Engineering

,\?‘\O

Log analytics

e Data centers with 1000s of servers
* Generating logs with valuable information

e Data-intensive computing: Store and analyze
TBs of logs il

Examples:
* Click logs: ad-targeting, personalization
* Social media feeds: brand monitoring

* Purchase logs: fraud detection
* System logs: anomaly detection, debugging

Log analytics today

Servers

e “Store-first-query-later”
— Migrate logs to dedicated clusters

Problems:
e Scale

— e.g. Facebook collects 100TB a day!
— Data migration stresses network and disks

Store first...
* Failures

— e.g. server is unreachable
— Delay analysis or process incomplete data

... query later

 Timeliness
— e.g. long data migration times
— Hinders real-time apps: ad-targeting, fraud detection

Dedicated cluster

In-situ MapReduce (iMR)

Servers

ldea:

* Move analysis to the servers
 MapReduce for continuous data

e Ability to trade fidelity for latency

Optimized for:

* Highly selective workloads
— e.g. up to 80% data filtered or summarized!

* Online analytics ,
— e.g. Ad re-targeting based on most recent clicks Dedicated cluster

An IMR query

The same:

* MapReduce API
— map(r) =2 {k,v}: extract/filter data
— reduce({k, v[]}) =2 Vv’ : data aggregation
— combine({k, v[]}) =2 Vv’ : early, partial aggregation

The new:
* Provides continuous results

* Because logs are continuous

Continuous MapReduce

Log entries
iMR input is an infinite stream of logs [I [I [I [I [I [I [I [I [I [I [I |m [I [I
i i i —> Time
Bound input with sliding windows: 0 30 60 90
— Range of data
!§| |

— Update frequency
— e.g. Process user clicks over the last 60" ...

... and update analysis every 15”

Nodes output stream of results, one for each window ’

Analysis continuously updated with new data =3

Processing windows in-network

_ o Overlapping data
* Aggregation trees for efficiency - A N
— Distribute processing load

Db pocesang T

Problem:
* Overlapping data

— Processed multiple times: wastes CPU

— Sent to the root multiple times: wastes network T

Query root

Efficient processing with panes

P2 P3

Eliminate redundant work

Divide window into panes (sub-windows) §|

=

Each pane is processed and sent only once

Root combines panes to produce window

Saves CPU & network resources, faster
analysis

Impact of data loss on analysis

P1 P2 P3 P4

* Servers may get overloaded or fail ””mﬂﬂmﬂﬂmﬂﬂmﬂﬂﬂ

* Apps may have latency requirements
e Data loss is unavoidable to ensure timeliness

Challenges:
* Characterize incomplete results

* Allow users to trade fidelity for latency

Quantifying data fidelity

- 1 vEEEE
* Data are naturally distributed across: o | 2B EEE
Q N3| (||
— Space (server nodes) A L= ===
. : . P1 P2 P3 P4
— Time (processing window)
‘>
Time

* Panes describe temporal and spatial nature of data

* (2 metric: annotates result windows with a “scoreboard”
— Marks successfully received panes

10

Trading fidelity for latency

,?\
. 2 deli o [N1l D9
Use C? spec to trade fidelity for latency S | v2IEm
S | N3 B
N4| B3
Users may specify: P1 P2 P3 P4
. . ‘>
 Maximum latency requirement Time
— e.g. process window within 60sec A
* Minimum fidelity @ | Nl|@/@ 0=
o | N2| B B[
— e.g. at least 50% of the total data & | N3
N4
P1 P2 P3 P4
* Different ways to meet minimum fidelity T

— Impact latency and accuracy of analysis

We identified 4 useful classes of C? specifications

11

Minimizing result latency

N1| |08
N2| |5
N3| |8
N4| E|E

P1 P2 P3 P4

 Minimum fidelity with earlier results
— e.g. 50% of the data
* Gives freedom to decrease latency
— Returns the earliest data available
— e.g. data from the fastest servers
e Appropriate for uniformly distributed events

— Accurately summarizes relative event frequencies

12

Sampling non-uniform events

N[[
N2 = =
N3| & =

N4 = |3
P1 P2 P3 P4

* Minimum fidelity with random sampling
— e.g. random 50% of the data
* Less freedom to decrease latency
— Included data may not be the first available

* Appropriate even for non-uniform data
— Reproduces relative occurrence of events

Correlating events across time and space

* Leverage knowledge about data distribution

Temporal completeness:

N1| 0|00 |00|E
* Include all data from a node or no data at all NpAl= ===
— e.g. all data from 50% of the nodes HZ
* Useful when events are local to a node P1 P2 P3 P4
— e.g. counting events on a per node basis
Spatial completeness:
* Each pane contains data from all nodes N1| 03 0
+ Useful f ati =
seful for correlating events across servers NElI= O
— e.g click sessionization N4| B -

P1 P2 P3 P4

14

Prototype

* Builds upon Mortar distributed stream processor
[Logothetis et al., USENIX'08]

— Sliding windows
— In-network aggregation trees

* Extended to support:
— MapReduce API
— Paned-based processing

— Fault tolerance mechanisms: operator restart, adaptive
data routing

Processing data in-situ

Analysis co-located with client-facing services
Limited CPU resources for log analysis

Goal: use available resources intelligently

Load shedding mechanism
— Nodes monitor local processing rate
— Shed panes that cannot be processed on time

Increases result fidelity under time and resource
constraints

16

Evaluation

e System scalability

* Usefulness of C? metric
— Understanding incomplete results
— Trading fidelity for latency
— Applications:
e Click-stream sessionization
* HDFS failure detection

* Processing data in-situ
— Improving fidelity under load with load shedding
— Minimize impact on services

17

Exploring fidelity-latency tradeoffs

* Hadoop DFS anomaly detection algorithm [ran et
al. WASL'08]

* Query: compute distribution of service times
for every HDFS server, to detect outliers

* Data: HDFS log trace from 30-node cluster

Exploring fidelity-latency tradeoffs

Data loss affects accuracy of distribution

Report: probability observed distribution is
incorrect

Temporal completeness
— Distributions are 100% accurate

— Computed on per server basis

Spatial completeness & random sampling
— Poor results if more than 20% data lost
— Reduce latency by >25%

C? allows to trade fidelity for lower latency

Probability

Latency (sec)

1
0.8
0.6
0.4
0.2

0

400

300

200

100

~=Random
~#—-Spatial completeness
Temporal completenes

100% accuracy

~N

0 20 40 60 80 100

Data volume (%)

25% decrease

Temporal completeness
=4—Random
=#-Spatial completeness

0 20 40 60 80 100

Data volume (%) .

In-situ performance

100 ——Shedding

=#-No shedding

iMR side-by-side with a real service (Hadoop)
on a 10-node cluster 80

IMR executes a word count query :\'; 60
Latency requirement set to 60sec. é 40
" 20
Vary CPU allocated to iMR (niceness) 0
Report: 012 3 456 7 8 910
— Result fidelity Niceness

— Hadoop performance (job throughput) 100 N—N_/
80

Shedding improves fidelity by 560% ! 60 /
Hadoop performance drops by <11% 40 <11% overhead
20

Little impact on Hadoop, while still delivering

useful results

Relative performance (%)

01 2 3 45 6 7 8 910

Niceness
20

Conclusion

In-situ architecture processes logs at the sources, avoids bulk
data transfers, reduces analysis time

Model allows incomplete data under failures or server load,
provides timely analysis

C2 metric helps understand incomplete data and trade fidelity
for latency

Pro-actively sheds load, improves data fidelity under resource
and time constraints

