G?: A Graph Processing System for
Diagnosing Distributed Systems

Zhenyu GUO, Dong ZHOU, Haoxiang LIN, Mao YANG,
Fan LONG, Chaogiang DENG, Changshu LIU, Lidong ZHOU

System Research Group, MSR Asia

Cost of Debugging

* The huge printing presses for a major Chicago |
newspaper began malfunctioning ... |

$10,000 = $1 + $9,999

Most bugs can be fixed quickly,
however identifying the root causes is hard.

2

Motivation

e Diagnosing distributed systems is frustrating
Execution is too complex to comprehend
Tons of logs, but correlations are missing
Lost in the information sea

e et i [[o] | oo e o et P e o) <ot og.cosmon e 000000 g - Noteped e e [0 o)

+-gos. om0z sreriTes Srerunc=Caprotocol ~ Srepunc-Tcsprotocol -
258 v Shine et
138114188
8 558

rcrunceprotocol -

Sopid. < 0272472008
2T Snebtbug Srer i Ta esappandEere 62/25/2005

7 eSopid. cpp” S
238ppentBers

Srtbebug . srcri 1

v Ul l.lldL
Finds correlated information
Facilitates better summarization and reasoning
Is fast and easy to use

Contribution

* Graph based diagnosis for distributed systems
— Execution graph to capture correlations
— Graph based diagnosis operators
* Slicing for finding & filtering
* HierarchicalAggregation for summarization
* Declarative diagnosis queries

— Integrated with Microsoft LINQ
e Distributed engine

— Integrated relational computation and graph traversal

— Optimizations based on the characteristics of the
execution graph and diagnosis operators

Model
Engine
Programming

Evaluation

Outline

Capture Correlations

Replica 1

Master

Execution is Graph

Time >

] , req — s
Client 1 C] issue

- ot P
Client 2 C] printf issue

veser ([~ (3~ i
" e use forward forward L

Vo

Slicing: Find the correlated subgraph and filter
others by traversing the execution graph

Time >

] , req — s
Client 1 C] issue

- ot P
Client 2 C] printf issue

reqs reqs regs
Master | J—] L L e

//Error log analysis
Events

.Where(e => (e.Val.Type == EventType.LOG_ERROR)

&& e.Val.Payload.Contains("Write request failed"))
.Slicing(Slice.Backward)
.Select(e => Console.WritelLine(e.Val.Payload));

Slicing: Find the correlated subgraph and filter
others by traversing the execution graph

Time >

. : req — s
Client 1 C] issue
issue

Client 2

reqs reqs regs
MaSter C]_> _— @ use forward forward @ e

Events XD \
.Where(e => (e.Val.Type == EventType.LOG_INRORMATION

&& e.Va oad.Contains(“Start ClientRequest()"))
.Slicing(Slice.Forward

.Select(e => Console.WritelLine(e.Val.Payload));

HierarchicalAggregation: Summarize details
by traversing the execution graph

T R Slicing - - -
//HleraPchlcalAggregatlon :::::t> .77,,
Events - ‘-

.Where(e => e. Val Location.Name == "SubmitWriteReq"?ﬂ_

.Slicing(Slice. Fbrward) —
H1erarch1ca1Aggregate(e => e.Val.Process.Machine. Slgnatyre,
evts => evts.First().Val.Process.Machine.Name);

Aggregation
A A ;
Network || Message::DoExecution (12) | Machine 0 Primary (440)
Zoom In \?epllcateerte
Replication ReplicateWrite (149) WriteRequestFailed (24) Machine 1 Secondary 1 (144)
/ J ReplicateWrite
I/0 | SerializedlOWrite (17) Machine 2 | Secondary 2 (202) |

S
7

Time Time

Understand Execution Graph

Execution graph is rather huge

— A 2-hour SCOPE/Dryad graph has over 1.2 billion vertices,
0.54 billion edges, and lots of user payload(logs)

Connected subgraph is also huge

— However, intra-machine interactions are much more than
inter-machine ones(91% vs 9% in SCOPE/Dryad graph)

Graph structure data is relatively small
— User payload is over 64% in storage

Iterative access to graph structure data
— Concurrent traversals
— Aggregation follows slicing

Optimize Graph Access

Diagnosing tool as a distributed system
Optimal partition on graph data

— At machine boundary initially. Dynamic partitioning.
— Local data is stored in database

Caching

— Graph structure data in memory

— Retrieve payload only when necessary

Prefetching

— Get vertex properties during slicing, instead of during
aggregation

Understand Slicing & HierarchicalAggregation

* Latency is anissue
— More than 200 hops sometimes, due to deep paths
e Rigorous synchronization is not efficient
— Different from Page Rank/Belief Propagation
* Aggregation repeatedly colors local vertices with

the same aggregation identity
— Lots of local messages

Optimize Fast Execution Graph Traversal

Batched Asynchronous Graph Traversal

— Explore local vertices until reaching cross-partition edges without
synchronization

e Partition-level interface

— One traversal worker on each partition

— Direct access to the whole local graph data
— Local vertices could be condensed into super nodes in advance

Slicing Aggregation At Component

16 - L5 1.49 Level

14 -
12 - 1 - 1.8

OneHop Batched Batched + Partition OneHop Batched

[EEY
v N
=
N
N

0.8 -
0.6 -
0.4 -
0.2 -

Speedup

0.5 -

Speedup

Batched + Partition

¥ OneHop Batched M Batched + Partition H OneHop Batched M Batched + Partition

Play with G2

e Capture the graph

— Manual annotation, Binary rewriter and dynamic instrumentation

* Write simple C# queries

— Reuse existing relational operators in LINQ
— Slicing(Chopping) / HierarchicalAggregation
— Local Extensions: Diff, CriticalPath, ...

* Provide diagnosis wizards in Visual Studio

Critical Path | Fault Localization | Error Log Analysis = System Comprehension “Performance Regression

Time
+3.00%(0.002%)
TID 3912 Spawn<'nw\‘v‘6@< R“W -4.68%(0.000%) /+20.28%(0.000%)
TID 4136 Spawn<ConvertVertex::Run> ;
Spawn<LocalSched(ler::RunWorkers> +377.85%(0.014%)
Noti
Log o -43.86%(0.000%) y
TID 7832 |Spawn<CTheeadPool: DoW01k> Spawn<DbQuéry Vertex®
TID 8444
+6277.50%(99.965%)
Thread

Evaluation
N) T N T)) e

Berkeley DB 46164 92502 186597
G? 27 267,728 634,704 1,212,778 85 231 17 60

SCOPE/Dryad 1,577 3,128,105 8,964,168 (20,106,457 1,226 3,269 120 60

Table 1: Per node graph statistics

srems st [arormes [aramene | e |
e 2 GHZ dual core

Berkeley DB 1,542 23 8 GB

o
G2 197 - memory
SCOPE/Dryad 730 5 e Two 1 TB disk

1 Gb Ethernet

Table 2: Instrumentation statistics

300
250
200
150

[N
nn O
o O

Runing Time (seconds)

O -
1.E+00

End to End Query Performance

1.E+02

1.E+04

1.E+06

of Events

5770 random queries on the SCOPE/Dryad Graph
Events.Where (e => ...)

Slicing(Slice.Forward)
.HierarchicalAggregate(e => e.Val.Process.ID);

17

Related Work

e Execution Model

— Path based analysis
— Pure log analysis
— Static analysis

* Distributed Execution Engine and Storage
— Graph systems
— Map-reduce alike systems

e Diagnosis Platform

— Cloud9: Testing as a service
— Dapper: path analysis atop of BigTable

Conclusion

* Graph based diagnosis for distributed systems
— Slicing for filtering the logs
— Hierarchical Aggregation for summarization

* Graph engine with specific requirements

— Integrated relational computation and graph
traversal support

— Batched asynchronous graph traversal and
partition-level interface for better performance

A THE |

JENDJ

YY)

Thanks!

Generations for log structure and related tools:

Text

e Unstructured text

— Format: [AUTO: time, component, log level, pid, tid,
location], printf’ message

— Aggregation: by the meta information or keywords in
the unstructured message

* Pros

— Free style format

— Easy to process: grep
* Cons

— May miss many implicit dependencies among log
entries without shared tag (e.g., request id)

Generations for log structure and related tools:

Paths

 Path-based aggregation

— Format:
 [ANNOTATION: path id] + unstructured text

* Optional: [ANNOTATION] dependencies among log entries belonging to the
same path are captured

— Aggregation: by the user request id (path id)
* Pros
— Effective for request-centric analysis and modeling

— The logs are partitioned by request id, and each partition can usually
be handled by single machine

— A nice balance between usability and the overhead

* Cons

— Cut off interactions between requests, which is common in distributed
systems, such as batching

— Path is statically defined by the pre-defined requests’ only

Time >

. , req — s
Client 1 C] issue

- ot P
Client 2 C] printf issue

reqs reqs regs
Master (J—) L L e et o)

Avg Latency (mm:ss)

17:17
14:24
11:31
08:38
05:46
02:53
00:00

Scaling Performance

16 32
Worker Count

60

__08:38
4 07:12
£ 07:

£ 05:46
E; 04:19
@ 02:53
3 01:26
oT4]

Z 00:00

Small

- Large

0 O O
< o0

300
700
1,200
2,000

Concurrent Query Count

24

5,000

Graph Traversal Interface

TQueryable<T> GraphTraversal<TWorker>(
this Graph<TV, TE> g,
TQueryable<Vertex<TV, TE>> startVertices
) where TWorker : GPartitionWorker<TV, TE, , T>;

class GPartitionWorker<TV, TE, TMsg, T>

{
public Vertex<TV, TE> GetLocalVertex(ID VertexID);
—public void SendMessage(ID VertexID, TMsg msgi—
public void WriteOutput(T val);
public virtual void Initialize(VertexIterator<TV, TE>);
<—public virtual void OnMessage(Vertex<TV, TE>, TMsg msg)y;—
public virtual void Finalize();

class GPartitionSlicingWorker<TV, TE> : GPartitionWorker<TV, TE, bool, Vertex<TV, TE>>

{

private HashSet<ID> VisitedVertices;

public override void Initialize(VertexIterator<TV,TE> inits)

{
foreach (var v in inits)
{
SendMessage(v.ID, true);
}
}

public override void OnMessage(Vertex<TV,TE> v, bool msg)

if (VisitedVertices.Contains(v.ID)) return;
isd i .Add(v.ID);

oreach (var e in v.OutEdges)

if (e.IsCausal())
SendMessage(e.DstVertexID, true);

Experience using G2

Meta Server: m1

Chunk Server: c1 | Chunk Server: ¢2 ‘ Chunk Server: c3

Server start rver start

Send mesage ’-/,- -

e;en{e I
0 Protocol Network

/Thread Thread Thread

eplay log and sync chunk x

nd an empty write request

Forward write request e
21:2 -"w.‘- Debug steps
O Event
HERRE == Casual edge
ime i o sice
Rulind

27

Deployment Issues

* Capture the correlations

— Instrument the network and thread pool libraries to
capture the asynchronous transitions among threads
and machines

e Store and process the logs
— Option 1: dedicated graph engine (G?)
* Pros: complete support of G? diagnosis queries
e Cons: interference to host systems
— Option 2: in-app graph engine with latest logs
* Pros: lightweight, easy to deploy
e Cons: limited memory cache capacity (latest logs only)

