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Cost of Debugging

* The huge printing presses for a major Chicago |
newspaper began malfunctioning ... |

$10,000 = $1 + $9,999

Most bugs can be fixed quickly,
however identifying the root causes is hard.
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Motivation

e Diagnosing distributed systems is frustrating
Execution is too complex to comprehend
Tons of logs, but correlations are missing
Lost in the information sea
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Finds correlated information
Facilitates better summarization and reasoning
Is fast and easy to use




Contribution

* Graph based diagnosis for distributed systems
— Execution graph to capture correlations
— Graph based diagnosis operators
* Slicing for finding & filtering
* HierarchicalAggregation for summarization
* Declarative diagnosis queries

— Integrated with Microsoft LINQ
e Distributed engine

— Integrated relational computation and graph traversal

— Optimizations based on the characteristics of the
execution graph and diagnosis operators
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Capture Correlations
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Execution is Graph

Time >

] , req — s
Client 1 C] issue

- ot P
Client 2 C] printf issue

veser ([~ (3~ i
" e use forward forward L

Vo



Slicing: Find the correlated subgraph and filter
others by traversing the execution graph
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//Error log analysis
Events

.Where(e => (e.Val.Type == EventType.LOG_ERROR)

&& e.Val.Payload.Contains("Write request failed"))
.Slicing(Slice.Backward)
.Select(e => Console.WritelLine(e.Val.Payload));




Slicing: Find the correlated subgraph and filter
others by traversing the execution graph
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Events XD \
.Where(e => (e.Val.Type == EventType.LOG_INRORMATION

&& e.Va oad.Contains(“Start ClientRequest()"))
.Slicing(Slice.Forward

.Select(e => Console.WritelLine(e.Val.Payload));




HierarchicalAggregation: Summarize details
by traversing the execution graph
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evts => evts.First().Val.Process.Machine.Name);
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Understand Execution Graph

Execution graph is rather huge

— A 2-hour SCOPE/Dryad graph has over 1.2 billion vertices,
0.54 billion edges, and lots of user payload(logs)

Connected subgraph is also huge

— However, intra-machine interactions are much more than
inter-machine ones(91% vs 9% in SCOPE/Dryad graph)

Graph structure data is relatively small
— User payload is over 64% in storage

Iterative access to graph structure data
— Concurrent traversals
— Aggregation follows slicing



Optimize Graph Access

Diagnosing tool as a distributed system
Optimal partition on graph data

— At machine boundary initially. Dynamic partitioning.
— Local data is stored in database

Caching

— Graph structure data in memory

— Retrieve payload only when necessary

Prefetching

— Get vertex properties during slicing, instead of during
aggregation



Understand Slicing & HierarchicalAggregation

* Latency is anissue
— More than 200 hops sometimes, due to deep paths
e Rigorous synchronization is not efficient
— Different from Page Rank/Belief Propagation
* Aggregation repeatedly colors local vertices with

the same aggregation identity
— Lots of local messages



Optimize Fast Execution Graph Traversal

Batched Asynchronous Graph Traversal

— Explore local vertices until reaching cross-partition edges without
synchronization

e Partition-level interface

— One traversal worker on each partition

— Direct access to the whole local graph data
— Local vertices could be condensed into super nodes in advance

Slicing Aggregation At Component

16 - L5 1.49 Level

14 -
12 - 1 - 1.8

OneHop Batched Batched + Partition OneHop Batched

[EEY
v N
=
N
N

0.8 -
0.6 -
0.4 -
0.2 -

Speedup

0.5 -

Speedup

Batched + Partition

¥ OneHop Batched M Batched + Partition H OneHop Batched M Batched + Partition



Play with G2

e Capture the graph

— Manual annotation, Binary rewriter and dynamic instrumentation

* Write simple C# queries

— Reuse existing relational operators in LINQ
— Slicing(Chopping) / HierarchicalAggregation
— Local Extensions: Diff, CriticalPath, ...

* Provide diagnosis wizards in Visual Studio
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Evaluation
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Berkeley DB 46164 92502 186597
G? 27 267,728 634,704 1,212,778 85 231 17 60

SCOPE/Dryad 1,577 3,128,105 8,964,168 (20,106,457 1,226 3,269 120 60

Table 1: Per node graph statistics

srems st [ arormes [aramene | e |
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Berkeley DB 1,542 23 8 GB

o
G2 197 - memory
SCOPE/Dryad 730 5 e Two 1 TB disk

1 Gb Ethernet

Table 2: Instrumentation statistics
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5770 random queries on the SCOPE/Dryad Graph
Events.Where (e => ...)

Slicing(Slice.Forward)
.HierarchicalAggregate(e => e.Val.Process.ID);
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Related Work

e Execution Model

— Path based analysis
— Pure log analysis
— Static analysis

* Distributed Execution Engine and Storage
— Graph systems
— Map-reduce alike systems

e Diagnosis Platform

— Cloud9: Testing as a service
— Dapper: path analysis atop of BigTable



Conclusion

* Graph based diagnosis for distributed systems
— Slicing for filtering the logs
— Hierarchical Aggregation for summarization

* Graph engine with specific requirements

— Integrated relational computation and graph
traversal support

— Batched asynchronous graph traversal and
partition-level interface for better performance
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Generations for log structure and related tools:

Text

e Unstructured text

— Format: [AUTO: time, component, log level, pid, tid,
location], printf’ message

— Aggregation: by the meta information or keywords in
the unstructured message

* Pros

— Free style format

— Easy to process: grep
* Cons

— May miss many implicit dependencies among log
entries without shared tag (e.g., request id)



Generations for log structure and related tools:

Paths

 Path-based aggregation

— Format:
 [ANNOTATION: path id] + unstructured text

* Optional: [ANNOTATION] dependencies among log entries belonging to the
same path are captured

— Aggregation: by the user request id (path id)
* Pros
— Effective for request-centric analysis and modeling

— The logs are partitioned by request id, and each partition can usually
be handled by single machine

— A nice balance between usability and the overhead

* Cons

— Cut off interactions between requests, which is common in distributed
systems, such as batching

— Path is statically defined by the pre-defined requests’ only
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Graph Traversal Interface

TQueryable<T> GraphTraversal<TWorker>(
this Graph<TV, TE> g,
TQueryable<Vertex<TV, TE>> startVertices
) where TWorker : GPartitionWorker<TV, TE, , T>;

class GPartitionWorker<TV, TE, TMsg, T>

{
public Vertex<TV, TE> GetLocalVertex(ID VertexID);
—public void SendMessage(ID VertexID, TMsg msgi—
public void WriteOutput(T val);
public virtual void Initialize(VertexIterator<TV, TE>);
<—public virtual void OnMessage(Vertex<TV, TE>, TMsg msg)y;—
public virtual void Finalize();




class GPartitionSlicingWorker<TV, TE> : GPartitionWorker<TV, TE, bool, Vertex<TV, TE>>

{

private HashSet<ID> VisitedVertices;

public override void Initialize(VertexIterator<TV,TE> inits)

{
foreach (var v in inits)
{
SendMessage(v.ID, true);
}
}

public override void OnMessage(Vertex<TV,TE> v, bool msg)

if (VisitedVertices.Contains(v.ID)) return;
isd i .Add(v.ID);

oreach (var e in v.OutEdges)

if (e.IsCausal())
SendMessage(e.DstVertexID, true);




Experience using G2
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Deployment Issues

* Capture the correlations

— Instrument the network and thread pool libraries to
capture the asynchronous transitions among threads
and machines

e Store and process the logs
— Option 1: dedicated graph engine (G?)
* Pros: complete support of G? diagnosis queries
e Cons: interference to host systems
— Option 2: in-app graph engine with latest logs
* Pros: lightweight, easy to deploy
e Cons: limited memory cache capacity (latest logs only)



