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Big Data

“Industrial Revolution of Data”

* The heartbeat of mobile, cloud and social
computing

* Expanding faster than Moore’s law
- E.g., Internet of Things

What is Big Data?

* Too large to work with using traditional
tools (e.g., RDBMS)

* Require a new architecture

- Massively parallel software running on
100s~1000s of servers
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Dataflow Model for Big Data Analytics

Partitioned Aggregated

User
* Applications modeled as dataflow graphs MapReduce
* Write subroutines running on the vertices

* Abstracted away from messy details of
distributed computing
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What Worked

el - is hard Nontrivial software written with
Paralle programming Is har threads, semaphores, and mutexes

are incomprehensible to humans.
Edward A. Lee
e Dataflow model makes it a lot easier CGO 2007, March 2007

* Distributed programming is harder

Auto-Partitioning Compiler

An appropriately high level of abstraction _ for Intel Network Processor (IXP)
* User required to consider data parallelisms @

exposed by the dataflow (s

* Runtime distributes executions of
subroutines by exploiting data
dependencies encoded in the dataflow
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What Didn't Work

Dataflow abstraction makes Big Data system appear as a “"black
box"

* Very difficult for the user to understand runtime behaviors
* Performance analysis & tuning remain a big challenge

Key challenges of performance analysis for Big Data

* Massively distributed system
-  How to correlate concurrent performance activities (across 10000s of
programs and machines)?
* High level dataflow abstraction
-  How to relate low level performance activities to high level dataflow model?
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HiTune: “Vtune for Hadoop”

Task
Sampler )  ( Sampler )

Distributed instrumentations

I

Sampler
Task

=

* Lightweight sampling using binary
instrumentation
- No source code modifications

e Implemented using Java programming
language agents
- Generic sampling information collected

@

Dataflow-driven analysis

* Re-constructing dataflow execution process
using low level sampling information
- Based on a dataflow specification

* Implemented as several Hadoop jobs

e

Dataflow diagram
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HiTune 0.9

Status
* Used intensively both inside Intel and by several [ Hive Query Excel Spreadsheet
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Overhead

Ratio of instrumented vs. uninstrumented clusters
e Less than 2% runtime overhead due to instrumentation
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The Hadoop Dataflow Model

Partitione

Map Tasks

Reduce Tasks
\ggregated

Output

=P Streaming dataflow ‘ Sequential dataflow
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Case Study: Limitation of Traditional Tools

Sorting many small files (3200 500KB-sized files) using Hadoop 0.20.1
* Cluster very lightly utilized (extremely low CPU, disk I/0 and network utilization)
* No obvious bottlenecks or hotspots in the cluster

* Traditional tools (e.g., system monitors and program profilers) fail to reveal the
root cause
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Case Study: Limitation of Traditional Tools

HiTune results (dataflow execution) reveal the root cause
* Upgrading to “Fair Scheduler 2.0"” fixes the issue

Dat_aflow The Low Utilization Issue The Fix
Execution Chart
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Case Study: Limitation of Hadoop Logs

TeraSort

Large gap between end of map and end of
shuffle

- None of CPU, disk I/0 and network bandwidth
are bottlenecked during the gap

“Shuffle Fetchers Busy Percent” metric
reported by Hadoop is always 100%

- Increasing the number of copier threads brings
no improvement

Traditional tools or Hadoop logs fail to
reveal the root cause
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Case Study: Limitation of Hadoop Logs

HiTune results (dataflow-based hotspot breakdown) reveal the root cause
* Copier threads idle 80% of the time, waiting for memory merge thread
* memory merge thread busy mostly due to compression

Copier threads Memory Merge threads

pss, 81%
Idle,

* Changing compression codec to LZO fixes this issue
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Case Study: Extensibility

Easily extended to support Hive

e Simply changing the dataflow
specification

-~ Hive data flow stage timeline -|
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Active

Aggregation query in Hive performance benchmarks
* 68% of time spent on data input/output, Hadoop/Hive initialization & cleanup

Active

* Critical to reduce intermediate results, improve data input/output, and reduce
Hadoop/Hive overheads
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Summary

HiTune - “VTune for Hadoop”

* Better insights on Hadoop runtime behaviors
- Dataflow-based analysis

* Extremely low runtime overheads
* Very good scalability & extensibility

* v0.9 open sourced under Apache License 2.0
- See https://github.com/hitune/hitune
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Amazing things happen with Intel inside®
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