
Semantics of Caching with SPOCA - A
Stateless, Proportional,
Optimally-Consistent Addressing
Algorithm
Ashish Chawla, Benjamin Reed, Karl Juhnke, Ghousuddin Syed
Yahoo! Inc

Video Platform

6/21/11 2

Video Platform

6/21/11 3

Simple Content Serving Architecture

6/21/11 4

Outline

§ Introduction
§ Problem Definition
§ SPOCA and Requirements
§ Evaluations
§ Conclusion

6/21/11 5

The Problem

§ The front-end server disks are a secondary bottleneck.

§ Eliminating redundant caching of content also reduces the
load on the storage farm.

§ An intelligent request-routing policy can produce far more
caching efficiency than even a perfect cache promotion
policy that must labor under random request routing.

§ The cache promotion algorithm not enough.

6/21/11 6

Problems from Geographic Distribution

6/21/11 7

Problems from Geographic Distribution

6/21/11 8

Reque
sts v7

Problems from Geographic Distribution

6/21/11 9

Outline

§ Introduction
§ Problem Definition
§ SPOCA and Requirements
§ Evaluations
§ Conclusion

6/21/11 10

Requirements

§ Merge different delivery pools and manage the
diverse requirements in an adaptive way.

§ Minimize caching disruptions when front-end
server leaves or enters the pool - re-address as
few files as possible to different servers.

§ Proportional distribution of files among servers
does not necessarily result in a proportional
distribution of requests (Power Law)

6/21/11 11

SPOCA and Zebra

§ Used in production in a global scenario for web-scale
load.

§ Shows real world improvements over the simple off-the-
shelf solution.

§  Implements load balancing, fault tolerance, popular
content handling, and efficient cache utilization with a
single simple mechanism.

6/21/11 12

Traditional Approach

6/21/11 13

Complete Picture

6/21/11 14

Complete Picture – Inside Data Center

6/21/11 15

Zebra Algorithm

§  Handles the geographic component of request routing and
content caching

§  Based on content popularity, Zebra decides when requests
should be routed to content’s home locale and when the
content should be cached in the nearest locale

§  We use bloom filters to determine popularity.

6/21/11 16

Tracking popularity

6/21/11 17

add(vid1)

Bloom
Filter

Checking Popularity

6/21/11 18

contains(vid1)

Bloom
Filter

What’s the problem here?

§ Everything will become popular.
§ No way to expire content in bloom filter
§ We use a sequence of bloom filters to track

popularity.

6/21/11 19

Bloom Filter Representation

0

• vid1
• vid5

1

• vid8
• vid526

2

• vid2
• vid752

6/21/11 20

Bloom Filter Representation

0 1

• vid1
• vid5

2

• vid8
• vid526

6/21/11 21

Bloom Filter Representation

0 1

• vid1
• vid5

2

• vid8
• vid526

6/21/11 22

add(vid8)

Bloom Filter Representation

0

• vid8

1

• vid1
• vid5

2

• vid8
• vid526

6/21/11 23

Bloom Filter Representation

0

• vid8

1

• vid1
• vid5

2

• vid8
• vid526

6/21/11 24

contains(vid3)

Bloom Filter Representation

0

• vid8

1

• vid1
• vid5

2

• vid8
• vid526

6/21/11 25

contains(vid3)

Unified Filter

vid1, vid5, vid8, vid526

Key Points

§ Zebra determines which serving cluster will
handle a given request based on geolocality and
popularity.

§ SPOCA determines which front-end server within
that cluster will cache and serve the request.

6/21/11 26

SPOCA Algorithm

§ Goal: Maximize cache utilization at the front-end servers.

§ Simple content to server assignment function based on a
sparse hash space.

§ Each front-end server is assigned a portion of the hash
space according to its capacity.

§  The SPOCA routing function uses a hash function to map names to a
point in a hash space.

›  Input = the name of the requested content

›  Output = the server that will handle the request.

§ Re-hashing happens till the result maps to a valid hash
space.

6/21/11 27

SPOCA hash map example

6/21/11 28

Failure Handling

6/21/11 29

Elasticity

6/21/11 30

Popular Content

§ SPOCA minimizes the number of servers to maximize the
aggregate number of cached objects.

§ For popular content we need to route requests to multiple
front-end servers.

§ We store the hashed address of any requested content for
a brief popularity window, 150 seconds in our case.

§ When the popularity window expires, the stored hash for
each object is discarded.

6/21/11 31

6/21/11 32

6/21/11 33

Outline

§ Introduction
§ Problem Definition
§ SPOCA and Requirements
§ Evaluations
§ Conclusion

6/21/11 34

Scaling 5x w/o software improvements

6/21/11 35

Scaling 5x with software improvements

6/21/11 36

Memory cache hits

6/21/11 37

Cache Hit and Misses*

2/26 3/1 3/5 3/7 3/10 3/14
Download Cache Miss 9.7% 7.2% 4.3% 3.7% 1.8% 0.4%
Download Cache HIT 90.3% 92.8% 95.7% 96.3% 98.2% 99.6%
Flash Cache Miss 21.8% 13.5% 22.0% 14.8% 2.5% 0.7%
Flash RAM hit 57.2% 81.4% 66.1% 71.5% 90.0% 90.1%

6/21/11 38

* Download and Flash Pools in S1S data center

Conclusion

§ Zebra and SPOCA do not have any hard state to maintain
or per object meta-data

§ Eliminates any per object storage overhead or
management, simplifying operations.

§ Consolidate content serving into a single pool of servers
that can handle files from a variety of different workloads.

§ Decouple serving and caching layers.

§ Cost savings and end user satisfaction are key success
metrics.

6/21/11 39

6/21/11 40

