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Simple Content Serving Architecture 
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The Problem 

§ The front-end server disks are a secondary bottleneck. 

§ Eliminating redundant caching of content also reduces the 
load on the storage farm.  

§ An intelligent request-routing policy can produce far more 
caching efficiency than even a perfect cache promotion 
policy that must labor under random request routing. 

§ The cache promotion algorithm not enough. 
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Problems from Geographic Distribution 
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Requirements 

§ Merge different delivery pools and manage the 
diverse requirements in an adaptive way. 

§ Minimize caching disruptions when front-end 
server leaves or enters the pool - re-address as 
few files as possible to different servers. 

§ Proportional distribution of files among servers 
does not necessarily result in a proportional 
distribution of requests (Power Law) 
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SPOCA and Zebra 

§ Used in production in a global scenario for web-scale 
load. 

§ Shows real world improvements over the simple off-the-
shelf solution. 

§  Implements load balancing, fault tolerance, popular 
content handling, and efficient cache utilization with a 
single simple mechanism. 
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Traditional Approach 
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Complete Picture 
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Complete Picture – Inside Data Center 
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Zebra Algorithm 

§  Handles the geographic component of request routing and 
content caching 

§  Based on content popularity, Zebra decides when requests 
should be routed to content’s home locale and when the 
content should be cached in the nearest locale 

§  We use bloom filters to determine popularity.  
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Tracking popularity 
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What’s the problem here? 

§ Everything will become popular. 
§ No way to expire content in bloom filter 
§ We use a sequence of bloom filters to track 

popularity. 
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Bloom Filter Representation 

0 

• vid1 
• vid5 

1 

• vid8 
• vid526 

2 

• vid2 
• vid752 

6/21/11 20 



Bloom Filter Representation 

0 1 

• vid1 
• vid5 

2 

• vid8 
• vid526 

6/21/11 21 



Bloom Filter Representation 

0 1 

• vid1 
• vid5 

2 

• vid8 
• vid526 

6/21/11 22 

add(vid8) 



Bloom Filter Representation 
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Bloom Filter Representation 
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Key Points 

§ Zebra determines which serving cluster will 
handle a given request based on geolocality and 
popularity. 

§ SPOCA determines which front-end server within 
that cluster will cache and serve the request. 
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SPOCA Algorithm 

§ Goal: Maximize cache utilization at the front-end servers. 

§ Simple content to server assignment function based on a 
sparse hash space.  

§ Each front-end server is assigned a portion of the hash 
space according to its capacity. 

§  The SPOCA routing function uses a hash function to map names to a 
point in a hash space. 

›  Input = the name of the requested content  

›  Output = the server that will handle the request.  

§ Re-hashing happens till the result maps to a valid hash 
space. 
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SPOCA hash map example 
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Failure Handling 

6/21/11 29 



Elasticity 
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Popular Content 

§ SPOCA minimizes the number of servers to maximize the 
aggregate number of cached objects. 

§ For popular content we need to route requests to multiple 
front-end servers. 

§ We store the hashed address of any requested content for 
a brief popularity window, 150 seconds in our case. 

§ When the popularity window expires, the stored hash for 
each object is discarded. 
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Scaling 5x w/o software improvements 
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Scaling 5x with software improvements 
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Memory cache hits 
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Cache Hit and Misses* 

2/26 3/1 3/5 3/7 3/10 3/14 
Download Cache Miss 9.7% 7.2% 4.3% 3.7% 1.8% 0.4% 
Download Cache HIT 90.3% 92.8% 95.7% 96.3% 98.2% 99.6% 
Flash Cache Miss 21.8% 13.5% 22.0% 14.8% 2.5% 0.7% 
Flash RAM hit 57.2% 81.4% 66.1% 71.5% 90.0% 90.1% 
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* Download and Flash Pools in S1S data center 



Conclusion 

§ Zebra and SPOCA do not have any hard state to maintain 
or per object meta-data 

§ Eliminates any per object storage overhead or 
management, simplifying operations. 

§ Consolidate content serving into a single pool of servers 
that can handle files from a variety of different workloads. 

§ Decouple serving and caching layers. 

§ Cost savings and end user satisfaction are key success 
metrics. 
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