
Usenix ATC’11

Raluca Ada Popa, MIT; Jacob R. Lorch, David Molnar, Helen J. Wang,
and Li Zhuang, Microsoft Research

Mo#va#on	

 A main concern is security
  Data leakage/corruption due to bugs, hackers,

 employees
  Many customers perceive security as main concern

  Cloud storage provides extensive resources,
 scalability, and reliability

Security	
 proper#es	

  Confidentiality (C): only authorized users can read data
  Integrity (I):

  Each get returns the content put by an authorized user
  Write-serializability (W):

  Each user committing an update is aware of the latest
 update to the same block

  Freshness (F):
  Each get returns the data from the latest committed put

Problem: cloud services do not guarantee security
in SLAs

Need proofs of misbehavior

CloudProof	

1.  Security mechanisms needed for SLAs with security:
  Detection of violations for integrity, write-serial., and

 freshness (IWF)
  Publicly-verifiable proofs of violation for IWF

  Any external party can be convinced of cloud
 misbehavior

  Users cannot falsely accuse cloud

2.  Scalable design of security mechanisms
  Scalable access control using modern cryptographic

 tools

  A secure storage system for the cloud:

Model	

•  fully untrusted

Data owner

Data users

Cloud
•  assigns permissions
to users (R, RW)

•  may attempt to bypass
permissions

Application

get/put
blocks

•  may try to
frame the cloud

Strawman	

For each block:
  Confidentiality: owner gives a secret key for

 encryption, sk, to allowed readers
  Integrity: owner gives public key pair for

 signing, SK, PK to allowed writers

Block

Encsk[content]

SigSK[encr. content]

  Problems:
  No detection for write-serial., freshness
  No proofs of violation
  Access control/key distrib. not scalable

in this talk

see paper

Version no.

Detec#on	
 and	
 proofs	
 of	
 viola#on	
 for	
 IWF	

  Attestations

Cloud User

get(block id)

block content, cloud-get-attestation

put(block id, content), client-put-attestation

 cloud-put-attestation

  Proofs verifiable by any outside party
  Non-repudiable signature scheme [Micali et. al.,’99]
  Each party verifies attestation signatures

Audi#ng	

  Integrity: users check attestations from cloud

  W and F: Owner does probabilistic auditing
  Time divided in epochs (e.g., day)

0.5 1 0.1 0.2 0.2 probability:

  Only owner and authorized users know in which epochs
 a block is audited

B1 B3 B5 B2 B4

During	
 the	
 epoch	

B2 B4

Cloud Users
get..

…, cloud-get-attestation

put …
 cloud-put-attestation

Cloud
Users

put..
…, cloud-put-attestation

put …
 cloud-put-attestation

Data owner cloud-get-attestation
 cloud-put-attestation
 cloud-put-attestation
cloud-put-attestation

At	
 the	
 end	
 of	
 epoch	

  For the blocks to audit:
  Owner requests all cloud-attestations from the

 cloud
  Audits attestations from clients and from cloud
  Audit guarantees write-serial. and freshness for

 entire epoch

A@esta#on	
 Structure	

“CLOUD
GET

ATTEST.”

BLOCK
ID …

Hashed and
signed by

cloud

“USER
PUT

ATTEST.”

BLOCK
ID … Hashed and signed

by user with SK

“CLOUD
PUT

ATTEST.”

BLOCK
ID

NEW
VERSION

NO.
…

Hashed and
signed by

cloud

NEW
VERSION

NO.

 VERSION
NO.

Integrity	

  Detection: signature does not verify

“CLOUD
GET

ATTEST.”

BLOCK
ID

BLOCK
VERSION

NO.
…

Hashed and
signed by

cloud

Block

Encsk[content]
version no.

SigSK[encr. content]

BLOCK
HASH

  Proof of violation: attestation

Write-­‐serializability	

  Detection: Fork in sequence of put attestations
  Proof of violation: the forked sequence of attestations

version 4, hash: xd242

version 5, hash: xae97 version 5, hash: x3166

fork

“CLOUD
PUT

ATTEST.”

BLOCK
ID

NEW
VERSION

NO.
…

Hashed and
signed by

cloud

NEW
BLOCK
HASH

Freshness	

  chain	
 hash	
 =	
 hash	
 (data	
 in	
 current	
 a@esta#on,	
 previous	
 a@esta#on)	

  Detection: attestations do not chain correctly

“CLOUD
GET

ATTEST.”

BLOCK
ID

BLOCK
VERSION

NO.

Hashed and
signed by

cloud

“CLOUD
PUT

ATTEST.”

BLOCK
ID

NEW
VERSION

NO.

Hashed and
signed by

cloud

NEW
HASH

BLOCK
HASH

CHAIN
HASH

CHAIN
HASH
…

…

Freshness	
 (cont’d)	

  Detection: attestations do not chain correctly

  Proof of violation: broken chain of attestations

Cloud Users
put: blockid 5, hash x18, …

 A1 = (cloud-put-attestation, blockid 5, version 1,
hash x18, …)

put: blockid 5, hash x22, …
A2 = (cloud-put-attestation, blockid 5, version 2,
hash x22, h(A1, data in A2), …)

get: blockid 5

 A3 = (cloud-get-attestation, blockid 5, version 1, hash x18,

h(A1, data in A3)? h(A2, data in A3)? Detected!

Implementa#on	

  C#, Windows Azure:
  Storage component: blobs and queues
  Compute component: web and worker roles

  Four modules: owner, user, cloud, auditor
  .NET crypto tools: AES, SHA-1, RSA

Evalua#on	

  What is the overhead at users/cloud?
  Latency/throughput

  What is the workload of the owner?
  Access control/auditing

User/server	
 overhead	

  Mostly from sign-verify of attestations

SIGN VERIFY

SIGN VERIFY

  Delay added per request: 30 ms at server, 40 ms at user
  Can optimize: e.g., batch many attestations in one

 signature using a Merkle hash

  Throughput scales roughly linearly at server

Owner	
 work	

  Two offline tasks:

  Key distrib.: for a widely-used software with > 5000
 developers, membership changes take <1.6 sec/month

  Auditing cost is modest and parallelizable

•  4 min for 108 attestations

  Detection probability increases exponentially in no. of
 epochs of violation

Related	
 work	

  Secure file/storage systems (e.g., SiRiUS, SUNDR, Plutus):
  No proofs of violation
  No W and F detection due to different model
  Access control not as scalable

  Proofs of retrievability/possession (e.g., POR, HAIL)

  Byzantine fault tolerance (e.g., BFT)

Conclusions	

  CloudProof is a secure storage system for the cloud:
  Detection of WF via auditing
  Proofs of violation for IWF via attestations
  Scalable access control using broadcast encryption

Thanks!

