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Abstract uration data. These types of errors are commonplace
Software failures due to configuration errors are com-and can be introduced in many ways, such as operator

monplace as computer systems continue to grow |argep1|stakes, software updates or even software bugs that

and more complex. Troubleshooting these configura-com”:’t configuration data. For example, a software up-

tion errors is a major administration cost, especially indate may turn off the “AutoComplete” option for a Web

server clusters where problems often go undetected Withprowser, which, as: re;ult, C"’?Q notlcl)nger reTeFé)er user-
out user interference. names or passwords. An accidental menu click by a user

This paper presentsobe-a tool that automatically may corrupt a configuration entry and cause an applica-

detects software configuration errors. Our approach ié'?_n t(;ﬁlkiadr_to gl'saeﬁei[' {A‘ s)e(emmtglyl/ benign user f{)pdelr'
based on identifying invariant configuration access ruledtion that disables the ActiveA control can unexpectedly

that predict what access events follow what contexts. IP'SV?/ble the_;emote f(_jesktc_)p ag)phcstlon. . :
requires no source code, application-specific semantics, e consider conhiguration data because It captures im-

or heavyweight program analysis. Using these rulespor.tant OS and application settings: Fur?her, the data is
CODE can sift through a voluminous number of eventstyp'ca”y accessed through well defined interfaces such

and detect deviant program executions. This is in conS Windows Registries. We can thus treat the applica-

trast to previous approaches that focus on only diagnoyons and the OS as black boxémnsparentlyintercept-

sis. In our experimentscoDE successfully detected a ing and checking configuration accessing events (called

real configuration error in one of our deployment ma- eventshereafter). This approach is lightweight: it does

chines, in addition to 20 user-reported errors that wehot require modifying the OS [13] or using virtual ma-

reproduced in our test environment. When analyzingCh\'/T/esf[zg]' Wind h cat h
month-long event logs from both user desktops and pro-_ ''¢ '0CUS on '3 ows, w erfg appllcatéons use the
duction serverscoDpE yielded a low false positive rate, Redistry to store and access configuration data. In partic-

The efficiency ofcoDE makes it feasible to be deployed U/, We l0g all Registry events and analyze them online
as a practical management tool with low overhead to automatically detect errors. While Windows has the

largest OS market shafeand is also the focus of many
previous efforts [26], our methodologies can be general-
ized to other types of OS and configuration data.
Software configuration errors impose a major cost on Analyzing configuration-access events automatically
system administration. Configuration errors may re-for error detection faces three practical challengestFirs
sult in security vulnerabilities, application crashes; se we need to efficiently process a huge number of events.
vere disruptions in software functionality, unexpectedA typical Windows machine has on average 200 thou-
changes in the Ul, and incorrect program executions [7]sand Registry entries [26], wittD® to 10® access events
While several approaches have attempted to automateer day [23]. Commonly used learning techniques
configuration error diagnosis [2, 20, 26, 29], they rely (e.9., [1, 28]) rarely scale to this level.
solely on manual efforts to detect the error symp- Second, we must automatically handle a large set of
toms [20, 26, 29]. As usual, manual approaches in-diverse applications. Different applications may have
cur high overhead (e.g., requiring users to write error-drastically different configuration access patterns. €hes
detection scripts for each application) and are unreliablepatterns may evolve with user behavior changes or soft-
(e.g., security policy errors may show no user-visible ware updates.
symptoms). These drawbacks often lead to long delays Finally, our analysis must effectively detect errors
between the occurrence and the detection of errors, causvithout generating a large number of false positives.
ing unrecoverable damage to system states. Configuration data is highly dynamic: there are, on av-
In this paper, we aim to automatically detect config- erage,10* writes to Registry per day per machine, and
uration errors that are triggered by changes in config-10? of them are writes to frequently accessed Registries

1 Introduction

*This work was done when the authors were at Microsoft Rebearc ~ 1Specifically, Windows has 91% of client operating system mar-
Silicon Valley. ket [22, 31] and 74% of server market [10].



that have never changed before. Application runtime betacks. We view our focus on frequent event sequences
haviors such as user inputs, caching, and performancas a good tradeoff. The high access frequencies indicate
optimizations may all add noise and unpredictability tothat errors in these events are more critical. Moreover,
configuration states, making it difficult to distinguish be- our detection takes place at the time when erroneous con-
tween real errors and normal updates. figurations are accessed and manifest. Hence, these er-
In this paper we presemODE, an automatic online rors are the ones that actually affected normal program
configuration-error detection tool for system administra-executions, andoDE naturally concentrates on them.
tors. CODEIs based on the observation that the seemingly This paper is organized as follows. We first discuss re-
unrelated events are actually dependent. The events ejated work in Section 2 and introduce Windows Registry
ternalize the control flow of a program and typically oc- and a motivation example in Section 3. We then present
cur in predictable orders. Therefore, a sequence of evenn overview ofcoDE in Section 4. We next describe its
provides thecontexiof a program’s runtime behavior and rule learning (Section 5) and error detection (Section 6).
often implies what follows. Further, the more frequently We show our evaluation results in Section 7. Finally, we
a group of events appear together, the more correlatediscuss our limitations and future work (Section 8) be-
they should be. fore we conclude (Section 9).
Thus, rather than analyzing each event in isolation,
CODE extractsrepetitive, predictablesvent sequences, 2 Related Work

and constructs invariant configuration access rules in thq_o our best knowledgesopE is the first automatic sys-

form of contewt — cvent that a program should fol- tem for online configuration error detection. Below we
low. coDE then enforces these rules and reports out-of- g '

. discuss related work on configuration-error diagnosis
context events as errors. By tracking sequencemE : 'gurat diag
nd sequence-analysis based intrusion detection.

also enables richer error diagnosis than looking at eac@ . ) . . : .
onfiguration error diagnosis. Several diagnosis

individual event. Once obEdetects an error, it also sug- wols have been developed t st administrator
gests a possible fix based on the context, the expecte(?0 > have been developed 1o assist a strators

event, and the error event. in diagnosing software failures. ConfAid [2] uses

: information-flow tracking to analyze the dependencies
We implemented€oDE as a stand-alone tool that runs . .
) ) . between the error symptoms and the configuration en-
continuously on a single desktop for error detection. It_. . .
. , tries to identify root causes. Autobash [20] leverages
can also be extended to support centralized configura: . . .
: . . S-level speculative execution to causally track activi-
tion management in data center environments. Our eval= : :
. : ._ties across different processes. Chronus [29] uses virtual
uation, using both real user desktops and production . . N . X
machine checkpoints to maintain a history of the entire

SErvers, shows th"fu the context-based approach has fog)r/stem states. KarDo [14] automatically applies the ex-
desirable features:

L . isting fix to a repeated configuration error by searchin
e Application independent:CODE requires no source 9 P g y 9

d licati i h iaht for a solution in a database. SherLog [33] uses static
code, application semantics, or heavyweigi programanalysis to infer the execution path based on the runtime
analysis to generate contexts; it can automatically conrog| messages to diagnose failures

struct rules to represent_more than 80% of events for Another family of tools compares the configuration

most prOf:esses we studied. data in a problematic system with those in other systems
o Effective: COD;succ_essfuIIy detected %II reproduced to pinpoint the root cause of a failure [12, 26, 27]. They

real-world configuration errors and 96.6% of randomly focus on the snapshots of configuration states, and use

:]rzglegoi;:glrﬁ;rt]ig:Ze?rXoF;eC)nrlm;(r:](t)Sa?J?han:’lsS%gslfg;ed statistical tools to com pare either_higtorical snapshots_o

) . o~ " shapshots across machines. While it may seem feasible

* Configurable false positive rat_e.Slnce CODE T€= 14 extend these state-based approaches for error detec-
ports only out-of-context events instead of new eventSyion, our experiments showed that such approaches will

it will not report normal configuration changes as generate a large number of false positives due to the noise

Ia::arrr:s.XFurrtirr]T?r,nttheitf?Ise rp:osﬂvevrarte IS cfo gf'296u\:\?brlr?'in configuration states (e.g., constant state modifications
In our expenments [t reports an average of o. am-yy legitimate updates). In contragtpDE reasons about
ing per desktop per day and 0.06 per server per day.

actionsrather than states for error detection.
e Low overhead: coDE keeps only a small number of

rules for detection and processes events as they arrivg The existing systems discussed so far have enhanced
. . ff-line diagnosis of configuration errors. However, the
online. The CPU overhead is small (less thaf over g g y

. . all require users or administrators to detect configuration
0,

99% of the time). The memary overhead is less thanerrors. In contrastcODE focuses on automatic error de-
0.5% for data-center servers with 16GB memory.

tection (it can further aid error diagnosis). The impor-
We explicitly designedcoDE to detectconfiguration  tance of having an automatic detection system is also
errors; our goal isotto catch all errors or malicious at- recognized in [19]. Due to the complex dependencies



of modern computer systems, detecting faulty configura- Key: HKEY_LOCAL _MACHINE\Software Perl
tion states as early as possible helps to isolate the dam- Value: _ |BinDir

age and localize the root cause of a failure, especially Data: C:\Perh\bin\perl.exe

in server clusters or data centers with thousands of user- OPerationjQueryvalue

unmonitored machines. Status: | Success

Software resilience to configuration errors Candea
etal. proposed atool called ConfErr for measuring a sys-

Table 1: An example Windows Registry operation.

tem’s resilience to configuration errors [4, 11]. ConfErr Averagd Maximum
automatically generates configuration mistakes using hu- Data modification| 1051 | 5505
man error models rooted in psychology and linguistics. Key/Value creation 883 | 32676
ConfErr andcobe differ in their purposes. ConfErr can Key/Value deletion 172 | 4997
help improve software resilience to configuration errors Total 2106 | 43178

and thus prevent errors from occurring, whit@De can Table 2: Average and maximum number of Registry update

be used to dete_Ct and diagnose configuration errors OnC(fberations/process/day (across 115 processes on a regular user
they occur and is thus complementary. desktop over one month period).
Sequence analysis. A large number of intrusion detec-

tion systems (IDS) identify intrusions with abnormal sys- i )
tem call sequences (e.g., [6, 9, 24, 32]). They 3.1 Windows Registry

construct models of legal system call sequences by anyjindows Registry is a centralized repository for soft-
alyzing either the source code or the normal executions i'@vare, hardware, and user settings on Windows machines.
an off-line learning phase. A deviation from the learnedThjs repository makes it easy for different system com-
models is flagged as an intrusion. _ ponents to share and track configurations.

By analyzing event sequences to identify predictable \y;hqows Registry is organized hierarchically, closely

patterns, CODE shares similar benefits to run-time oqompjing a file system. Each Registry entry is uniquely

system-call analysis. However, our focus on configura-ldemiﬁed by a Registry key and a Registry value. A Reg-

tion events instead of system calls leads to significantlylstry key resembles a directory and a Registry value a
different design decisions. Configuration access patterngia name. A key may contain multiple subkeys and val-
constantly evolve, so off-line analysis used in IDS sys- .5 Given a key/value pair, Windows Registry maps it
tems risks overfitting and producing outdated rules. Furq Registry data, which resembles the content of a file.
ther, while IDS systems have to prevent sophisticated atpye reatter, we will refer to Registry keys, Registry val-
tacks [25] using conservative, non—detgrm|n|st|c modglsues, and Registry data as Keys, Values, and Data.

coDE explicitly focuses on the potentially more criti- Table 1 shows a Windows Registry entry example
cal frequent sequences using simple, deterministic rule ts Key is a hierarchical path name with root Key'
More importantly, the heavyweight learning algorithms HKEY _LOCAL_MACHINE, which stores settings generic
that IDS systems commonly use make them difficult toto all users. The Key in the example stores settings about

scale to the volume of configuration access events,. thua1e Perl application. The Value/Data specifies that the
these systems are often unable to adapt to dynamic 5611 executable is located at\Perhbin\perl.exe Win-

vironments online. In contrast, the focus of identifying dows Registry supports about 30 operations (e.g., Cre-
?nnI)(/:hlnrirl]?)rl!znéffr't(j:l'iztesneablgi(ggz_rt]gl as:pr;:t?]%c?sd?gto atekey and OpenKey), each with a return value indicat-
u Ic qu ys| pmg the success or failure of the operation. Table 1 shows

erate online. . .
. . a successful QueryValue operation (given a Key/Value
Prior work (e.g., [8, 15]) has also used event transrpair, fetch associated Data).

tions to build program t_)ehawor profiles. They mostly Previous studies have shown that a significant fraction
focus on depth-2 transitions on code call graphs. In con-

trast,CODE's event transition rules can consist of all pos- of cc_)nflguranon errors are due to W|n.dows Registry cor
sible lengths of prefixes, thus are more flexible and ex_rpptlons [71. Software_ bugs, user m|stakes,_ or appllga}—
pressive when representing event sequences as contexﬂcf?r.l updates can all trigger unexpected Registry modifi-
cations that lead to software errors. In many cases, even
o a single entry corruption may result in serious applica-
3 Background and A Motivating Example tion failures ranging from user-interface changes (e.g., a
In this section, we first introduce Windows Registry, menu or icon missing) to software crashes.

the default configuration store for Windows applications. While Windows Registry facilitates configuration ac-
We then present a motivating configuration-error exam-cess, it remains challenging to detect and diagnose con-
ple and show howcoDE can automatically detect and figuration errors due to the complex and dynamic nature
diagnose this error using contexts. of Windows Registry. The number of Registry entries



Key: HKLM\Software\Policies\Microsoft\W indows\W indowsU pdate In our deteCtiOﬂ,CODE identiﬁes that a rU|e inVOlV'

Op: OpenKey, Status: success, Value: ™, Data: ™ ing a frequent sequence of exactly 45 Registry accesses
Key: HKLM\Software\Policies\Microsoft\W indows\W indowsU pdate H H o H H _

, O tenalce. Sttie suscsss valie. WUseor is V|0Ia_ted. By examining this sequence and |ts_ occur
Data: hitp://sup-nam-nib redmond.corp. microsoft.com:80 rence timestamps, we find that these events are issued by
Key: HKLM\Software\Policies\Microsoft\W indows\W indowsU pdate ansvchost . exe processy which Synchronizes with an

3 Op: QueryValue, Status: sucess, Value: WUStatusServer,

update server and checks for available updates periodi-
cally (once per hour for Windows laptops). If there are
updates available, the checking process will proceed to
download and install the updates.

Data: http://sup-nam-nlb.redmond.corp.microsoft.com:80

4-26 | veey oeen (check other settings)

Key: HKLM\Software\Policies\Microsoft\W indows\W indowsU pdate\AU
27 Op: QueryValue, Status:not exist,

Value: DetectionFrequencyEnabled, Data:” Figure 1 shows this 45-event sequence. It be-
28 Key: HKLM\Software\Policies\Microsoft\Windows\Windo  wsUpdate\AU gins Wlth an OpenKey Operation on registry Key
(normal) Op: QueryValue, Status:not exist, Value: NoAutoUpdat e, Data:*” - i " . A
28 Key: HKLM\Software\Policies\Microsoft\Windows\Windo  wsUpdate\AU HKLM \...\WlndOYVSUpdate, which stores all the infor-
(error) Op: QueryValue, Status:0, Value: NoAutoUpdate, Data  :1 mation about Windows Update. NEHVChOSt . exe
2045 | (check other settings) accesses this Key and all its Values. For example, the

(normal)

second and third operations show tisatchost . exe
queries the URLs of the windows update server and the
status reporting server.

is huge—about 200K for an average machine, and this At the 28th eventsvchost . exe queries the Value
number is increasing [26]. Furthermore, Registry up-“NoAutoUpdate” (highlighted in Figure 1). Since this
dates are highly frequent. As shown in Table 2, the numValue does not exist during normal execution, the
ber of updates can be as high as tens of thousands p&ueryValueoperation will return “Value not found” and
process per day. Despite several recent proposals for agvchost . exe continues to check other automatic up-
tomatic mis-configuration diagnosis, configuration-errordate options. However, after the Value “NoAutoUp-

Figure 1: Registry access sequence of Windows update.

detection remains an open problem. date” is created with Data 1, the operation returns “Suc-
o cess”, causingvchost . exe to prematurely stop with-
3.2 A Motivating Example out further checks.

In this example, we illustrates howoDE can detect and Since thg 45-event sequence occurs frequently in nor-
mal executionCoDE will learn a set of rules from this

diagnose a real-world configuration error that disables . L . :
the Windows automatic update feature (i.e., switch the>eguence. In particular, it will identify the f|rsF 27 events
OS to the manual update mode). as the context for the 28th event. Thys,_ in the error
Given that Windows update often runs as a back Case CODE successfully detects the deviation. In addi-
tion, cobeknows (1) the context, the expected event and

ground task, users who normally leave automatlc-updat?he event actually happened and (2) what process and the

n will hardly notice that their com rs hav . . :
0 ' ha dly notice that t er co puters have Stc.)ppe.dUme at which the process created the problematic Value.
checking for updates. Previous tools do not help in this L
. . : *t can thus pinpoint the root cause and recover the error.
case because they diagnose configuration errors only a
ter users detect them. Consequently, this error may go

undetected, leaving security vulnerabilities not patcheq4 System Overview

and machines compromised. Early detection is thus critFrom a high level, our approach identifipsedictable

ical to alert users to reset this important safety feature. configuration-access rules from program executions for
This configuration error was reported when a usererror detection and diagnosis. From the example de-

removed a program that he or she thought was exscribed in Section 3, we see that each Windows update

traneous [30]. The program removal adds a Valuecheck triggers a sequence of 45 Registry accesses. This

“NoAutoUpdate” and Data 1 under the Key entire sequence is deterministic and thus predictable.
K = [HKLM \ Softwaré, Policies Microsoft, Windows\ This behavior is ncl)lt surfpl)rlsmg, a;s conf|gurat|?n—acces|s
WindowsUpdateAU] patterns are usually reflective of a program’s contro

flow. When a program runs the same code blocks with
Since an average process can have over 2000 Registsame/similar user inputs, the set of external events tend

modifications (i.e., writes) per day during its normal ex- to be same/similar and in order.

ecution (Table 2), we need to determine which modifica- We focus on only these predictable event sequences

tions are relevant to detection. One approach is to monin our detection. For each event in such a sequence, its

itor and report modifications to only frequently accessedpreceding event subsequence providestrgextfor the

Keys. However, our experiments show that this approacteurrent program execution point. A deviation from the

would generate 154 false alarms per desktop/day, an urpredicable event sequence suggests that the correspond-

acceptably high number. ing program’s control flow might have changed, which



[ Event collection module J intercepts all Registry operations and stores them in a
{& Epoch - : {L_) : buffer in highly compressed forms. It then writes them
Epoch i+l Time to disk periodically? Each event contains the following
Pg— Y A fields: event time-stamp, program name represented by
:Zfi;;i‘l‘:i’;z Mlatch pop— ‘ the entire file system path to the executable, command
1 against rules line arguments, process ID, thread ID, Registry Key,
Comstruct L Value, Data, opergtion type (e.g., OpenKey and Query-
a trie A W Diigf:;i::le Value) and operation status.
Expected: abc -> d The analysis module is implemented in C#. It includes
Observed: abc -> e a learning component and a detection/diagnosis compo-
Ge”?bactirj'es Update i nent. Both learning and detection are done by analyzing
abed-> Corrupted keys and cause: the event sequences at a per-thread level because they
 leaming . Analysis moduje-.... Detection faithfully follow the program’s control flow in execu-
_ ) tion. For compact representation, we fingerprint a Reg-
Figure 2: The CODE system architecture. istry event to generate a Rabin hash [18] by considering

may indicate the existence of configuration errors. In thisall of its fields excluding the time-stamp, the process ID,
case, the expected sequence and the actually observ@gd the thread ID.
one are further used to diagnose the error’s root cause. abc— d

However, not all configuration-access events are pre- context
dictable. A program’s runtime behavior such as caching,
optimizations, or the use of temporary files may all affect
the program’s control flow. Correspondingly, accessing ) ,
the configuration data will be less predictable. We may 1he leaming component takes the Registry event se-
observe a large number of temporary events, and eveflUeNCeS as input, and generates a seveft transition
the same set of events may exhibit completely differenfUleS Figure 3 shows an example rule. In this exam-
timing orders. The challenge is how to differentiate theP!€ @, b, andc each represents a unique Registry event.
two cases and identify only predictable patterns from al is rule means if we have observed events, andc in
voluminous number of events. sequence, then the next event is determined td. b

Given the complexity and dynamics of Windows Reg- Other words, event sequenascis the context of everd
istry, CODE must meet the following two requirements to I @nd only if abcwill be always followed byd with no
realize online detection and diagnosis: exceptions (We do not consider non-deterministic cases

B o whereabc can be followed by other events sucheass
e Efficient: The tool should have low timing com- majority of the important errors can be captured by de-
plexity in order to process events as they arrive interministic cases in our experience).
real time. The numﬁber OfSRGQISUy events to process  \we further require the number of occurrences of the
is on the order o10° to 10° per machine per day.  ryle sequence to exceed a certain threshold for it to be
guish true errors from volatile or benign changes.  that launched a process to group the set of threads shar-
, ) ing the common executable name and input arguments
_ We implementCoDE as a stand alone tool, monitor- pq frequency of a rule is thus measured over all the
ing each host independently (Section 8 discusses our desent sequences across a process group. Finally, the set
ployment ofcODEas a cgntrallzed manager for data CeNn-,¢ learned rules are updated periodically ¢ochsand
ters). We structur€ oDEInto two parts: an event Collec- gyqre4 in a rule repository as illustrated in Figure 2. We
tion module and an analysis module (Figure 2). Bothyefine anepochas a time period where we observe a
run S|r.nultaneo.usly asa p'|peI|ne. The collection mOd,'fixed number of events, so that the rules learned from
ule writes Registry operations to disk and the analysigyg gnoch can be applied immediately in the next epoch.
module reads them back for learning, detection, and di- The detection component takes the set of learned rules

agnosis. We chose this architecture to keep the coIIectiognd applies them to detect errors as new events arrive.
module simple; otherwise, it may perturb the monitored

processes. We chose files as the communication me'thOd 2The overhead is negligible, even when flushing the bufferyeve
between the two modules (instead of sockets) for flexibleminute [23].

control over analysis frequency (e.g., every few seconds SDifferent arguments often lead to different program exemuti

to minutes) paths for different tasks. Applications that launch at maeltioot time
' . . . often start with fixed arguments. In Windows, many applicatibave

The core of the event collection module is a Windows, graphical icon on the desktop that launches the applicatith fixed

kernel module written in C++, similar to FDR [23]. It arguments each time.

Figure 3: Example of a rule.




In case of a rule violation, the detection module |

forms a set of checks to facilitate diagnosis based o abcdabdabcdfgabcdabfhg
rule sequence, the expected event, the Registry writt
caused the error, and the actually observed event. | R.:ab

next two sections, we describe the details of rule lear R,: R, cd (flattened: abc d)

. . . R,: R, R, (flattened:abcdab)
and error detection/diagnosis. R: R,dR,f g Ryf h g (flattened: input)

5 Learning Configuration Access Rules Figure 4: An example of Sequitur hierarchical rules. We also
show the flattened rule in the parenthesis.

This section describes howODE generates event tran

tion rules from input Registry-access sequences. T Input event streams  Event sequence Frfquent
. . . segments event sequence
input sequences consist of registry accesses at t |abcd | o f If < - abed
. . . abc
granularity for each process group (i.e., all processe: ™ !

. Modified .

share the same executable name and command-line argr, |abcd hi | {Q 22: ::)gcdhi e

ments). Figure 2 shows the three steps of this procedure - l

(,1) generat_e frequent event sequences, (2) cop;truct atriﬁgure 5: Generating frequent event sequen@ésand7; are

(i.e., a prefix tree) to represent the event transition state yq threads belonging to the same process group.

and (3) derive invariant event transition rules based on

the trie. For efficient detectiorgODE represents the set

of output rules in the form of a trie with labeled edges, grammar rules to hierarchically represent the original se-

and each process group has a separate trie. guence. Figure 4 shows an example input sequence and
Throughout the process;0DE has time complexity the hierarchical grammar rules derived by Sequitur. The

linear in the number of events processed. Althoughlower case letters represent the input symbols, and we

CODE generates a set of frequent event sequences irSe upper case letters to denote the derived symbols.

dependently from each epoch, meaning that a sequence During learning, the default epoch size is 500K events,

has to appear frequently enough within one epoch to bavhich can span from hours to days for different pro-

learned bycoDE, it maintains the labeled tries in mem- cesse$.For each epoctzopEdoes not need to store the

ory across epoches and updates them incrementally. \Weomplete input sequence because the hierarchical repre-

will show in Section 7.3 that the generated trie sizes aresentation makes the original sequence more compact. In

small for most of the programs. practice, the number of symbols to store in memory is
roughly on the order of the number of distinct Registry
5.1 Frequent Sequence Generation events, which is around only 1% of the total events [23].

for generating rules as well as the potential Cor‘textfrequent sequences, we found it acceptable in our appli-

lengths. To identify frequent event sequences, one OPzation, as low time complexity is an important require-

tionisto generzttehhash valtutis fofr f|xed-lengthve\z/vent SUb-ent. To apply Sequitur in our context, we make the
sequences, and then count theirfrequencies. Yve may p ollowing two modifications to the algorithm:
tentially leverage data structures such as bloom filters [3

to optimize space usage. However, this option is not de nalyzing multiple sequences simultaneousiyrhe in-
b P ge. ' P coming events processed ODE contain not a sin-

sirable because it is difficult to pre-determine the event ,e event sequence, but multiple sequences. These se-

subs?qulenc?hlengths.z A“:thBOu?hh we ma;:_chlcl)ose Se\.'erguences come from different processes and different
popular lengths (€.g., 2, 4, 8), the semantically MmeaniNgi, eads in the same process group. In addition, we ob-

ful event sequences can be very large (as illustrated "Uerve that events belonging to the same task often occur

Section 3) and can have varied lengths. Popular techi'n a bursty manner. Mixing events from these semanti-

niques SL.ICh as suﬁ!x trees [16.] are not applicable e'ther(bally different tasks as one sequence would create unnec-
They typically require the entire input sequence to be

. : . ; essary noise. We thus segment them into per-thread per-
available. Furthermore, their space-time requirement y g b P

are not efficient enouah to deal with a larae number Ofsourst sequences (the default time interval between two
9 9 bursts is one second), as shown in Figure 5.

Registry events arriving in real time. The original Sequitur algorithm, however, analyzes

In order to ge”.efate the longest applicabk_a frequeanly one sequence at a time. We thus modify it to take
subsequences efficientiyoDE adopts the Sequitur [17] multiple sequences. We could maintain a separate gram-
algorithm. Given a sequence of symbols, Sequitur iden-

tifies repeated sequence patterns and generates a set of*After learning, the detection takes place in real time.




Frequent Trie before marking Trie after marking

sequences root root
_ e Ty Mark edges e
: E g ?? Build trie f E --abce--E f ?
de:?- |:‘> b c /b\, C
T T o
é # év%l'm-mark #

Figure 6: Constructing a trie from frequent event sequences antifideg its rule edges.

mar table (needed for Sequitur) for each sequence, buhg the basis for deriving event transition rules. Second,
this approach would miss common subsequences sharede found that many frequent event sequences have com-
across different threads in the same group. For examplenon prefixes. Hence a prefix tree explicitly encodes the
in Figure 5, both threads share the subsequextzed. divergence of different event paths from a single point.

Thus a grammar table is shared among all sequences. We further optimize the trie data structure to make it

Th\l/\s/_tsr?arlng alsotret;:lIUCE_)Es memory uslfig?_. .___more compact. An observation is that many event se-
Ith grammar table sharing, one compiication arlsesquences share suffixes as well. In practice, merging com-
when a sequencs§, completely contains another one

: : , - mon suffixes is very effective in reducing the trie size (by
S,. To avoid storing the same sequence twice, Sequitu

Id : h dund : ith halfy. Meanwhile, this optimization still preserves the
would replace the redundant copy 6f in S, with @ g/t transition relationship and ensures the correctness
pointer to S,. However, we cannot expan, if new

_ . - of the derived rules.
events come in, because this expansion may nsgkeo
longer a subsequence 8f. To solve this problem, we
give S, a fresh name; each time we expand it.
Flattening the hierarchy: The second modification is 5.3 Rule Derivation
to flatten the default hierarchical symbols output by Se-
quitur to event Symbols in order to construct the trie IaterW|th a trie, CODE proceeds to derivevent transition
(illustrated by Figure 4). To ensure each learned serylesthat all threads from the same process group have
quence is not too short, we select a flattened event sy follow. We look at only the rules that were never vio-
quence only if its length is above a pre-defined lengthjated. Our approach is to identify those event transitions
threshold (by default! = 4) and its sequence is above a 5 _, b that are deterministic given the sequence of events
pre-defined frequency thresholdby defaults = 5). We  from the root toa. We define such an edge arie edge

call the frequency of an event sequence asufsport Clearly, only edges from nodes with only one outgoing
Although the rule flattening process is relatively edge are rule edge candidates.

straightforward, correctly computing the support (i.e., , ) , o
frequency) of the expanded sequences is a more involved However, simply counting outgoing edges is incom-
task. In Figure 4R, appears at botR,; and R3, and R, plete. For examp!e, given a frequent sequexiael, we
further appears aks. CODE takes a top-down approach 2" construct a trie of 4 nodes, and the edge feom d _

to traverse the hierarchical representations for compgutin appears to be a rule edge. However, there may exist a

the correct support. The final output of this step is a Selsequencebce that did not occur frequently enough to be

of frequent event sequences with support greater than selected as a popular sequence. In this case, the transition
¢ — d is not deterministic.

5.2 Event Trie Construction For each newly created rule edgepDE determines
After CODE generates the frequent sequences from inwhether it is truly a deterministic transition by check-
put events, it proceeds to construct an event trie in theng it against the upcoming event sequences in the next
form of a prefix tree to store all the frequent sequencespoch. Figure 6 shows this edge-marking process. Doing
from all threads of each process group. Figure 6 showso defers the use of this edge for detection. It is worth
the construction of an example trie. In a trie, each nodenoting that for each eventoDE identifies all possible
represents a Registry access event (encoded as a Ralratches based on the preceding subsequences. Addition-
hash), and each directed edge represents the transiti@ily, CODE also starts from the root every time to capture
between the two corresponding events in temporal ordeisubsequences that begin with the current event. During
The adoption of a trie representation serves a couplé¢he edge-marking process in Figure 6, if the incoming
of important purposes. First, it represents the temporakvente is following sub-sequencabc we will un-mark
transition relationships between different events, gitevi the twoc — d transitions from rule edge in the trie.



6 Error Detection and Diagnosis First, copE allows the operator to understand how the

This section describes ho@oDE detects configuration R eg'SW in the expected e\{ent was 'c.hanged by track-
ing which process, at what time, modified the entry that

errors using the learned rules and further outputs diagno- I
L i . . caused the error. To do scODE uses a modification
sis information. Since the labeled trie structure captures e ;
o o : . _cache to store the last modification operations (along

the rules as deterministic event transitions and is efficien

. . . with timestamps) on the Registries in the rules. Because
at matching sequences, we conveniently reuse this datt

) : ey fe rules track only fr ntl Registri n
structure for error detection without explicitly represen e rules track only frequently accessed Registries and

ing the rules. The detection algorithm is thus simple andthe majority of the accesses to these Registries are r_ead-
only events, we need only a small cache. In practice,

similar to the edge-marking process in Figure 6, eXCeF)tthe size of the modification cache is always smaller than

when we see a violation, we report a waming rather tharb 000 events for all the machines that we used in our ex-
un-marking the transition. This online detection method . . . ;
eriments. The typical size of 200 events is enough for

ensures that we can detect a configuration error as ear! o
e majority of them.

as possible, before it affects other system states. .

P y Second, the expected event and its context often
6.1 False Positive Suppression provide enough information regarding the program’s
. anomalous behavior to the administrator. They also pro-
In the rule-learning process, the support threshobdn . . . .

: i vide the candidate Registry entries for recovery. In the
be used to configure the false positive rate. A larger . i . .
- i auto-update error” example in Section 3.2, the expected
usually implies a smaller false positive rate, but we may :
. . event has empty Data for ValidAut oUpdat e, while
also miss some real errors. We further evaluate this pa; L o
; : the violating event has “1” as the Data. Further the ex-
rameter in Section 7.2. .
" . pected event belongs to a sequence where svchost.exe is
Additionally, we use three technigques to reduce . ; . .
; I : checking for auto-update setting. Such information pro-
CODESs false positive rate. First, beforeoDE reports

L " vides hints to the administrators about the root causes.
a warning, it performs an additional check to ensure that = _
Finally, coDE returns all the processes whose rule

the violated (i.e., expected) event does not appear in the L )
near future. So izbc — e is a rule that is violated by rep03|tor|e§ |r_1volve the corrupted_ Registry. Operators
observingabc followed by f, then we monitor the events can use th's mforma_t|on to examine whether the same
for a delay buffer (set to 1 sec) to checkeifappears: configuration error might affect other programs.
if it does, we suppress the warning. The idea behind
this check is that since we are looking for corruptions7 Evaluation
of Registry Keys/Values, iff is indeed a corruption of
the Key/Value corresponding to the Registry in event
thene should not appear again. Otherwise it is perhap
simply a benign program flow change.

Second, if multiple alarms are generated ihgecond

We deployedcoDE on 10 actively used user desktops

Sand 8 production servers. In our month-long deployment,
we set the data collection interval to every one hour. We
ran the analysis module separately off-line on the col-

delay buffer,coDE only reports the first one as the oth- Igctet? reglstry-e;/hentl logs. dT?Iﬁ a'I:Iovvtid u; lt_o convle-
ers are likely manifestations of the same root cause. wglently examine the logs in detaul. or the off-line anal-

found the first alarm is always the true root cause in our’>!S: it took about 12 hours to process each machine’s

experiments (see Section 7.1.1). one-moqth log. Wg also' evaluated the same yersion of
The third technique isooperative false positive sup- CODE using one minute intervals to measure its online

pression aggregate warnings from all machines, and re_analy5|s performance. .

port only unique ones. We consider two warnings iden-, To demonstrate the value of using context, we also

tical if they warn about the same Key, Value, and Data]mplemented astate—ba_sed approacthat dqes _not use

We canonicalized user names when comparing Regist ontext for error detection and compared it withhDE.

Keys (More canonicalization would help, but it is beyond nstead of looking "’}t sequences, this .approach' tracks
the scope of this paper). This technique effectively re_commonly used Registry Key/Value entries and raises an

duced the number of false positives by 30% in our eXper_alarm if the Data field has not been observed before. To

iments, though it can be turned off for privacy concerns, ENSUT€ @ fair comparison, we applied the same param-
eters used by oDE as well as the set of false positive

6.2 Error Diagnosis suppression heuristics described in Section 6 whenever

. . . . . licable. Below we present our evaluation results.
CODE also provides rich diagnosis information after er- applicable. Below we present our evaluation resuilts

ror detection. When a process violates a miletext —
event, CODE knows precisely the context, the expected
event, the violating event, and the violating processWe first evaluatecoDE using real-world configuration
Such information can help diagnosis in a few ways. errors and randomly injected Key corruptions.

7.1 Detection Rate and Coverage



Error name Description

Doubleclick  |When double clicking any folder in explorer, “Search Result” windowsap.
Advanced IE advanced options missing from menu.

IE Search Search dialog will always be on the left panel of IE that can’t be closed
Brandbitmap |The animated IE logo disappears.

Title IE title changed to some arbitrary strings.

Explorer Policy Windows start menu becomes blank.

Shortcut In explorer, clicking the shortcut to a file no longer works.

Password IE can no longer remember the user’s password.

IE Offline IE would launch in offline mode and user's homepage can't be disglaye
Outlook trash |Outlook asks to permanently delete items in the “Deleted Items” folder eveeyitiaxits.

Table 3: Description of the 10 reproduced errors.

7.1.1 Detection of Real-Errors Machine OS anfServer 03Vista|xp-sp2 xp-sp3 xp-VM
The real world error discovered bycODE was IE version IE6 JIE7| IE7 | IE7 | IE®

. Doubleclick 11 (1(D)]|1®) (103|112
causgd by Hotbar Adware [21], which qnexpect- Advanced 1)) 1@ 12|10 16
edly infected one co-author's desktop. This adware ||g search 1(10) [N/A| NA | NIA | 1(7)
adds graphical skins to Internet Explorer (IE), and |grandbitmap N/A |[NA| NA | NA | 1(3)
modifies a group of Registries related to the Key |Title 11 1M 1@]10@) | 10
“HKLM \ Software ClassesMime\DatabasgContent typ& Explorer Policy| 1(1) (12|12 |1(B)| 12
App”. CODE successfully detected rule violations at |Shortcut 11 (1)1 |1 | 12
the IE start-up time.coDE further provided diagnostic ~ |Password NA 112 1(1) | 1(2)| 12
information to help remove the IE tool bars created by |IE Offline 1M 11| - | 1)
the adware. Outlook Trash 12 11212 |12 | NA

Additionally, we manually reproduced 20 real-user ré-rape 4. petection results of reproduced real errors. The first
ported errors to evaluateoDE  These errors were se- nymper in each box is the rank of the root cause event, and the
lected from a system-admin support database. The onlyecond number in the parenthesis is the total number of viola-
criteria we used in our selection was whether these ertions observed in detection. N/A means we couldn't reproduce
rors were triggered by modifications to Windows Reg- that error on that machine, and “-” is the casepE missed.
istry and were reproducibfeThe error reproduction pro-
cess exactly followed the set of user actions that triggered Table 4 lists the total number of violations before
the software failures as described in the failure report.copbeaggregated the warnings within the one second de-
The 20 errors involved nine different programs, includ- lay buffer. In all these cases, the root cause event was the
ing popular ones such as Internet Explorer, Windows Exirst event that occurred. The other violations all hap-
plorer, Outlook, Firefox. pened in a burst right after the first one. By aggregating

cobDE successfully detected all these reproduced erwarnings ( Sect. 6.1), only the first alarm is reported.

rors. Due to space constraints, we do not describe all |ngeed, manual inspection suggests those additional
of them, but list the 10 representative ones in Table 3yjplations are not false positives but are highly corre-
To further evaluate the effectivenessaspeacross dif-  |ateq to the root cause. For example, et | ook
ferent environments, we reproduced these 10 errors ify a3sh error is triggered by modifying the Data of

5 different OS environments (one of them was a virtual Key  “HKCU\Softwaré Microsoft\Office\ 11.0,0utiook\
machine). Not all of these 10 errors can be reproducegeferencesEmptytrash” to 1. This error caused an
on all 5 machines; out of all combinations, we were ablegjert window to pop up on each exit of Outlook,

to reproduce 41 cases. asking whether to permanently delete all items
Among these 41 casesODE detected 40 cases and j; the “Deleted Items” folder.  This alert win-

missed only 1 case (Table 4). Further investigation ofjow s related to another Registry Key\HKCU\

the missing case showerbpE had over-fitted the con-  goftware Microsoft\ Office\ 11.0,Outlook, Common Alerts”,

text for that error; that is, the context learned was longefyhose settings were changed during the error, causing

than that observed after the reproduction. We suspectopEto report additional violations.

there might exist two different program flows that pre-

ceded the access to the corresponding Registry Key, a

CODE learned a longer context than what was observezw

during detection.

Based on the diagnosis information output®gDE,

e can easily recover all the reproduced errors by chang-

ng the corrupted Registry entries back to the expected

ones. However, due to the complex dependencies be-
5Some errors require special hardware setup or specific seftwa (WEEN today’s system components, we expect automatic

versions to reproduce. recovery to be a challenging topic for future work.




7.1.2 Exhaustive Key Corruption deletion of this Key may have triggered persistent pro-
To evaluate the coverage abDEs error detection, we 9r@m behavior changes in IE, which switched to an alter-
manually deleted every Registry Key that is frequentlynat've configuration option that _dld not rely on the above
accessed 2 times) by a process on a virtual ma- four Keys to perform Internet sign-up and proxy detec-

chine. Note that this does not implyoDE can detect tion. This example also suggests that recovering from

configuration errors caused by only Registry deletions €0rS triggered by configuration changes may require

Any change to Registries such as modifications or neW"0re than reversing these modifications.
Key/Value creations, can be det_gcted be_DE_SO ang Total Frequenf Frequent AccessDistinct Accesse
as a future access to these modified Registries violates a | ey Access | cope Captures | To Frequent Keyl
learned rule. For example, the AutoUpdate error in Sec- 2,090,777 |2,083,912 (99.7%) 2,400
tion 3.2 was caused by modification to a Registry Data.  pistinct Access Accesses with | Average Numbe
The process we chose is Internet Explorer (IE), which CODEcaptures single context of contexts
has both the maximum number of Registries and distinct [2,400 (100.0%)1,743,708 (83.4%) 1.74
Registry Key accesses on a typical desktop machine. We
ran a program that simulates user browsing activities by Table 6: Event context statistics.
periodically launching an IE browser, visiting a Web site,  To further understand the predictability of using con-
and then closing the browser. After running this programtexts for detection, we measure the number of the Reg-
for two hours (for the learning phase), we deleted everyistry accesses that fall into contexts, where our detec-
Registry Key that IE accessed more than twice during theion is applicable. Table 6 shows that out of the to-
two hours, one at at time. After each corruption, we rantal 2,090,777 accesses to the frequent Keys, 2,083,912
the program twice that simulates a user's Web visit and99.7%) of them fall into some contexts, and thus may
let coDE perform detection. We then recovered the cor-be captured bycope. Furthermore, 83.4% of the fre-
rupted Key before proceeding to the next Key corruption.quent accesses belong to a single non-overlapping con-
Total Registry accessefRegistry writes| Distinct Keys text. Th|§ means that their access happened in only one
2.097.642 275,549 (13.14) 1,247 Qetermlnlstlc way. On average, for each frequerlt Reg-
istry access, it has 1.74 contexts. For those Registry ac-
cesses that have more than one context, most of them are

[2N77)

Frequent Registry | Successfully |coDEdetected
Keys > 2times) | corrupted Keys corruptions

783 (62.8%) 387 374 (96.6%) related to the settings of dynamically linked modules that
may be shared by different components in IE, resulting
Table 5: Summary of the Key corruption experiment. in more than one context.

Table 5 summarizes the statistics and the resultsy 5 E5|se Positive Rate
Among the 387 successfully corrupted Keg€)DE de-
tected 374 (96.6%) of them. Note not every frequentlyWe evaluated the false positive rate obDE using
accessed Key can be corrupted. Among 783 of the fremonth-long Registry access logs from the following two
quent Keys, we successfully found and corrupted onlysets of machines: (1) 8 production servers with similar
387 of them. The remaining Keys were temporary to thehardware and workloads and (2) 10 desktops used by
life time of a particular IE instance. Since our experimenttwo interns, four researchers, one research lab manager,
periodically launched a new |E instance, those temporarynd three part-time vendors, giving us a diverse set of
Keys no longer existed at the deletion time. workloads. Other than the Hotbar Adware, we were un-
In total, cODE failed to detect 13 of the corrupted aware of any other configuration errors reported for the
Keys, among which, 12 are Keys or sub-Keys of the fol-l0g-collection time period.

lowing 4 Keys: CODE State-based
Num/day/machingAverage Max Mirn Average
¢ HKEY_LOCAL_MACHINE\software, classesrlogin Server 0.06 027 0| 1367
e HKEY_LOCAL _MACHINE\software, classestelnet Desktop 0.26 096 0| 153.83
e HKEY_LOCAL_MACHINE \softwaré, classestn3270 Table 7: Summary of false positive rates (in terms of the num-
e HKEY_LOCAL_MACHINE\software, classesmailto ber of warnings/machine/day) across 10 desktops and 8 servers.

These Keys store settings about the dynamically linked Table 7 shows the false positive ratesa@DE. Over
libraries for handling four application-layer protocols the 30 day period with hundreds of billions of events
and they are periodically queried by IE. During the ex- from all machinescoDE reported a total of 78 warnings
haustive Key-corruption experiment, we deleted a Regwith an average of 0.26 warning/desktop/day and 0.06
istry Key “AutoProxyTypes” that stores settings about warning/server/day. As a comparison, the state-based
automatic Internet sign-up and proxy detection. Theapproach reported three orders of magnitude more, on
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Name Description Percentage
File AssociationThe default program used to open different file types is changed. 24.1%
MRU List |Changes to most recently accessed files tracked by applicationstglgprer and IE) 12.7%
IE Cache |The meta-data for the IE Cache entities is changed. 3.8%
Session | The statistics for a user login session are updated. 3.8%
Environment |Environment variable changes. 2.5%

Table 8: Top 5 reasons for causing false positives on one machiree‘Percentage” column shows, using the 5 categories, the
percentage of alarms that can be summarized over all alarms fronaeHines.

average 153.83 warnings/desktop/day and 13.67 warn#.2.1 Analysis Sensitivity

ings/server/day. This difference can be explained by sevyye studycope's sensitivity to workload and the support
eral reasons. First, many modifications to frequently acthreshold (i.e., the number of occurrences for a frequent
cessed Registries do not occur in any frequent sequencegent sequence to be learned as a rule) in this section.
(i.e., no context). Second, multiple Registry modifica- workload sensitivity. Table 7 shows thatopE's false
tions often belong to a single sequence whet®ETe-  positive rate is four times lower on servers than on
ports only the first modification as a warning whilg the yser desktops. This is because server workloads are
state-based the approach reports all of them. Finallyess interactive, and thus, their Registry access logs are
some modified Registries will never be accessed agaifpgg noisy. To evaluate the workload sensitivity, we
after the modification. While the state-based approachneasure the false positive rate of different programs
reports all such cases as wamning®DE does not be- o a)| the machines in our experiment. Among all
cause it reports a warning only when the modified Reégthe programs running on the servers, only 2 ever re-
istry is read again. ported warnings; for programs running on desktops, 12
We further examine the time distribution of the warn- reported warnings. The program Windows Explorer
ings generate byyoDE Figure 7 shows that for the (expl orer. exe) generated the maximum number of
desktop that generated the largest number of warningsarnings, contributing to 1/3 of the total alarms followed
(0.96/machine/day in Table 7), only 4 processes reportetdy Internet Exploreri(expl or e. exe) and Windows
atotal of 29 warnings during the 740 hours (more than 30Login (Wi nl ogon. exe). Windows Explorer is like the
days). Most warnings are clustered in time, and are likelyUnix shell for Windows and is highly interactive. While
caused by the same configuration modification event. cobE currently uses the same support threshold 5 for
learning frequent sequences, we can adjust the false pos-
itive rate by setting a larger support threshold.
X Support-threshold sensitivity. As discussed above,
os AR K M j:fv'fl’:s' an important parameter is the support threshold for sep-
0 ‘ ‘ ‘ arating frequent and infrequent sequences. We evaluated
0 200 400 600 800 . e . . . .
Hour this sensitivity using the desktop with the highest false
positive rate (0.96/machine/day in Table 7). Figure 8
shows the result. As was expected, using a larger thresh-
old decreased the false positive rate. Users and adminis-

We analyzed the different causes of the false positiveérators can tune this parameter to trade-off detection rate

on user desktops and found that they can be categorizeff- false positive rate.

into a few types (Table 8 summarizes the top five causes)(.2.2 Impact of Software Updates

Some of them (Flle Association and Environment Vari- Software updates are frequent on modern Computers_

able) are intended configuration changes issued by usersheir activities may be intrusive and change a program’s

the others (Most Recently Used List, IE Cache, and Sesconfiguration-access patterns. We study the impact of

sion Information) are temporary-data changes. By usingoftware updates on the false positive rate in this section.

regular expressions to filter the Registry Keys that fall e used the logs collected from the 10 desktop ma-

into these top five causes, we can potentially reduce thghines for our analysis. We treat a warning as a

false positive rate t0.14 warnings/desktop/day. software-update related false positive if the correspond-
We also observed a significant overlap in the falseing Registry was last modified by one of the Win-

positives generated across different machines. Withoutlows software update processes (ecg.nexec. exe,

the cooperative false positive suppression heuristic thasvchost . exe, updat e. exe) and Windows soft-

merges false positives across machines, the false positivgare installation processes (e.gsi exec. exe).

rate in an isolated detection would have increased from Among the 78 false positives reported b@DE, only

0.26 to 0.36 warnings/desktop/day. 5 were due to software updates, averaging to 0.017 warn-
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Figure 7: Number of warnings per hour generated by the desk
top that had the most number of warnings.
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Figure 8: (a) Sensitivity of false positive rate vs. support threshddiThe growth of the trie size and the number of events over
time for IE (desktop) in log scale. (c) Trie size vs. event coveragdifterent processes on two machines.

ing per desktop/day or 0.139 per update across total 36 The memory overhead is largely caused by maintain-
updates from these machines. These 5 warnings wern@g sets of tries, one for each process group. Figure 8 (b)
caused by two environment variable updates, one displaplots the trie size growth over time in log scale for an IE
icon update, one DLL update, and one daylight savingprocess. The trie size is about 2000-3000 and converges
start date update. This small false-positive number is notoughly after 1 day. In contrast, the number of Registry
surprising, as software updates tend to fix bugs and addvents can be up to hundreds of millions. Even the num-
new functionalities, but do not change the existing fre-ber of distinct events is one order magnitude larger than
guent configuration-access patterns. the trie size, suggestingoDE s effective in reducing the

CODE learned the new access patterns introduced byvent complexity.
software updates as new rules, rather than considering We proceed to examine the trie sizes for different pro-
them as false positives. For example, after a large Officeesses in Figure 8 (c). For the majority of the pro-
update on a desktop, the trie size of the correspondingesses, their trie sizes are consistently small, on the or-
program increased by 10% within one day. Otherwiseder of hundreds to tens of thousands of events. The
the trie size was relatively stable. total trie size across all processes on a machine is still

We further examine the most intrusive update wesmall, on average 529,500 per user desktop and 97,042
found in the logs: an update from Office Service Packper server. Given each trie node requires around 12 bytes
2 to Service Pack 3 [5]. This upgrade includes more(8 byte Rabin hash + 4 byte pointer), maintaining all the
than 200 patches. It affected 7 of the Office applica-tries requires around 1MB-6MB in the ideal, optimized
tions, created and modified more than 20,000 keys, butase. We suspect a large portion of the current mem-
caused only one false positive warning. A closer lookory overhead is caused by both caching the event se-
revealed that while this update created many keys, theuences during the learning phase and the C# overhead.
majority of them were temporary keys for bookkeeping Such overhead can be potentially reduced by using sam-
and were deleted right after the update, causing no warnpled epoches to reduce the learning frequency, and by
ings. This update additionally modified or deleted 61 ex-re-implementing the analysis module in C++.
isting keys; only 10 keys overlapped with the rutasbe Figure 8 (c) also shows the percentage of unique
learned and they were all captured in one rule, causingvents included in the tries defined asent cover-
the only warning. These 10 keys specified the daylightage This metric roughly tracks the Registry-access
saving start dates of 10 countries and were frequentiyredictability. We found that most of the processes
queried by Outlook, resulting in acobE rule. When  have over 80% of event coverage. In particular, the
the Office update changed these keyspE detected a snnp. exe process running on the server is highly pre-
rule violation. dictable, where a trie with 27 unique events can represent
73 Performance Evaluation 99.77% of all its Re_gistry access evenFs.

One of our goals is to useoDEto monitor server clus-

When we deployobEtin online mode, where it periodi-  ters or data center machines for detecting abnormal con-
cally (every minute) processes Registry events arriving infiguration changes. A typical server cluster consists of
real time, the CPU overhead is very small-less than 1%nachines with similar hardware, software settings, run-
over 99% of the time, with a peak usage between 10%ning similar workloads. In this scenariopbEe could of-

25% (on an AMD 2.41GHz due-core machine). The cur-fload the analysis task from each server to a small num-

rent memory usage is between 500 MB-900 MB. ber of centralized management servers.
S0utlook queries these keys to determine how to display theneal We run CODEIn a Centrahzed_ mode, constructing a
dar items based on the current time zone. single centralized trie that consists of all the rules from

12



Trie Size (%) |Memory MB (%) ory overhead (the event collection component still needs
1machine 98,042 503 to run on end user machines, but it has a negligible over-
2 machinesl19,503 (21.9%) 510 (1.4%) head [23]). Third, our cooperative false positive suppres-
g mzzng ?1%‘;%912(332'7%3”) 288 (3'22?) sion feature requires the sharing of canoncalized configu-
P == LR (7.1%) ration entries, which is easier to perform in a centralized-
Table 9: The size and memory usage of a centralized trie conManagement setting.
structed by analyzing events from multiple machines. The trieFuture work: Our experiments showed that the noise
size is monitored after 3 days, and the memory usage is thén event logs varied greatly from program to program—
average usage in one day. after all, these programs have different purposes, work-

) i . loads, and users. CurrentlyoDE treats all programs
multiple machines. Table 9 shows the growth of the trie,,,ito my in learning. However, we envision harnessing

size and the memory usage as we increase the number g, .2 m_specific knowledge to further improve our de-

machines to monitor. As we see, the trie size grows by qfion accuracy and reduce false positives. In particular
only 3.7% when the nu_mber of machines to monitor in-\ve may set a higher support threshold for a noisier pro-
creases from 4 to 8. This suggests that rules learned fror’aram. Another possibility is to rank errors based on the
multiple machines can be applied to other similarly Con'importance of the programs affected by these errors. For
figured machines (i.e., with similar hardware, SOftwareexample, a warning frorsyst em exe (the Windows

and workload). For centralized configuration-error de'kernel process) may be more important than a warning

tection, the memory overhead is on average about 0.4%0om expl or e. exe.

]Loer machllr(we ffor”16GB-m|e_morhy SEIVErs. Werl]eave tas |, 3 distributed settingCcoDE can collect a much
uture work 1o 1ully generalize theobEapproach to per- larger, unbiased set of logs to improve the quality of its

form centralized data-center management. rules. In particular, for managing server clusters, the ho-
_ ) mogeneity of the machines may also help redtioeE's

8 Discussion memory overhead and false positive rates (see Section 6,

7.2, and 7.3). One challenge is canonicalization: the

rules CODE learns may contain machine-specific infor-

Limitations: Not all configuration errors can be detected
by copEe. By focusing on changes to configuration data’ = )
y y 9 g 9 mation (e.g. machine names, IP addresses, and user

and their access patterrcpDE may not detect errors in- Wi llv added icalizati
troduced at system or software installation/setup timepames). € manually added user-name canonicalization

To detect these errors, we can extenoDE to process In CODE As futur'e work, we plan tq develop automqtic
event sequences across machines, so that errors on ofe sgml-autqmatlg techniques to |n'fer.mo're machine-
machine can be detected by comparing Registry eVen?pecmc configuration data for canonicalization.
sequences from another properly installed machine. Pre- .
vious work [26] has also showed encouraging results by? ~ Conclusion
cross referencing static configuration states in a similagye presentectoDE, an online, automatic tool for con-
way. If a configuration error is caused by an event with-fiq;ration error detection. Our observation is rather sim-
out any contextcODE cannot detect it either. However, nja. key configuration access events form highly repeti-
in our evaluation, we have not encountered such errors. ;e sequences. These sequences are much more deter-
We have evaluatedoDE on only Windows Registry,  ministic than each individual event, thus can serve as
but we believecobE's underlying techniques can poten- contexts to predict future events. Based on this obser-
tially be generalized to other configuration formats, SUChVation,CODE uses a context-based analysis to efficiently
as Unix’s configuration files under /etc/. However, in analyze a massive amount of configuration events. We
Unix, different applications manage their own configu- implementedcope on Windows and used it to detect
ration data in their own format, so it might require per- windows Registry errors. Our results showed thabe
application instrumentation to collect the configuration coyiq successfully detect real-world configuration errors

data access trace. with a low false positive rate and low runtime overhead.
CODE can be deployed as both a stand-alone tool run-

ning on end user's desktops a}nq a centrallzed'manag%\cknowledgments
ment tool used by system administrators to monitor mul-
tiple machines in a data-center or a corporate networkWe thank the anonymous reviewers and our paper shep-
We expectcoDE to work better in the latter scenario herd Dilma Da Silva for their valuable feedbacks. We
for the following reasons. First, end users might havealso thank Marcos K. Auguilera for his detailed com-
no clue on how to deal with warnings for filtering false ments for improving the paper. We thank Professor
positives. Second, with centralized management, an enduanyuan Zhou, the UCSD Opera research group and
user desktop can be spared from the 500-900MB memMarti Motoyama for discussion and paper proofreading.
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