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Abstract

Deterministic replay systems, which record and replay

non-deterministic events during program execution, have

many applications such as bug diagnosis, intrusion anal-

ysis and fault tolerance. It is well understood how to

replay native (e.g., C) programs on multi-processors,

while there is little work for concurrent java applications

on multicore. State-of-the-art work for Java either as-

sumes data-race free execution, or relies on static instru-

mentation, which leads to missing some necessary non-

deterministic events.

This paper proposes the ORDER framework to record

and reproduce non-deterministic events inside Java vir-

tual machine (JVM). Based on observations of good

locality at object level for threads and frequent object

movements due to garbage collection, ORDER records

and replays non-deterministic data accesses by logging

and enforcing the order in which threads access objects.

This essentially eliminates unnecessary dependencies in-

troduced by address changes of objects during garbage

collection and enjoys good locality as well as less con-

tention, which may result in scalable performance on

multicore. Further, by dynamically instrumenting Java

code in the JVM compilation pipeline, ORDER naturally

covers non-determinism in dynamically loaded classes.

We have implemented ORDER based on Apache Har-

mony. Evaluation on SPECjvm2008, PseudoJBB2005,

and JRuby shows that ORDER only incurs 108% perfor-

mance overhead on average and scales well on a 16-core

Xeon testbed. Evaluation with a real-world application,

JRuby, shows that several real-world concurrency bugs

can be successfully reproduced.

1 Introduction

Deterministic replay has many applications such as di-

agnosing (concurrency) bugs [4, 8, 12, 18, 25, 26, 29],

facilitating fault tolerance [2], forensic analysis [11] and

offloading heavyweight dynamic program analysis [10].

Essentially, it works by recording non-deterministic

events such as data access interleavings and interactions

with external environments of a program during normal

execution, and ensuring the same order of program ex-

ecution by replaying the recorded events and enforc-

ing constraints within the events. Currently, many de-

terministic replay systems for native code (e.g., C or

C++ based programs) use a dependency-based approach

that enforces the accessing order to a specific shared ad-

dress at different granularities such as word [6], cache

line [17, 22], or page [12, 16].

While the approaches to replaying native code have

been studied extensively and relatively well understood,

it is still unanswered question how to efficiently replay

concurrent Java applications on multicore in a scalable

and efficient way. Unlike native code, Java code usually

needs to cooperate with the Java virtual machine (JVM)

to achieve automatic garbage collection and to interact

with the native code. Such runtime features introduce

new non-determinism and more design considerations to

implement a scalable and efficient deterministic replay

system for Java code.

Many state-of-the-art deterministic replay systems for

Java applications record Logical Thread Schedule [28,

9, 30], which assumes that applications are running

on uni-processor platforms. Such a strategy is unsuit-

able for replaying concurrent Java applications running

on multi-processor platforms. JaRec [13] records non-

determinism in lock acquisition, but cannot reproduce

buggy execution caused by data race. LEAP [15] uses

static instrumentation for Java code to replay interleaved

data accesses, thus it cannot reproduce non-determinism

introduced by external code, such as libraries or class

files dynamically loaded during runtime. Furthermore,

LEAP does not distinguish different instances of the

same class, and false dependencies between different ob-

jects of the same class may lead to large performance

overhead when a class is massively instantiated.

Record time and log size are two critical performance

metrics for deterministic replay systems, which can typ-



ically be optimized by applying transitive reduction in

dependency-based address tracking approaches [6, 12,

17, 23]. However, these techniques may not be suit-

able for Java applications, due to frequent object move-

ments by garbage collector. According to our evaluation

results, with word or cache-line level address tracking

approaches, garbage collection of JVM will introduce 7

times more unnecessary dependencies for SPECjvm2008

and SpecJBB2005. Furthermore, many Java programs

have good locality on accessing a single object for Java

threads.

Based on the observation above, this paper proposes

ORDER, Object centRic DEterministic Replay, to iden-

tify data access dependencies at object granularity. Such

an object-centric technique can avoid recording massive

unnecessary dependencies introduced by object move-

ments from garbage collector, reduce contention on ac-

cessing shared metadata due to the low probability of

object-level interleavings, and improve recording local-

ity by inlining shared-memory access information within

object headers. By dynamically instrumenting Java code

during JVM compilation pipeline, ORDER naturally

covers non-determinism caused by dynamically loaded

classes and libraries.

We have implemented ORDER based on Apache Har-

mony, to record and replay non-deterministic events

for concurrent Java applications on multicore. To fur-

ther improve the performance of ORDER, we have also

implemented a compiler analysis algorithm based on

Soot [31] to avoid tracking dependencies for thread-local

and assigned-once objects. Besides, we implement an of-

fline log compressor algorithm to filter out remaining un-

necessary dependencies from thread-local and assigned-

once objects caused by imprecise compiler analysis.

Performance evaluation results show that ORDER

has relatively good and scalable performance on a 16-

core Intel machine for SPECjvm2008, PseudoJBB2005,

and JRuby. The average overhead for recording non-

determinism is around 108%. ORDER is also with good

scalability on a 16-core platform. Performance compari-

son with LEAP [15] shows that ORDER is 1.4X to 3.2X

faster than LEAP. We also show that ORDER can suc-

cessfully reproduce several real-world concurrency bugs

in JRuby.

In summary, the contribution of this paper includes:

• Two observations (i.e., GC-introduced dependen-

cies and object access locality) for deterministically

replaying Java applications based on a study of Java

runtime behavior.

• The case for object-centric deterministic replay,

which leverages the object granularity to record

non-deterministic data access events using dynamic

instrumentation.

• The implementation and evaluation of ORDER

based on a real-world JVM platform, which demon-

strate the efficiency and effectiveness of ORDER.

This paper is organized as following. In next section,

we will present our study with evaluation results on the

runtime behavior of Java programs on multicore plat-

forms. In Section 3, we describe the main idea and de-

sign of our object-centric deterministic replay approach.

The implementation details of our prototype ORDER are

presented in Section 4. Section 5 shows the evaluation

results in terms of performance, scalability, log size and

bug reproducibility of ORDER. Finally, section 6 sum-

marizes related work in deterministic replay and section

7 concludes our work with a brief overview of possible

future work.

2 Java Runtime Behavior

In Java runtime environment, garbage collection (GC) is

commonly used to automatically reclaim non-reachable

memory spaces. The use of GC enables automatic mem-

ory management and avoids many memory-related bugs

such as dangling pointers, double free, and memory leak-

age. GC usually requires moving or modifying objects in

heap, which may cause additional dependencies for de-

terministic replay. In this section, we evaluate the impact

of GC and describe two major observations that may af-

fect the scalability and performance of deterministic re-

play systems.

2.1 Environment Setup and Workloads

The experimental results listed below are all gener-

ated on a machine with 4 quad-core Xeon processors

(1.6GHz) and 32 GB physical memory. The Linux ker-

nel version is 2.6.26 and the version of Apache Har-

mony is m12. We evaluate 21 parallel Java applica-

tions from SPECjvm2008, SPECjbb2005, and JRuby.

SPECjvm2008 is a general-purpose benchmark suite

composed of a number of multithreaded applications.

We omit the result for sunflow because it failed to be

compiled by Apache Harmony m12 on our evaluation

platform. SPECjbb2005 is a server-side Java application

that simulates an online marketing system. It emulates a

common 3-tier system, and focuses on the business logic

and object manipulation. JRuby is a Java implementation

of the Ruby Programming language and provides a Ruby

Interpreter entirely written in Java.

Each benchmark of SPECjvm2008 is configured to run

a single iteration, which ensures a fixed workload. Re-

sults of JRuby are collected on the most recent stable ver-

sion of JRuby (JRuby 1.6.0) and a multi-threaded Ruby

benchmark provided by it (i.e., bench threaded reverse).

If the number of threads is not specifically mentioned, all

results are collected with 16 threads. All tests are tested

three times and we report the average of them.



2.2 Dependency-based Replay

Many dependency-based deterministic replay techniques

record data dependencies according to data addresses.

They record data dependencies when two instructions ac-

cess the same address [6], cache line [17], or page [12,

16]. Dependencies, conflicts or constraints [6, 12, 17,

23] a -> b in these systems indicate that 1) instruction a

and b both access the same memory location; 2) at least

one of them is a write; and 3) a happens before b. To

make execution deterministic, a replay run ensures that b

does not happen until a has been executed.

1:if(entry.klass.get()==this && 

name.equals(entry.name))

2:entry.method.get()

Thread 1

3:entry.method=...

Thread 2

1:if(entry.klass.get()==this 

&& name.equals(entry.name))

2:entry.method.get()

Thread 1

3:entry.method=...

Thread 2

true
true

Figure 1: A real-world concurrency bug reported in

JRuby community (JRuby-1382). Application crashes

when statement 3 is executed between statements 1 and

2.

Figure 1 shows a real-world bug in JRuby. In this

example, JRuby maintains a method cache. Thread 1

checks whether the required method resides in the cache.

In correct execution (1 to 2 to 3), after the comparison

code (statement 1) returns true, JRuby obtains the corre-

sponding method from the cache, which is supposed to

be the required method. However, if the content of the

global variable “entry” is modified between statements 1

and 2 (1 to 3 to 2), the method obtained in statement 2

may be unexpected and crash the program. Suppose we

treat reads/writes to each object as accesses to the same

memory location, then there are two data conflicts in this

example, 1,3 and 2,3. Dependency-based systems record

the order of conflicted data instead of the order of all ex-

ecuted statements. For example, in Figure 1, if the appli-

cation executes correctly, (2->3) is recorded. In buggy

execution, (1->3) and (3->2) is recorded.

The number of recorded dependencies relies on the

granularity chosen by deterministic replay systems. For

example, if a deterministic replay system traces data de-

pendencies according to the real address of data, depen-

dency (1->3) in the given example may not be recorded.

Specifically, statement 1 and 3 do not access the same

memory location of data because entry.klass and en-

try.name have a different address from entry.method.

Likewise, whether dependency (1->3) is recorded in

page-level dependency-based replay relies on whether

entry.klass or entry.name resides in the same page as en-

try.method. Though the granularity of recording depen-

dency does not affect the correctness of a replay strategy,

large performance overhead will be introduced if it is ei-

ther too small(large disk operations), or too large (false

sharing).

Instead of directly recording dependencies,

BugNet [22] and PinPlay [27] log the value of

load instruction after another thread modifies the same

location. In these deterministic replay systems, the

number of logged values depends on the number of con-

flicts occurred in the execution of programs. Although

their logging approaches are different from recording

dependencies, their performance is also affected by the

Java runtime behavior we list below.

2.3 Observation 1: Dependencies from GC

In JVM, GC is triggered if the memory management

scheme indicates that performing GC is beneficial. Each

time GC is triggered, it will scan the entire heap space,

mark the reachable objects, remove non-reachable ob-

jects from heap, and possibly move reachable objects to

achieve better cache locality and fewer heap fragments.

Both marking and moving reachable objects will intro-

duce a large amount of write operations in the heap.

Thus, when using data addresses or cache-lines to iden-

tify dependencies in Java applications, there are a lot of

extra dependencies introduced by GC. Most of these de-

pendencies do not truly affect the behavior of Java appli-

cations, thus they are not necessary to be recorded. Fur-

thermore, the dependency boost will cause a long pause

time in GC and deteriorate application performance.

Figure 2 shows the ratio of dependencies generated

by two widely-used garbage collectors to those gener-

ated by an application itself. In Apache Harmony, when

using the popular generational garbage collector, depen-

dencies introduced by garbage collection are about 8

times the dependencies introduced by original Java ap-

plications. The dependency boost even exceeds 16 times

the dependencies introduced by original application in

scimark.sor.large, xml.validation, scimark.fft.small, and

SPECjbb2005. Results of Mark-Sweep garbage collec-

tor are similar to those of Generational GC, which indi-

cates that such a phenomenon is likely to be a common

case.

GC itself is a non-deterministic event in the JVM. Ob-

ject allocation order, total heap size, garbage collection

algorithm, and many other runtime events will affect the

behavior of GC. Thus, deterministic replay system can-

not ignore the influence from GC. However, recording

garbage collection behavior may cost much and worsen

program performance.

2.4 Observation 2: Interleavings of Object

Accesses

Within JVM, object, a new candidate of granularity for

recording dependencies, is introduced by the managed



memory strategy. According to our experiments, objects

accessed by a thread are very likely to be accessed by

the same thread at the next time. Hence, interleavings1

seldom happen at object level. As depicted in Table 1,

the ratio of interleavings at object level is less than 7%.

This ratio is extremely low in scientific applications (fft,

lu, sor, sparse, monte carlo). This implies that recording

dependencies among threads at object level will likely

result in better locality and less contention.
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Figure 2: Dependencies introduced by GC when using

data address to identify dependencies in Java applica-

tions. The base line is the number of dependencies in-

troduced by Java applications themselves. Number of

dependencies is calculated according to the CREW pro-

tocol in SMP-Revirt [12].

3 Object-centric Deterministic Replay

Based on the two observations, we propose an Ob-

ject centRic DEterministic Replay (ORDER) scheme to

record and replay concurrent Java applications. OR-

DER uses object as the granularity to record interleav-

ings of data accesses. In the rest of this section, we

first discuss why object would be a proper granularity of

tracking dependencies, and then illustrate the sources of

non-determinism within JVM and how ORDER handles

them.

3.1 Why Object Centric?

whole heap page object word/
cache line

new granularity revealed by JVM,
conform to OO-program logic

possibility of
contention

memory overhead/
log size

Figure 3: Spectrum of granularity in deterministic re-

playing Java applications.

Case Interleaving Access Rate(%)

compiler.compiler 53997073 3.7E+9 1.46

compiler.sunflow 159104781 7.6E+9 2.09

fft.small 6281 1.2E+10 <0.01

fft.large 3447 1.6E+10 <0.01

lu.small 6500 3.4E+10 <0.01

lu.large 3311 2.87E+11 <0.01

sor.small 4446 2.5E+10 <0.01

sor.large 3358 1.0E+11 <0.01

sparse.small 4201 3.0E+10 <0.01

sparse.large 3055 1.1E+11 <0.01

monte carlo 3503 9.6E+10 <0.01

compress 448683851 3.4E+10 1.31

crypto.aes 3.73E+9 6.0E+10 6.21

crypto.rsa 135072884 2.2E+10 0.62

crypto.signverify 33185584 2.3E+10 0.14

derby 2.44E+9 4.9E+10 4.95

mpegaudio 922855001 6.4E+10 1.45

serial 315661230 1.7E+10 1.80

xml.validation 96681920 6.3E+9 1.53

xml.transform 1.41E+9 6.6E+10 2.13

SPECjbb2005 78856923 1.9E+15 <0.01

JRuby 161801036 1.3E+12 0.01

Table 1: Ratio of interleavings at object level: the sec-

ond and third column show the number of interleavings

and total object accesses accordingly. The forth column

shows the percentage of interleavings among the total

number of object accesses.

In object-oriented programming languages like Java,

applications are usually designed around objects. Fig-

ure 3 shows the spectrum of design consideration on the

granularity of deterministic replay for Java. This implies

several advantages of ORDER:

Elimination of GC dependencies: Our first observa-

tion above shows that massive extra dependencies will be

raised by GC if tracking dependencies using addresses.

However, such extra dependencies will naturally be elim-

inated when tracking dependencies at object level, as the

movement of an object does not change its content.

Reduced contention of synchronization: When

recording data dependencies, data content should be pro-

tected through synchronization to avoid possible data

races. Our second observation indicates an object will

likely be accessed consecutively by one thread. This im-

plies less contention over the synchronization construct

protecting the metadata information of an object.

Improved locality: Furthermore, Java does not sup-

port pointer arithmetic, and the memory layout of Java

applications is managed by JVM. By embedding meta-

data information into object headers, there will be good

locality for accessing such metadata information.



3.2 Recording Data Access Interleavings

As discussed in previous work [4, 8, 12, 18, 25, 26, 29],

many bugs introduced by non-deterministic events in

multi-threaded applications are caused by concurrent

data accesses, i.e., the order that different threads ac-

cess the same data. In Java applications, data are usually

grouped as objects. Thus, access to a memory location

can be considered as access to the corresponding object.

This is a major source of non-determinism.

Instead of recording conflict access pairs, ORDER

only records the object access timeline. The record-

ing/replaying scheme in ORDER is depicted in Figure 4.

ORDER records how many times a thread has accessed

an object before this object is accessed by another thread.

ORDER maintains such access timeline and enforces it

during a replay run.

1:if(entry.klass.get()==this 

&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

1:if(entry.klass.get()==this 

&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

timeline not 

match

2:entry.method.get()

thread 

blocked

entry
(t1,2)

(t2,1)

(t1,1)

Figure 4: The recording/replaying scheme in ORDER.

Each tuple <tn, x> represents a timeline record, which

indicates that the object is accessed by thread tn for x

times.

3.2.1 Metadata

We extend the header of each object with five fields to

record the timeline of object accesses:

Object identifier (OI): Information in the original ob-

ject header cannot uniquely identify an object. ORDER

extends the original 32-byte hash-code to 64-byte so that

it can uniquely identify an object in long-term execution.

This new identifier is generated according to the identi-

fier of the allocating thread and the index that indicates

the object allocation order in this thread.

Accessing thread identifier (AT) and access counter

(AC): Accessing thread identifier and access counter

maintain current status of object access timeline. Every

timeline recorded by ORDER can be interpreted as “this

object (OI) is accessed by some thread (AT) for some

times (AC)”. In record phase, these two fields record: (1)

which thread is now accessing this object; (2) how many

times this thread has accessed it. In replay phase, they

maintain: (1) which thread is expected to access this ob-

ject; (2) how many times this thread will further access

such an object before an expected interleaving is encoun-

tered.

Object-level lock: When recording/replaying object

accesses, the accessed content as well as access thread

(AT)/access counter (AC) should be synchronized. OR-

DER uses an object-level lock to protect the whole ob-

ject (including fields, array elements and object header)

when a certain access to this object is recorded/replayed.

Using object granularity, our approach only needs to syn-

chronize the accessed object instead of the whole heap or

page, which may reduce the strength of synchronization.

Read-Write flag: The Read-Write flag records

whether the current timeline record is read-only or read-

write. This information is used in the timeline filter to

reduce log size.

3.2.2 Recording/Replaying Object Access Timelines

ORDER contains two modes corresponding to the record

and replay phase of deterministic replay systems respec-

tively. Each mode contains an instrumentation action

added to compilation pipeline of JVM. We also modify

garbage collector to record the final state of timelines.

Record mode: Figure 5 illustrates how ORDER

records object access timeline. In record mode, when

an object is about to be accessed by a certain thread, OR-

DER compares AT in object header with the identifier

of current accessing thread (CTID). If this access is a

continuous access (AT == CTID) (Figure 5.a), ORDER

updates the access counter (AC = AC + 1). When an in-

terleaving is encountered (AT != CTID) (Figure 5.b and

5.c), ORDER puts the timeline record to log and resets

timeline record in the object header (AT = CTID, AC =

1). When JVM is terminated, or objects are collected

by GC, ORDER records the final timeline record of each

object to log (Figure 5.d). Besides, the record operations

as well as the original object access are enclosed by an

object-level lock acquire/release pair, which ensures the

atomicity of the record process. The Read-Write flag is

set to read-write if a write operation is encountered.

Replay mode: Figure 6 illustrates how ORDER repro-

duces the recorded timeline. In replay mode, when OR-

DER is about to reproduce timeline record for a certain

object, it loads the timeline record (AT and AC) into the

object header. When a thread is about to access this ob-

ject, the code instrumented by ORDER will compare its

identifier (CTID) with expected thread identifier (AT) in

object header. If the requesting thread is the expected ac-



1:if(entry.klass.get()==this 

&& name.equals(entry.name))

Thread 1(t1) Thread 2(t2)

timeline (entry)

1:if(entry.klass.get()==this 

&& name.equals(entry.name))

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

header
AT:1
AC:1

1:if(entry.klass.get()==this 

&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

(t1,2)

header
AT:1
AC:2

(t1,2)

(t2,1)

(t1,1)

header
AT:2
AC:1

GC

CTID: 1

CTID: 2

CTID: 1

1:if(entry.klass.get()==this 

&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1)

3:entry.method=...

Thread 2(t2)

header
AT:1
AC:1

(t1,2)

(t2,1)

(a)

(b)

(c)

(d)

timeline (entry)

timeline (entry)

timeline (entry)

timeline (entry)

Figure 5: Record mode of ORDER.

cess thread (CTID == AT) (Figure 6.a, 6.b), ORDER up-

dates the access counter (AC = AC - 1). When a recorded

interleaving is about to occur (AC == 0), ORDER loads

the next timeline record into the object header. If a re-

questing thread is not the expected access thread (CTID

!= AT), it will be blocked until a recorded interleaving

updates the timeline record (Figure 6.c). If the blocked

thread no longer violates the recorded timeline, it will be

woken up and continue its execution (Figure 6.d). Like

the record mode, a similar object-level lock is used to

protect the whole object when certain access to this ob-

ject is replayed.

3.2.3 Eliminating Unnecessary Timeline Records

Though object-level locks cause less contention than

page/heap-level locks, recording object access timelines

still incurs notable performance slowdown. According to

our study, much of the recording overhead comes from

instrumentation to the following objects, which never

cause non-determinism:

Thread-local objects: Many objects allocated by

JVM are thread-local objects. These objects are accessed

in a certain thread and never shared with other threads.

Assigned-once objects: Assigned-once objects have

continuous write operations in their initialization meth-

ods. After initialization, the assigned-once objects are

shared among different threads but no thread will write

the fields of these objects. Such objects do not really in-

troduce non-determinism to Java applications. Accord-

ing to our evaluation, assigned-once objects are very

common in the JVM. For example, the switch table ob-

jects generated by Javac, class objects, string objects, and

most of the final arrays are assigned-once objects.

To eliminate such unnecessary recording of object ac-

cess timelines, an offline preparation phase is introduced

to analyze the target application and annotate the Java

bytecode. Recording/replaying phase of ORDER can

adopt annotations from bytecode and eliminate unnec-

essary recordings.

Accesses to these two kinds of objects can be iden-

tified by inter-procedure analysis. We use escape anal-

ysis [7] to find thread-local objects. The original es-

cape analysis algorithm introduces three escape states.

Each state represents a certain kind of object: NoEscape

means that objects allocated by a certain allocation site

are method-local objects, which do not escape outside

this method. ArgEscape represents the objects that are

exposed to other functions, but they are not visible to

different threads. GlobalEscape means that objects are

shared among threads. However, because GlobalEscape

does not contain read/write information, the original es-

cape analysis cannot identify assigned-once objects. In

ORDER, we apply the following modifications to the

original algorithm so that assigned-once objects can be

identified:

• A new escape state Shared-Write is introduced. Ob-

ject nodes in the connection graph are set to such a

state when: 1) Objects allocated by the correspond-

ing new site can be global escaped; 2) Write opera-

tions may be applied to these objects after they are

shared among threads.

• The read/write states of phantom object nodes,

which represent the reference to object nodes that

are not allocated in the local method, are traced.

It can be Read-Only or Read-Write which means

whether the corresponding objects can be written



1:if(entry.klass.get()==this 

&& name.equals(entry.name))

Thread 1(t1) Thread 2(t2)

timeline (entry)

(t1,2)

(t2,1)

(t1,1)

header
AT: 1
AC: 1

timeline (entry)

(t2,1)

(t1,1)

header
AT: 2
AC: 1

1:if(entry.klass.get()==this 

&& name.equals(entry.name))

2:entry.method.get()

Thread 1(t1) Thread 2(t2)

thread 
blocked

1:if(entry.klass.get()==this

&& name.equals(entry.name))

Thread 1(t1) Thread 2(t2)

timeline (entry)

(t1,2)

(t2,1)

(t1,1)

header
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Figure 6: Replay mode of ORDER.

in the current method. When a new phantom node

is created, its read/write state is set to Read-Only.

In intra-procedure analysis, if a write operation is

applied to p, the read/write states of all phantom

object nodes pointed by p are switched to Read-

Write. Because read/write state is only attached to

phantom object nodes, they are finally marked as

assigned-once objects if their read/write states are

Read-Write.

• The read/write information is used to identify

assigned-once objects. It affects the escape state

in the following way. First, we modify the transfer

function of escape state in intra-procedure analysis

that if a certain node is already Global-Escape and

a write operation is encountered, its escape state is

set to Shared-Write. Second, in the inter-procedure

merge function, when a Read-Write phantom object

node is merged to a Global-Escape normal object

node, which means that globally shared objects can

be modified outside the allocation function, the es-

cape state of this normal object node is changed to

Shared-Write.

To avoid eliminating necessary timeline records, our

offline analysis algorithm is conservative. Specifically,

when an object node might possibly be exposed to exter-

nal code, its escape state is automatically set to Shared-

Write.

3.2.4 Log Compression

The raw log recorded by ORDER contains object ac-

cess timelines of all recorded objects. Although inter-

procedure escape analysis can eliminate some unneces-

sary timeline records, ORDER still records many thread-

local or assigned-once objects due to the imprecision of

the analysis algorithm. Timeline records of such objects

does not help to correct deterministic replay in the re-

play phase. Thus, we apply a timeline filter to eliminate

these unnecessary object access timelines. The timeline

filter analyzes the timeline information in the log and fil-

ters out the following ones: a) Timeline that has only one

occurrence; b) Timeline that has only one occurrence of

read-write in the beginning. Besides, timelines which

have several occurrences of read-write in the beginning

are partially eliminated. We reserve the leading read-

write occurrences and eliminate the following read-only

ones. The log compressor costs short time and can be

processed by an idle core, and it can be applied either

offline or online in GC. Currently, ORDER applies it of-

fline and we plan to apply this filter online in the future.

3.3 Other Non-determinism in JVM

Some sources of non-determinism are common for both

Java and native code, while the JVM additionally in-

troduces sources of non-determinism such as garbage

collection, adaptive compilation and class initialization.

In the following, we describe each source of non-

determinism and how ORDER handles it.

3.3.1 Common Non-determinism in Java and

Native Code

Lock acquisition: When two threads are competing on

the same lock, the order of lock acquisition is an im-

portant source of non-determinism. Thus, it is neces-



sary to record/replay the lock acquisition/release order.

The Java programming language provides two basic syn-

chronization idioms: synchronized methods and syn-

chronized statements, each of which is ensured by main-

taining a corresponding critical section in the JVM. In

ORDER, entering a critical section is treated as an ac-

cess to the corresponding object. Besides, JVM also

provides explicit locks and atomic operations in pack-

age java.util.concurrent. Likewise, ORDER treats these

operations as accesses to the lock objects.

Signal: Similar to C/C++ programs, signals also cause

non-deterministic behavior in Java applications. In JVM,

they are usually wrapped to wait, notify, and interrupt

operations for threads. Leveraging their non-preemptive

nature, ORDER records the return values and status of

the pending queue instead of the triggering time. Java

developers can write preemptive signal handlers by using

the “sun.misc.SignalHandler” interface, though they are

neither officially supported according to Sun, nor sup-

ported by many state-of-the-art Java Virtual Machines.

By tracing and recording the timeline status of the cur-

rent active object, which is the last accessed object in

the current thread, non-determinism in such libraries can

also be reproduced by ORDER.

Program Input: Different input may generate dif-

ferent program behavior. ORDER records this non-

determinism by logging the content of input to Java pro-

grams.

Library invocation : Some methods of the Java

library, like System.getCurrentTimeMillis() and meth-

ods in Random/SecureRandom classes, generate non-

deterministic return values. ORDER logs the return val-

ues of these methods to ensure determinism. Besides,

non-deterministic events in native libraries are exposed

to Java applications through lock acquisition, signal, in-

put, garbage collection, class initialization, and the non-

deterministic Java libraries. They are handled in OR-

DER as we covered in the corresponding sources of non-

determinism.

Configuration of OS/JVM : To ensure that the envi-

ronment setting of a record run is consistent with that

of a replay run, ORDER records the configuration of

OS/JVM and reproduces the recorded configuration in

the replay run.

3.3.2 Unique Non-determinism in JVM

Garbage collection: Garbage collection is another

source of non-determinism in the JVM. In multi-threaded

Java applications, different order of object allocations

across threads may cause different heap layout in mem-

ory, which then causes different collector behavior. As

a result of the object-centric recording of data accesses,

ORDER does not need to record dependencies intro-

duced by GC. However, GC can affect the behavior of

Java applications through several interfaces. To record

such non-determinism, ORDER logs interfaces between

GC threads and Java threads. Since most interface invo-

cations are triggered by JVM, non-determinism should

be recorded according to the JVM inner mechanism. We

will discuss the detail later in section 4.

Adaptive Compilation : Adaptive compilation,

which is also known as incremental compilation, recom-

piles methods if they are frequently invoked. Behav-

ior of adaptive compilation relies on the profiling re-

sult of program execution. Because the profiling result

varies in different executions, the behavior of adaptive

compilation is also non-deterministic. Reproducing non-

determinism caused by adaptive compilation can be sup-

ported by recording virtual machine states and profiling

results introduced by Ogata et al. [24].

Class Initialization : When JVM resolves and initial-

izes a class, static fields of this class are commonly ini-

tialized by the thread resolving the class. Thus, which

thread first invokes the class resolution method may af-

fect the behavior of Java applications. ORDER records

the resolution and initialization thread identifier, and en-

sures that the same thread first enters the class resolution

method in the replay run.

3.4 Discussions

Coverage of non-determinism: To our knowledge,

ORDER is the first deterministic replay system which

records non-determinism introduced by the Java run-

time, such as GC, class initialization, etc. Moreover,

unlike JaRec and LEAP, ORDER not only captures non-

deterministic lock acquisition or data access interleaving

outside JVM library, but also records non-deterministic

events inside the library. Although recording such non-

deterministic events incurs additional runtime overhead,

we believe they are necessary and essential to deter-

ministic replay systems. As discussed in LEAP, some

bugs may not be reproducible due to the ignoring of

these non-deterministic events. More importantly, loss of

such non-determinism may unexpectedly deadlock nor-

mal program execution due to the inconsistent execution

between recorded execution and replaying one. When

replaying long-running Java applications, the replay sys-

tem may deadlock itself before the buggy instruction is

encountered.

Transitive log reduction: The timeline recorded by

ORDER is already the smallest set of object access in-

terleavings, which does not need to be further optimized

by transitivity reduction [23]. Currently, ORDER does

not separate conflicts from read-read dependencies. Our

evaluation results in section 5 show that tracing timeline

incurs much more overhead than swapping logs to disk.

Though identifying conflicts from read-read dependen-

cies can further reduce log swapping overhead, which



is already very small, it will notably increase the com-

plexity of timeline tracing logic. Thus, ORDER does not

apply complex conflict-based reduction algorithm like

SMP-Revirt [12].

4 ORDER Implementation

We have implemented a prototype of ORDER based on

Apache Harmony [1]. We add several new instrumen-

tation phases into Harmony compilation pipeline to sup-

port deterministic replay. Besides, the default garbage

collector of Harmony (Generational GC with default

configuration for each object space) is modified to record

final timeline of each object. We also modify Soot[31] to

annotate thread-local or assigned-once object accesses in

methods. Such annotation is attached to Java bytecode

as a new attribute, which can be simply discarded if the

target JVM does not support ORDER. Thus, it does not

affect the portability of original Java application. Be-

cause preemptive handlers are currently not implemented

in Apache Harmony, the current version of ORDER

does not handle the corresponding non-determinism. In

the following sections, we discuss how ORDER records

non-determinism and cooperates with native code in Har-

mony.

4.1 Modification to Harmony Compilation

Pipeline

Harmony uses pipelines to manage compilation configu-

ration of Java methods. In Harmony, every pipeline con-

tains a set of actions each of which represents a single

analysis or optimization of Java methods. The instru-

mentation processes of record and replay phase are im-

plemented as two actions separately in ORDER. Besides,

if adaptive compilation is enabled, two or more pipelines

can be assigned to a single method. Then, when a method

is frequently invoked, it can be recompiled with a more

aggressive pipeline. Whether adaptive compilation is en-

abled or not only affects the performance of Java ap-

plication and does not affect the bug reproducibility of

ORDER. Thus, the current prototype of ORDER dis-

ables adaptive compilation to reduce engineering effort

and uses a single compilation pipeline. Type/copy prop-

agation, constant folding, dead/unreachable code elimi-

nation, devirtualization and all platform dependent opti-

mizations except peephole and fast array filling [3] are

enabled in the selected pipeline.

4.2 Recording GC in Harmony

Although garbage collection is an important source of

non-determinism in the JVM, it rarely affects the be-

havior of Java applications. ORDER does not record

garbage collection activity in Harmony, but only records

the following interfaces between garbage collection

threads and Java threads:

1. After garbage collection, dead objects that have fi-

nalization methods should be finalized. The order

that the finalization methods are invoked depends

on heap layout and garbage collection algorithm.

In Harmony, finalizable objects are enqueued to a

specific object queue after garbage collection. Fi-

nalizing threads extract objects from the queue and

invoke their finalize methods. ORDER records the

order they are extracted from the queue and repro-

duces the recorded order in replay run.

2. In Java, weak/soft/phantom reference represents

several strengths of ”non-strong” object instances,

and they are collected in GC according to the mem-

ory usage. After GC, JVM notifies the queue of

weak reference objects that the status of corre-

sponding weak objects may be changed by garbage

collection. Likewise, queues of soft/phantom ref-

erence objects are notified in the same way. The

size of weak/soft/phantom reference set depends

on runtime heap status. Like finalization, Har-

mony maintains a references to enqueue queue to

link the reference enqueue thread with Java threads.

The order these objects are extracted from refer-

ences to enqueue queue is recorded.

3. Java applications can explicitly invoke method Run-

time.freeMemory to query the size of free memory

from JVM. Different heap layouts result in different

free memory sizes during execution. Because this

method has no side effect, ORDER only records the

return value of it.

4.3 Cooperating with JVM Native Code

ORDER uses dynamic instrumentation to guarantee that

the replay run has the same object access timeline as the

recorded run has. Although execution behavior of Java

code is deterministic with the help of instrumentation,

the execution behavior of JVM native code is still non-

deterministic. ORDER records non-deterministic events

of JVM native code that will cause non-deterministic be-

havior of Java applications, and ignores those not really

affecting Java applications. ORDER should cooperate

properly with ignored JVM native code so that the in-

consistency between them will not introduce deadlock.

The internal suspend-resume mechanism of Harmony

does not affect application behavior. Thus, it is ignored

by ORDER. In Harmony, when enumerating the root

set of the Java heap, GC threads suspend Java threads

in order to get a consistent snapshot of the Java heap.

When Java threads are about to enter enable-suspend

state (named safe-point or safe-region), it must record

the status of the current stack frame so that GC threads

can obtain a complete set of live objects. However,

frequently recording stack frame information is costly



and worsens performance. In Harmony, safe-point/safe-

region is only invoked at call sites or certain system calls

(e.g., sleep). ORDER blocks Java threads when they

are about to violate the recorded object access timeline.

When the blocked time of a Java thread is beyond a

threshold (500ms), it prepares its own stack frame in-

formation and enters the enable-suspend state. When a

Java thread enters the enable-suspend state, it can be eas-

ily suspended by other threads. The Java thread exits the

enable-suspend state when it does not violate recorded

timeline further.

5 Evaluation Results

In this section, we evaluate the performance slowdown

of ORDER. We use an Intel Xeon machine with 4 quad-

core 1.6Ghz CPUs and 32 GB physical memory, which

runs a Linux with kernel version 2.6.26. We show the

results for the SPECjvm2008 suite except sunflow, derby

and xml.transform. One of them, sunflow, failed to be

compiled by original Apache Harmony m12, and two of

them (derby and xml.transform) failed to be compiled

because adaptive compilation is disabled. The original

SPECjbb2005 runs for a fixed amount of time and is not

suitable for evaluating performance slowdown. To en-

sure a fixed workload, we evaluate a variant one called

Pseudojbb2005, which runs for a fixed number of trans-

actions (100000).

5.1 Slowdown in Record Phase

Figure 7 depicts the performance slowdown of record

phase in ORDER. All benchmarks are run with 16

threads to evaluate the performance slowdown. To show

the effect of eliminating unnecessary timeline recording,

performance before and after this optimization are both

presented (before-opt vs. after-opt). In the raw recording

system, although most of the applications have perfor-

mance slowdown of less than 8 times and overhead of

some benchmarks is even lower than 100%, the slow-

down rises up to 82x in an extreme case (compress).

Compared to the raw system, performance after elimi-

nating unnecessary timeline recording is much better. As

shown in Figure 7, after optimization, the record over-

head of ORDER is less than 8 times in all cases, even in

compress. ORDER incurs an average of 108% overhead

compared to the original execution run. Actually, the op-

timized version of ORDER introduces less than 100%

overhead for most of the benchmarks, which means that

it may be efficiently used for many applications. If not

specifically mentioned, all results below are collected un-

der optimized ORDER system.

Moreover, we evaluated three more configurations of

ORDER to investigate the source of overhead in OR-

DER: raw Apache Harmony without adaptive compila-

tion (wo adaptive), ORDER without recording timeline

(wo timeline), and ORDER without swapping timeline

log to disk, i.e., the timeline records are stored only

in memory (wo disk). As shown in Figure 7, the per-

formance of most applications (except JRuby) after dis-

abling adaptive compilation is very close to the original

JVM. On average, there is a 5.8% performance differ-

ence, which means performance impact of adaptive com-

pilation is insignificant in most cases. Besides, the per-

formance of ORDER is similar whether disabling disk

operations for timeline logs or not. These two configu-

rations introduce a slowdown of about 104% and 108%

correspondingly. This shows that overhead of disk op-

eration is also small. Further, when disabling timeline

recording as a whole, ORDER introduces only 16% over-

head on average. This confirms that the major perfor-

mance overhead of ORDER comes from tracing timeline

in memory.
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DER and LEAP. 16 threads are used to evaluate the per-

formance slowdown.

Figure 8 depicts the performance of ORDER com-

pared to LEAP[15]. Because the static instrumentation

approach does not support reflection, LEAP cannot prop-

erly instrument Java code of original SPECjvm2008 or

SPECjbb2005. To evaluate the performance of LEAP, we

manually replace the reflection mechanism in scimark,

mpegaudio, and compress with direct method invocation.

We found that when recording mpegaudio, compress,

scimark.monte carlo or scimark.fft.large, LEAP either

throws an OutOfMemoryError or does not finish in two

hours. Results of JRuby are also not presented here be-

cause LEAP throws NULLPointerException in static in-

strumentation phase. The performance result just serves

as a reference because LEAP records non-determinism in

neither library code nor Java runtime. As shown in Fig-

ure 8, although ORDER records more non-deterministic

events than LEAP, ORDER is still 1.4x to 3.2x faster than

LEAP in the evaluated benchmarks.

By reducing the strength of synchronization, ORDER

notably improves the scalability of recording interleaved

object accesses in Java applications. Figure 9 shows the

performance slowdown of ORDER when the number of

threads varies from 1 to 16. Overall, ORDER scales well.
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Figure 9: Performance slowdown of record phase when the number of threads varies from 1 to 16.

Most of the cases have similar performance slowdown

while the number of threads increases. With the number

of threads increasing, only one case in SPECjvm2008

(mpegaudio) has an obvious increase of performance

slowdown. The increased number of object access inter-

leavings degrades the performance in this case. Mean-

while, we observed that there are still many assigned-

once objects recorded in this case, which is caused by the

conservativeness of assigned-once analysis, and they can

be further eliminated by improving the precision of anal-

ysis algorithm. For some applications such as compiler

and crpto.aes, when we increase the number of threads,

the recording overhead even decreases. Despite the re-

duced contention of ORDER, this anomaly is also af-

fected by the following two reasons: 1) As discussed

in Yi et al. [34], some benchmarks themselves are not

scalable, like compiler; 2) Instrumentation of ORDER

increases the complexity of intermediate representation,

thus introduces additional overhead to analysis and opti-

mizations in Harmony; such overhead is amortized when

the number of threads increases.

5.2 Slowdown in Replay Phase

Similarly, ORDER uses dynamic instrumentation in Har-

mony to implement the replay phase. Thus, instrumen-

tation of replay phase causes similar performance slow-

down to record phase. Besides, blocking threads to en-

sure correct timeline will introduce additional overhead.

Figure 10 depicts the replay slowdown of ORDER. For

most of the selected benchmarks, the performance of re-

play phase is scalable from 1 to 16 threads, with four

exceptions(xml.validation, serial, mpegaudio, and Pseu-

dojbb2005). In these four applications, with the num-

ber of threads increasing, performance slowdown also

increases because Java threads are frequently blocked.

Currently the prototype of ORDER uses a naive imple-

mentation of thread scheduler, which can be further en-

hanced to speedup replay phase performance.

5.3 Log Size

Besides the performance overhead, many state-of-the-

art deterministic replay systems also suffer from large

space overhead. To record interleaved data accesses on
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Figure 10: Performance slowdown of replay phase when the number of threads varies from 1 to 16.

multi-processor architecture, deterministic replay sys-

tems usually need to record tens of Gigabytes logs per

Hour(g/h) [12, 15]. Although the disk capacity today is

large enough to store log files, it is hard to share such

large data on network. If we want to report a concur-

rency bug to the corresponding community, uploading a

log file with tens of gigabytes is obviously not attractive.

Table 2 shows that the log size of ORDER is very

small. In most cases, it generates a log file less than

100 Megabytes per Hour(m/h), which is considerably

smaller than those reported in other deterministic replay

systems[12, 15]. Only two cases (serial and Pseudo-

jbb2005) generate log files that are greater than 1 Giga-

bytes per Hour. We notice that most of the logged inter-

leavings of serial relate to contention for a single global

buffer in the original application, which is introduced

by a producer-consumer scenario. Most of the logged

interleavings in Pseudojbb2005 are caused by the false

sharing between different static fields in the same class,

which occurs because prototype of ORDER does not dis-

tinguish accesses to the same class object. However, such

a log size is still much smaller than those reported in pre-

vious literatures [12, 15].

5.4 Concurrency Bug Reproducibility

To confirm the reproducibility of ORDER on concur-

rency bugs, we reproduce six real-world concurrency

bugs from open source projects with ORDER. The char-

acteristics of these concurrency bugs are listed in Table

3. These cases cover three major categories of concur-

rency bugs reported by Lu et al. [18]. By replaying the

recorded logs, the buggy executions are successfully re-

produced in replay phase. Among the bugs, JRuby-2483

is caused by using thread unsafe library code, which

fails to be reproduced in a static instrumentation ap-

proach [15].

Case Log Size Log Size

(timeline) (others)

compiler.compiler 88(m/h) 35(m/h)

compiler.sunflow 61(m/h) 58(m/h)

scimark.fft.small 0.60(m/h) 10(m/h)

scimark.fft.large 0.47(m/h) 7(m/h)

scimark.lu.small 0.37(m/h) 6(m/h)

scimark.lu.large 0.35(m/h) 5(m/h)

scimark.sor.small 2(m/h) 40(m/h)

scimark.sor.large 0.68(m/h) 11(m/h)

scimark.sparse.small 2(m/h) 36(m/h)

scimark.sparse.large 0.56(m/h) 10(m/h)

scimark.monte-carlo 0.013(m/h) 0.22(m/h)

compress 4(m/h) 44(m/h)

crypto.aes 1.4(m/h) 9(m/h)

crypto.rsa 26(m/h) 6(m/h)

crypto.signverify 10(m/h) 8(m/h)

mpegaudio 511(m/h) 2(m/h)

serial 1553(m/h) 121(m/h)

xml.validation 632(m/h) 31(m/h)

Pseudojbb2005 1085(m/h) 550(m/h)

JRuby 0.8(m/h) 170(m/h)

Table 2: Log size of ORDER, in 16-thread execution.

6 Related Work

State-of-the-art deterministic replay for Java: State-

of-the-art deterministic replay systems for Java applica-

tions use the strategy called “logical thread scheduling”

to record multi-threaded Java execution [28, 9, 30]. As

mentioned in Dejavu [9], “logical thread scheduling” is

based on a global clock (i.e., time stamp) for the en-

tire application. This strategy works efficiently in uni-

processor platforms. However, global clock among cores

needs to be synchronized frequently, which imposes con-

tention to a single global lock. There are currently no

scalable deterministic replay systems based-on such an

approach for multi-processor platforms.

JaRec [13] assumes that Java applications are data-



Bug ID Category Bug description

JRuby-931 atomic Non-atomic traversing

violation of container triggers

ConcurrentModification-

Exception.

JRuby-1382 atomic Non-atomic read from

violation memory cache causes

system crash.

JRuby-2483 atomic Concurrency bug caused by

violation using thread unsafe library

code.

JRuby-879 order Listing threads before thread

JRuby-2380 violation is registered causes

non-deterministic result.

JRuby-2545 deadlock Lock on the same object

twice causes deadlock.

Table 3: Real-world concurrency bugs reproduced by

ORDER. Each of them comes from open source com-

munities and causes real-world buggy execution.

race free programs and records only the lock acquisition

order, which cannot be used to reproduce concurrency

bugs caused by data races. LEAP [15] records non-

determinism introduced by data accesses through static

recompilation and instrumentation, which cannot cover

external code, such as libraries or class files dynamically

loaded during runtime. Thus, it cannot reproduce con-

currency bugs caused by these missing parts. None of

the existing deterministic replay systems can reproduce

bugs caused by non-determinism inside JVM. Further-

more, LEAP does not distinguish instances of the same

class, and the false sharing between different objects may

lead to large performance overhead when a class is mas-

sively instantiated.

There are also several proposed approaches to improve

efficiency and scalability of deterministic replaying na-

tive code written in C/C++. They can be grouped into

two sets according to how they record non-deterministic

data accesses:

Software deterministic replay for native code: Uni-

processor deterministic replay systems [5, 33] record in-

terrupt boundaries and input payloads, which are proven

useful in bug diagnosis and intrusion detection. How-

ever, state-of-the-art systems use multiple CPUs with

shared memory data access. Such an additional source of

non-determinism makes efficient recording difficult for

software.

Several approaches are proposed to reduce the syn-

chronization overhead and performance slowdown in-

troduced by memory race recording. Transitive Reduc-

tion [23] is proposed to reduce the log size by apply-

ing transitivity-based log reduction to log files generated

by deterministic replay system. It can also reduce the

synchronization overhead in the replay phase. However,

such an approach still needs to use global clock and can-

not reduce synchronization overhead in record phase.

SMP-Revirt [12] modifies the page protection mecha-

nism for recording non-deterministic data access events.

By using page as the granularity to track dependencies,

SMP-Revirt achieves a low performance overhead in ar-

chitectures with 1 to 2 cores. However, because they

record a very large granularity of data sharing, its per-

formance drops significantly when number of cores is

increased to 4. In order to mitigate thrashing caused by

frequent transfers of page ownership, SCRIBE [16] de-

fines a minimal ownership retention interval and disal-

lows ownership transitions until the interval expires. Al-

though it notably relieves the contention among threads,

the extended interval of page ownership makes it difficult

to capture atomic violation bugs in record run.

PRES and ODR [26, 4] record partial information

in record phase and use an offline reproducer to infer

the race occurred in the record phase. Because only a

part of the execution information is recorded, they can

achieve a low performance slowdown. However, the re-

producibility depends heavily on how much information

is recorded, and the proper scheme to record information

is hard to decide. Although recording less information

can reduce performance overhead, the recorded execu-

tion may not be reproducible.

Hardware-assisted deterministic replay: Since soft-

ware based deterministic replay systems usually impose

large performance overhead, hardware-assisted deter-

ministic replay systems [6, 14, 17, 19, 20, 21, 22, 32]

are proposed to modify hardware components for record-

ing data access conflicts efficiently. Many such systems

apply optimizations to further reduce record overhead

and log size. However, they impose non-trivial hardware

complexity and there are still no commercially available

processors built with these features.

7 Conclusion and Future work

This paper presented ORDER, the first object-centric de-

terministic replay system for concurrent Java applica-

tions on multicore. ORDER recorded interleaved data

accesses in Java applications by tracking how each thread

accesses each object and enforced such a constraint dur-

ing replay. By dynamically instrumenting Java code in

the compilation pipeline, ORDER naturally covered non-

determinism in dynamically loaded classes and libraries.

Evaluation results showed that ORDER achieved good

performance and scalability for a range of benchmarks,

which notably outperformed LEAP, a state-of-the-art de-

terministic replay system for Java. Bug reproducibility

study further showed that ORDER successfully repro-

duced several real-world concurrency bugs.

While ORDER has demonstrated the efficiency and



effectiveness of recording and replay concurrent Java

programs, there are still plenty of optimization spaces,

which will be our future work. First, timeline filter of

unnecessary dependencies is currently applied offline,

and applying it online can reduce space overhead and

eliminate unnecessary disk operations in the recording

phase. Second, we plan to combine ORDER with tech-

niques that cover the non-determinism in adaptive opti-

mization [24] to enable adaptive optimization for JVM.

Finally, we plan to combine ORDER with an object-level

checkpointing mechanism to further reduce log size, and

extend ORDER with some selective tracking mecha-

nisms to focus on only interested objects, to further re-

duce performance overhead.
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