
jVPFS: Adding Robustness to a Secure Stacked File System
with Untrusted Local Storage Components

Carsten Weinhold, Hermann Härtig
Technische Universität Dresden, Germany
{weinhold,haertig}@os.inf.tu-dresden.de

Abstract
The Virtual Private File System (VPFS) [1] was built to
protect confidentiality and integrity of application data
against strong attacks. To minimize the trusted com-
puting base (i.e., the attack surface) it was built as a
stacked file system, where a small isolated component
in a microkernel-based system reuses a potentially large
and complex untrusted file system; for example, as pro-
vided by a more vulnerable guest OS in a separate virtual
machine. However, its design ignores robustness issues
that come with sudden power loss or crashes of the un-
trusted file system.

This paper addresses these issues. To minimize dam-
age caused by an unclean shutdown, jVPFS carefully
splits a journaling mechanism between a trusted core and
the untrusted file system. The journaling approach mini-
mizes the number of writes needed to maintain consistent
information in a Merkle hash tree, which is stored in the
untrusted file system to detect attacks on integrity. The
commonly very complex and error-prone recovery func-
tionality of legacy file systems (in the order of thousands
of lines of code) can be reused with little increase of com-
plexity in the trusted core: less than 350 lines of code
deal with the security-critical aspects of crash recovery.
jVPFS shows acceptable performance better than its pre-
decessor VPFS, while providing much better protection
against data loss.

1 Introduction

Both VPFS and its successor jVPFS are built in response
to the observation that the enormous code bases of mono-
lithic OSes (hundreds of thousands to millions of lines of
code) are likely to contain exploitable weaknesses that
jeopardize platform security. Apparently, this observa-
tion is valid especially for mobile devices that currently
have the highest speed of hardware technology innova-
tion. Almost daily reports, for example on successful

attacks on core system components such as drivers [2],
USB stacks [3], passcode protection [4], common appli-
cations such as text messaging [5] or on “jailbreaks” [6],
which consistitute successful attacks, too, substantiate
that claim of significant vulnerability. On the other
hand, as smartphones, tablets and similar appliances
have evolved into powerful and versatile mobile comput-
ers, professional users are starting to use them for criti-
cal data. For example, a doctor making house calls may
use such a device to store patient records, which are not
only sensitive from the patient’s point of view, but also
subject to legal requirements. Or a mobile device may
store documents that are classified or contain trade se-
crets. Mobile payment systems on the other hand have
strong integrity requirements to prevent tampering. Yet
mobile devices are frequently connected to insecure net-
works (public WiFi, etc.) and in certain situations, users
even must hand them over to untrusted third parties (e.g.,
leave them at the reception when visiting a company).

A general approach that so far seems mostly attrac-
tive for safety critical systems and to the miltitary is
based on small isolation kernels or microkernels. Such
kernels strongly separate applications, but also operating
system components. Some of them [7], then called “hy-
pervisors”, contain the basic functionality to support vir-
tual machine (VM) monitors and legacy OSes as guests.
Based on such kernels, critical applications can run in
their own compartments (built on microkernel services
or in their own VMs) that are protected even against suc-
cessful attacks on drivers or other parts of large, insuf-
ficently secure legacy OSes. Related work [8, 9] has
also shown that applications can be split such that their
security-critical cores run isolated, but reuse untrusted
parts of the system for their non-critical functionality,
thereby reducing the trusted computing base (TCB) of
these applications by several orders of magnitude.

VPFS and jVPFS: File Systems for Microkernels. In
previous work on VPFS [1] we built a file-system stack



that leverages a microkernel-based isolation architecture
to achieve better confidentiality and integrity protection
of application data. We achieved this by splitting the file-
system stack into a small trusted and a larger untrusted
part that reused Linux file-system infrastructure. Only
the former is within the file-system TCB (see Figure 1
for an architectural overview). As VPFS uses untrusted
components, which might be penetrated or otherwise
corrupt data, integrity guarantees can only cover tamper
evidence: manipulated data is detected through check-
sum mismatches and never delivered to applications. Un-
fortunately, better integrity protection also reduces avail-
ability of file-system data in the event of an unclean shut-
down; for example, checksums may no longer match the
corresponding file contents, if the battery of the mobile
device failed unexpectedly or the system crashed.

With jVPFS, we address the problem of ensuring both
robustness and integrity in a split file-system stack as
described above. In monolithic file system stacks, the
code for ensuring consistency of on-disk structures (e.g.,
journaling, soft updates [10]) is rather complex and dif-
ficult to get right [11, 12]. Recent research [13, 14, 15]
has shown that even file system implementations that are
widely used in production environments still have bugs,
commonly found in code paths used for error handling
and post-crash recovery. A subset of these bugs are secu-
rity critical [2]. It is therefore a primary design goal for
us to keep the inherent complexity of consistency mech-
anisms out of the file-system TCB in order to lower the
risk of introducing exploitable design and implementa-
tion errors. Nevertheless, existing file system implemen-
tations are well tested and sufficiently reliable in com-
mon application scenarios (when not subject to sophisti-
cated attacks). For practical reasons, it is therefore desir-
able to reuse this infrastructure in order to reduce engi-
neering effort.

Contribution. The work presented in this paper makes
the following contributions: We extend the file-system
TCB for confidentiality, integrity, and freshness of all
data and metadata such that these protection goals can be
reached even after an unclean shutdown. To this end, we
identify and isolate the security-critical functionality re-
quired to recover a consistent file system after a crash and
discuss how existing, untrusted consistency infrastruc-
ture can be reused to complement the security-critical
part. We devise a novel cooperation scheme that lets
trusted and untrusted components cooperate and discuss
precisely which metadata information must be revealed
to untrusted code in order to facilitate this cooperation.
We evaluate a prototype implementation.

Synopsis. On the following pages, we first provide
required background on our security model and then

Mikrokernel-based OS

Mobile Device

Untrusted Local StorageSealed Memory

jVPFS Core
Trusted

Application
(Isolated, Trusted)

L4Linux Kernel

jVPFS Helper
Untrusted

L4Linux VM
(Reused Legacy OS)

Application TCB
Untrusted Infrastructure

Figure 1: jVPFS in a decomposed system architecture
with strong isolation among components.

present our design and optimizations in Sections 3 and 4,
respectively. We evaluate our prototype in Section 5, be-
fore discussing related work in Section 6.

2 Background

Figure 1 gives an overview of the system architecture
into which the split jVPFS stack integrates. Strictly fol-
lowing the principle of least privilege, file-system con-
tents are accessible only to the specific application that
owns them. The small file-system kernel of jVPFS im-
plements all security-critical functionality and reuses the
file system stack provided by an untrusted, virtualized
legacy OS. That is, Linux performs all non-critical tasks
to manage persistent storage.

2.1 Security Model

The jVPFS security model is identical to the one for
the original version of VPFS [1]; we summarize it here.
We consider a strong attacker who is trying to com-
promise confidentiality, integrity, or freshness of criti-
cal data stored in a VPFS file system. Confidentiality
means that, after authorization, the user can access his
data only through a specific application. Our notions of
integrity and freshness apply to both user data (file con-
tents) and metadata (filenames, sizes, timestamps, etc).
The file system provides only complete and correct data
and metadata to the application. We require that VPFS
can detect any tampering and whether data and metadata
are up-to-date, preventing an attacker from rolling back
file-system contents to an older version without being no-



ticed. We assume that both software and certain hard-
ware attacks are possible. At run time, VPFS relies on
hardware address spaces and virtual-machine boundaries
in order to isolate the trusted and untrusted components
effectively. To counter offline attacks, VPFS requires the
mobile device to enforce a secure startup process of the
application TCB and a small amount of access-restricted,
tamper-resistant memory to store cryprographic keys and
a checksum for integrity checks.

Software-based Attacks. Both software and data
stored in the mobile device may be tampered with. Given
the high complexity and enormous code size of the vir-
tualized legacy OS, we must assume that the attacker can
fully compromise it; hence, untrusted components may
stop working correctly at any time. Nevertheless, we as-
sume that in the common case, when not being attacked,
they function as expected and cooperate with the trusted
part of VPFS. In the case of jVPFS, the untrusted in-
frastructure is expected to store cryptographically pro-
tected file-system contents persistently, taking any nec-
essary consistency constraints into account.

Components within the TCB are considered to be sig-
nificantly harder to attack, because their isolated code-
bases present a smaller attack surface. We assume that
they either work correctly, or not at all, should the secure
boot process of the mobile device detect that their exe-
cutable files or configuration have been tampered with.

Hardware-based Attacks. We assume that an attacker
is able to directly access or manipulate the device’s mass
storage (e.g., a flash memory card), but he cannot suc-
cessfully read or manipulate the contents of the tamper-
resistant memory or break the secure boot process. To
ensure tamper resistance, the device could be equipped
with a trusted platform module (TPM) [16] or a small
amount of secure flash memory that is directly integrated
into the system-on-chip (SoC) package. Access to the se-
cure flash memory must be restricted to certain software
stacks by means of secure boot, possibly augmented with
hardware-based access control as enabled by the ARM
TrustZone [17] technology.

Secret keys stored in a TPM can be extracted with
equipment that costs in the order of hundreds of thou-
sands of dollars, but the process is destructive. Similarly,
we assume that gaining direct access to the secure flash
in the SoC is too hard for the attacker. Making a user-
provided secret such as a PIN code part of the storage
encryption key limits benefits of such an attack further.

2.2 Cryptographic Protection
Earlier work on cryptographic storage systems (e.g.,
[18, 19]) shows how file-system contents can be pro-

tected against offline attacks by using encryption. In
jVPFS, AES-CBC encryption ensures confidentiality at
the block level, thereby enabling efficient partial updates.

The state of the art technique for efficiently ensuring
integrity and freshness is to use a Merkle hash tree [20].
By construction, the tree provides all necessary infor-
mation to verify correctness and completeness of file-
system contents; one can guarantee freshness by stor-
ing the root hash of the tree in tamper-resistent, persis-
tent memory. In our system, the entire file system in-
cluding its metadata (names, etc.) is protected by the
Merkle tree. Simpler approaches without using a tree
structure do not meet our requirements: Single hashes for
large regions or entire files make partial updates expen-
sive; furthermore, storing one independent hash per re-
gion or file requires impracticably much tamper-resistant
storage. Using keyed hashes (e.g., HMACs [21]) in-
stead makes hashed data vulnerable to roll-back attacks,
thereby defeating freshness.

3 Design

In jVPFS, the Merkle hash tree is essential to strong in-
tegrity and freshness guarantees. It must always be pos-
sible to restore it to a consistent state. The design of the
jVPFS consistency mechanism is driven by the princi-
ple of least privilege, aiming at a minimal attack surface
of the implementation in order to increase its trustwor-
thiness. There are two key challenges to reaching these
goals:

1. Making the Cut. Part of our integrity requirement
is that data provided to applications is complete;
freshness demands that the latest file-system state
is available. The consistency mechanism thus has
security-critical functionality that must be identified
and isolated from uncritical, potentially untrusted
components in an efficient and effective way.

2. Secure Cooperation. Despite isolation, the two
parts of the file-system stack must be able to cooper-
ate. Therefore, at least some information describing
consistent sets of updates must be revealed to and
processed by untrusted components whithout jeop-
ardizing confidentiality, integrity, and freshness of
file-system state.

3.1 Consistency Paradigm

After a crash, the on-disk structures in the untrusted
storage must contain enough information to restore the
Merkle hash tree spanning the file system data and meta-
data.



LN

IN IN

ININ

LN LN LN LN

LNINRN Root
Node

Intermediate
Node

Leaf
Node

Intermediate Hash

Leaf Hash

IN

Journal
Record

RN

Figure 2: Updating the Merkle hash tree: modification
of one leaf node requires the complete chain of interme-
diate nodes up to and including the root node to be up-
dated. Instead, it is more efficient to append leaf-node
hash sums to a growing journal, which is cryptographi-
cally bound to the root hash.

Naive Approach. The naive approach to meet this re-
quirement is to ensure that the untrusted legacy file sys-
tem always holds a consistent snapshot of the Merkle
tree. In such a hash tree, changes are first made to the
leaf nodes and then propagate to the root. Thus, modifi-
cations of the on-disk file system (e.g., writing new data
to a file) must always include updates of all intermediate
Merkle tree nodes up to the root node. This set of up-
dates to the on-disk user data (i.e., file contents) and the
Merkle tree nodes has to be applied atomically. In this
context, atomic means that, after a system crash, either
the complete set of updates is persistent, or the previous
state is accessible—otherwise the hash sums become in-
consistent, breaking the authentication chain. Figure 2
illustrates these update dependencies.

Unfortunately, atomic updates to Merkle trees are ex-
pensive, because small modifications such as writing a
single block of user data involve writing as many tree
nodes (i.e., disk blocks) as there are levels in the tree.
For each of these blocks the trusted part of jVPFS has
to perform cryptographic operations, further increasing
run-time overhead and energy consumption. Also, mod-
ifying file contents might require updates of metadata
such as file-size information, which is stored in an in-
ode that must be protected by the Merkle tree, too. Thus,
the costs of consistent, atomic updates rise even more.

Split Journaling Approach. We therefore explored
design alternatives in order to avoid the performance im-
pact of the naive approach. Being the key reason for
slow performance, the requirement always to have the
on-disk Merkle hash tree in a consistent state needs to
be relaxed. In fact, it is desirable to omit updates of
Merkle tree nodes for short periods of time, for exam-

ple, during high load or to minimize latency. In order to
have the required hash sums available for post-crash in-
tegrity checking nonetheless, they need to be written to
an alternative, more efficient data structure. Journaling
file systems solve this problem: they allow for efficient
and atomic updates of distributed file data and metadata,
which in our case includes hash sums that enable in-
tegrity checking. A growing journal to which hash sums
of updated leaf nodes are appended eliminates the need
to immediately update disk blocks that store higher-level
tree nodes; they may be flushed from the buffer cache
later. This strategy also reduces cryptographic overhead,
as only the leaf nodes of the tree are updated frequently.

Protecting the Journal. As the journal now contains
information that is critical to ensuring integrity, it must
be cryptographically protected, too. To keep the perfor-
mance benefit, appending records to the journal must not
require additional updates of other metadata (e.g., like
the root node of the Merkle tree). We ensure journal
integrity by continously hashing all appended records.
New records are written to the end of the journal together
with a new incremental hash sum that authenticates all
preceding journal content, thereby enabling incremental
integrity checking. To prevent forging of these journal
hash sums, we first hash a random secret that is kept in
tamper-resistent sealed memory and therefore unknown
to an attacker who is trying compute new hashes. Addi-
tionally, we encrypt confidential metadata in the journal
using AES in CBC mode. This incremental, keyed hash-
ing and encryption scheme is well-understood and, for
example, used by Maheshwari et al. in TDB [19].

We will discuss the frequency and granularity of in-
termediate journal hash sums in Section 3.5, following
a detailed discussion of the structure and semantics of
jVPFS journal records in Sections 3.3 and 3.4.

3.2 Architecture Overview
We are building on our previous work on VPFS [1] and
integrate a consistency mechanism into its architecture.
Figure 3 gives an overview of the jVPFS stack. The
three top layers only deal with the concept of files, a
namespace, and per-file security-critical metadata. They
essentially implement a memory file system within the
TCB. Another trusted layer called Sync_manager, which
is located directly underneath this memory file system,
implements support for making jVPFS state persistent.
Sync_manager is called by the buffer cache whenever
data needs to be read into cache buffers or evicted from
them. Applications can influence write back through ex-
plicit operations such as fsync(), if required.

In order to avoid the complexity of managing a physi-
cal storage medium in its own codebase, Sync_manager



Txn Manager

Linux File
System StackSync Manager

Buffer Cache

File / Naming Abstraction

API / Client State

Application

Crypto

Ring Buffer in
Shared Memory

Untrusted / Reused
Parts of jVPFS Stack

Trusted Part of
jVPFS Stack

Figure 3: Detailed view of the jVPFS file-system stack:
jVPFS implements a memory-based low-complexity file
system within the TCB of the application using it.
Through Sync_manager, jVPFS reuses an untrusted
Linux file system to make file system contents persistent.

maps files in the virtual private file system (as seen by
the trusted application) to files in an untrusted Linux file
system. To distinguish between these two views of a file,
we shall refer to the latter ones as file containers in the
untrusted storage.

Cooperation. Like the trusted part of the original
VPFS, Sync_manager transparently encrypts and de-
crypts all data and metadata it exchanges with untrusted
components in the storage strack. Furthermore, it calcu-
lates and verifies cryptographic hash sums in order to en-
sure integrity of any data and metadata it receives from
untrusted code. In jVPFS, it also performs a minimal
amount of state tracking so as to ensure that only consis-
tent changesets are written to persistent storage. Coop-
eration between Sync_manager and the Linux infrastruc-
ture it reuses is enabled by the untrusted Txn_manager. It
receives from Sync_manager requests and consistency-
related hints and translates them into Linux file-system
calls. That is, Txn_manager writes cryptographically
protected data to file containers and appends records to
the journal, which is a file in the Linux file system, too.
jVPFS makes extensive use of existing infrastructure,
as it exploits any consistency guarantees the underlying
Linux file system might provide (e.g., write ordering).

Communication Interface. Trusted and untrusted
parts of the jVPFS stack cooperate using a narrow
message passing interface and a ring buffer located in
a shared memory area. Table 3.2 lists all message
types. During normal operation, Sync_manager sends
Read_block and Exec_ops messages to request uncached

Message type Description
Read_block Read a specific data block
Exec_ops Execute buffered operations
Write_checkpoint Create a new journal, which also

marks a new checkpoint
Read_checkpoint Read FS root info from last

consistent checkpoint
Read_journal Read set of complete

transactions from journal
Init_shm Set up shared memory once

Table 1: Complete list of message types that Sync-
manager uses for communication with Txn_manager.

data blocks, or to flush operations and journal records
queued in the ring buffer. Txn_manager handles these
requests and writes back encrypted data blocks that
are referenced by journal records. Messages of type
Read_checkpoint and Read_journal are exchanged at
mount time and, if necessary, during recovery. We shall
explain the semantics of the Write_checkpoint message
in the following section, which covers our approach to
journaling and checkpointing of on-disk state.

3.3 Being Prepared for Crashes

Journaling in jVPFS is done at the level of metadata op-
erations. Starting from a consistent set of file containers,
which contain the latest checkpoint of all file system con-
tents, data blocks are written to untrusted storage and any
associated modifications to metadata are logged to the
journal. We do not log full blocks of metadata, but only
descriptions of specific operations such as updating hash
sums or file sizes. Occasionally, Sync_manager flushes
all cached blocks—containing both data and metadata—
in order to bring all file containers into a consistent state;
this state marks a new checkpoint, at which all previ-
ously written journal records can be discarded. The gen-
eral idea for recovery after an unclean shutdown is to re-
play all journaled operations, iteratively updating meta-
data structures from the latest checkpoint.

Metadata Dependencies. Operation-level journaling
allows for simple tracking of metadata dependencies in
Sync_manager, which is important for our objective to
minimizing complexity within the TCB. Figure 4 illus-
trates the dependencies of standard file-system metadata:

Inode: The inode of a file contains the file size in bytes
that specifies how much data in the last data block
is valid file content. In jVPFS, the inode also stores
the root hash of the Merkle subtree that protects the
file’s contents. The inode itself is stored in the inode



Inode Inode Inode Inode Inode

dentry dentry dentry
File

File

FS Info

Figure 4: Dependencies among standard file-system data
structures: entries in directories point to inodes, which
are associated with files. The superblock-like FS info in
jVPFS contains the root hash of the Merkle tree.

file, which is mapped to its own file container that
contains the top levels of the Merkle tree.

Pathname: The inode of a file is referenced by a direc-
tory entry, which is stored in a directory file. Direc-
tory files form a hierarchical namespace, as direc-
tory entries can reference not only regular files, but
also other directory files.

The dependencies described above are critical to the
consistent representation of a file and must be obeyed
by Sync_manager. They translate into the requirement
that, for each newly created file, the corresponding in-
ode and the directory entries along the file’s pathname
need to be written, too. The file and namespace ab-
straction in the upper layers of the jVPFS TCB already
implements most of the required book keeping; a con-
sistent checkpoint will have all this metadata stored in
file containers. However, the consistency mechanism
that Sync_manager contributes to jVPFS maintains ad-
ditional state, such that it can log inode and namespace
updates to the journal. For each newly created file (in-
cluding directory files), it keeps the following informa-
tion in memory:

• A copy of the filename.

• A pointer to the inode of the parent directory.

Sync_manager stores this information in a simple ta-
ble, which is essentially an extension of the file descrip-
tor table. This volatile new-file state is complemented
by a one-bit flag in the inode, indicating whether in-
ode and filename of a file have already been written.
Sync_manager executes Algorithm 1 to make sure that
journal replay restores the inodes and the namespace for
newly created files: for a new file and all directories
along its pathname, it recursively appends to the journal
in reverse path order a File_create record, unless this in-
formation has already been logged (or exists in an older
checkpoint). Once a File_create record containing a copy
of a new file’s inode, a pointer to the parent directory’s

Algorithm 1 Journaling metadata for new files.
function journal_file_create(File *file) {

// check, if file creation has already been logged
if (file.inode.is_logged == true)

return;
// not announced in journal, get “new file info”
struct new_file *info = new_file_info_table[file.fd];
// lookup of file descriptor of parent dir: if it is
// still open, its creation may need to be logged, too
int p_fd = info.parent_file_handle;
int p_iptr = info.parent_inode_ptr;
File *p_dir = get_file_descriptor(p_fd, p_iptr);
if (p_dir != NULL) {

// parent dir still open, make sure it is logged
journal_create_file(p_dir);

}
// announce new file in journal
file.inode.is_logged = true;
File_create_rec rec(file.inode, p_iptr, info.name);
append_to_journal(rec);

}

inode, and the filename has been journaled, data blocks
can be written to the file container (see next paragraph).

Metadata operations such as rename() or unlink() are
logged analogously (i.e., with their parameters). Note
that allocation bitmaps or other free-space information
need not be considered, because the security-critical part
of jVPFS delegates this functionality to the untrusted
legacy file system. Also, no explicit write-barrier op-
erations are required, as partial replay of the generated
journal records may, at worst, recreate an empty direc-
tory or a zero-size file.

Writing User Blocks. The key requirement to be met
when writing a block at the leaf level of the Merkle tree
is that its hash sum needs to be written to the journal first.
Sync_manager prepares write back of user-data blocks;
it performs the following operations:

1. Calculate new hash sum over plaintext of updated
block’s contents.

2. Encrypt block, put ciphertext into free buffer space
in shared memory area.

3. Put Block_update record containing updated hash
sum and new file size into ring buffer.

Actually writing the data block to persistent stor-
age is done by the untrusted parts of the jVPFS stack.
Txn_manager ensures atomicity of block writes by en-
forcing the following three constraints (note that this
scheme is conservative and potentially expensive in



terms of write barriers; we will discuss optimizations
for the common case, including write batching, in Sec-
tion 4):

1. Updated hash sums must reach the journal before
the actual block is written to the file container. The
underlying legacy file system must be made aware
of this write-before relation, for example, by calling
fsync() on the journal file.

2. Should a system crash interrupt the write back op-
erations initiated by Txn_manager, the aforemen-
tioned order for journal and block writes ensures
that either (a) the new hash sum is persistent in the
journal and can be used to authenticate the updated
block, or (b) the the old version of the block can be
authenticated using the old checksum still available
in the corresponding on-disk Merkle tree node.

3. Before updating the same block a second time,
Txn_manager must make sure that the first update
reached stable storage, because of point 2.

It is assumed that the underlying legacy file system can
guarantee that aligned writes with a size equal to its own
block size are atomic. Most journaling file systems do
meet this requirement in their standard configuration us-
ing ordered or data journaling [14].

Writing Metadata Blocks. Case 2(b) mentioned
above implies that the previous version of a block’s hash
sum is guaranteed to be available during replay. To
meet this requirement at all times, Txn_manager treats
metadata blocks differently from blocks with user data.
Metadata blocks contain either intermediate nodes of
the Merkle tree, or any block from a directory or in-
ode file. Whenever a metadata block is flushed and
would overwrite the latest checkpointed version of it-
self, Txn_manager rescues a copy of the original version
into the journal, thereby preserving it in case replay be-
comes necessary. Consequently, it is not necessary to
log hash sum updates of metadata blocks. Sync_manager
flags Block_update records as user or metadata, such that
Txn_manager can handle the two block types correctly.

Checkpoints. Our split journaling scheme ensures that
critical metadata can be restored after a crash. How-
ever, letting the journal grow indefinitely would effec-
tively make jVPFS a log-structured file system [22]. This
class of file systems requires complicated garbage collec-
tion, which in turn would add considerable complexity to
the TCB (i.e., Sync_manager). Sync_manager therefore
flushes all dirty user and metadata blocks occasionally.
Once no more dirty state is in the trusted buffer cache, it
signals Txn_manager with a Write_checkpoint message

that a new consistent checkpoint can be established. The
untrusted Txn_manager then execute the following steps:

1. Process all journal records still queued in ring
buffer, submit all block updates to legacy FS.

2. When encountering a special Checkpoint record, in-
struct legacy FS to make all file containers persis-
tent.

3. Atomically swap current journal file with newly cre-
ated journal containing just the Checkpoint record.

Note that flushing the buffer cache must be part of
the TCB to support any persistency scheme. However,
the above checkpointing algorithm does not require any
garbage collection in security-critical code, nor does it
have to deal with the complexities of writing data to the
storage medium safely. It is easy to see how a jVPFS in-
stance can be fully reinstantiated from checkpointed file-
system state (in fact, the umount() operation in jVPFS is
identical to the checkpoint operation). In the following
section, we shall discuss how to restore post-checkpoint
state after an unclean shutdown.

3.4 Recovering From Crashes

If the system did indeed crash, the untrusted commodity
file system must recover first. Once the untrusted storage
has been remounted and the virtualized Linux is booted
up, jVPFS can start its own recovery process as we shall
now explain.

Mounting a Checkpoint. At mount time, Sync-
manager requests from Txn_manager the first record
stored in the journal, which is the Checkpoint record
containing the FS root info. Sync_manager decrypts the
FS root info using the platform’s sealed memory imple-
mentation and validates its integrity and freshness. Note
that the write-back strategies explained in the previous
section ensure that this operation succeeds even after an
unclean shutdown. However, this assumption may not
hold, if a successful attack (see attacker model in Sec-
tion 2.1), a hardware failure, or a software issue outside
the TCB damaged the first journal record. If the Check-
point record could not be read or validation fails, an in-
tegrity error is reported to the application and the file
system remains inaccessible. If the journal contains just
the Checkpoint record, Txn_manager switches to normal
operation mode and behaves as described in Section 3.3.
Otherwise it prepares replay.

Preparing Replay. Our operation-level journaling
scheme makes the following assumptions:



1. To ensure consistency and integrity, operations
specified in journal records must be replayed in the
precise order in which they were logged.

2. Journal records encode incremental updates to
metadata blocks and modify the previous version of
the block, starting with the version that was valid in
the last checkpoint.

Requirement 2 dictates that, if there is a checkpointed
version of a metadata block preserved in the journal,
this version must initially be used during replay—even
if a newer version reached its in-place location in the
file container. To meet this requirement, Txn_manager
copies all metadata blocks it finds in the journal (if any)
back to their in-place locations just before replay starts.

Replaying Metadata Operations. Replay is co-
operatively performed by both Sync_manager and
Txn_manager: the former requests journal records by
sending a Read_journal message. Txn_manager re-
sponds by filling the ring buffer with a set of records that
end with a special record carrying an intermediate keyed
hash, which authenticates all preceding journal records
(see Section 3.1). Sync_manager then executes the fol-
lowing replay algorithm for each set of journal records
provided by the untrusted part:

1. Decrypt all journal records in shared ring buffer,
put decrypted versions into private memory buffer,
which is inaccessible to untrusted code so as to pre-
vent time-of-check-time-of-use (TOCTOU) attacks.

2. Check integrity of decrypted records using keyed
hash sum from last record; in case of mismatch,
abort and report integrity error.

3. Re-execute operations specified in all records.

To replay metadata operations such as creating, mov-
ing, or unlinking files, Sync_manager reuses existing
jVPFS APIs and executes the same code paths that han-
dle calls from an application; the required parameters are
extracted from the respective journal records. Handling
of filenames is slightly different, as those are recorded
relative to their parent directories, which are referenced
by their inode number rather than a full pathname.

Handling File Contents. Replaying update records for
user data blocks is performed similarly as part of the
above algorithm: updated file size information is written
to the inode, the hash-sum update is applied to the di-
rect parent node in the Merkle tree. Note that this parent
node can always be retrieved and authenticated, because
either it was never overwritten or, as a metadata block, it

has been preserved in the journal—or an updated version
has been generated earlier during replay.

However, since user-block contents are not journaled,
file containers always contain the latest version of a block
that reached stable storage. On the other hand, the jour-
nal may contain multiple Block_update records for the
same block. Therefore, Sync_manager skips out-of-date
hash sums until it finds the correct record for the user
block. It eagerly requests each block during replay,
checks its integrity, and applies the hash sum update if
it matches the block’s contents. A correctly behaving
Txn_manager that obeys write-ordering constraints can
always provide the latest matching version; misbehavior
results in a stale hash sum that will be detected eventu-
ally.

We shall evaluate the complexity of jVPFS’ consis-
tency mechanism in Sections 5.1 and 6.

3.5 Journal Details

Now that we introduced the various types of journal
records, we take a closer look at how the journal is pro-
tected in detail.

Confidentiality. The journal contains confidential
metadata information such as filenames, so its contents
must be encrypted. All payload data of the journal
records, including parameters that are passed to inter-
nal jVPFS APIs during replay, are encrypted. However,
as the untrusted Txn_manager must update file contain-
ers in a consistent way based on Sync_manager’s con-
straints, some information cannot be concealed. In par-
ticular, we keep the location of data blocks unencrypted,
such that untrusted code can write them to their correct
locations. Furthermore, we reveal the type of blocks
(user or metadata), so as to enable Txn_manager to pre-
serve consistent checkpoints, which are essential for re-
covery. We consider this an acceptable tradeoff, because
an attacker could also learn this information by observ-
ing access pattern in the Linux VM.

Integrity. The continuously calculated keyed hash that
protects the journal is anchored in the FS root info of
the last checkpoint through a random secret stored in
it. Thus, a journal is bound to exactly one checkpoint.
By embedding intermediate hash sums into the journal,
Sync_manager can designate transactions; records be-
tween two intermediate hashes can only be authenticated
all together, thereby preventing partial replay. We exploit
this construction to ensure that security-critical metadata
operations described by multiple records are replayed
completely or not at all (replay stops in the latter case).



Freshness. Naturally, incrementally calculated hashes
cannot reliably mark the end of a data stream (as the
HMAC [21] scheme does). As a result, Sync_manager
cannot determine from hash sums in the replayed jour-
nal, if untrusted components withhold any transactions
from the end of the journal; doing so would constitute
an attack on freshness. By storing the latest journal
hash in tamper-resistent sealed memory before a crash
occurs, Sync_manager could detect such an attack dur-
ing replay: the hash marking the last replayed transac-
tion must match the trustworthy copy preserved in sealed
memory. For performance reasons, updates of sealed
memory should be done only once for each checkpoint,
or an application may request a freshness guarantee ex-
plicitely through an fsync()-like operation for transac-
tions between checkpoints.

In our prototype implementation, sealed memory up-
dates are currently dummy operations.

3.6 Managing File Containers
Removal of a file or—in the general case—truncation of
it is a metadata operation that jVPFS must log in the jour-
nal. However, care must be taken when actually trun-
cating the underlying file container. Assume that re-
covery becomes necessary after an unclean shutdown.
Sync_manager can replay the truncate operation, how-
ever, as journal replay always starts relative to a check-
point, other operations need to be re-executed before it.
Some of these operations may depend on file contents
that are to be removed, which must therefore still ex-
ist for replay to succeed. This is particularly important
for metadata files (i.e., the inode file and directories), as
logged operations may need to modify them during re-
play. As a consequence, we must not truncate file con-
tainers in the legacy FS right away—even if file trun-
cation has already been logged. Txn_manager there-
fore builds a list of file truncation requests from trunca-
tion records it receives from Sync_manager; once a new
checkpoint is persistent, truncated parts of files will fi-
nally be obsolete and Txn_manager will garbage collect
them in idle time.

4 Optimizations

Intuitively, one would assume that ordered updates of the
journal and file containers incur significant performance
overhead. However, I/O costs can be reduced drastically
by optimizing untrusted code.

Write Batching. New journal records and encrypted
data blocks are buffered in the shared memory area,
until there is no more space or the application ex-
plicitly requests a synchronous write (e.g., by calling

fsync()). Buffering reduces communication overhead
and enables write batching. Batched writes require fewer
synchronous writes, because Txn_manager can coalesce
a large number of record appends into few journal up-
dates. The benefit is twofold: first, the underlying legacy
file system requires fewer I/O operations and at most one
write barrier to update the journal file. Second, the legacy
file system may write blocks to file containers accord-
ing to its own optimized strategies, potentially achieving
higher performance.

Relaxed Write Order. A write barrier after updat-
ing the journal ensures that user blocks can be updated
safely. Synchronizing in-place updates of user data
blocks that may still be in-flight allows Txn_manager to
submit new updates to those same blocks again. How-
ever, many common write workloads do not perform any
block updates at all (e.g., writing new files or grow-
ing them). For these types of workloads, where no
old state is modified, the consistency-preserving write-
order requirements of jVPFS can be dropped entirely:
Txn_manager and the legacy file system may update un-
trusted storage without enforcing write order, because
new data blocks can only be replayed once both their
hash sums and the content are persistent; it does not mat-
ter which is written first, as long as both are present dur-
ing replay. Incomplete writes of block–hash sum pairs
are treated as if no write operation had been performed
at all. In combination with write batching, jVPFS thus
achieves I/O overheads close to that of the reused legacy
file system, with only few addtional writes to the journal
file and occasional checkpointing of Merkle tree nodes.

Note that the functionality for the just described relax-
ation is implemented almost entirely in untrusted com-
ponents. Sync_manager only provides a hint indicating
whether an older block exists; the hint is trivially com-
puted by checking if the current hash sum in the parent
node is null or not.

Out-of-Order Reads. Many write operations can be
queued in the ring buffer and it may take a long time
to process them. Txn_manager checks if block read
requests it receives asynchronously are independent of
pending writes; if they are, it handles the read requests
immediately without the latency that flushing of pending
writes first would cause.

Exploiting Existing Infrastructure. For our evalua-
tion presented in Section 5, we used ReiserFS [23] and
NILFS [24] as the underlying file system. With Reis-
erFS, Txn_manager can only use the POSIX function
fsync() to order writes for consistency. This POSIX
system call guarantees that all data and metadata of a



file have reached stable storage upon return. However,
this persistence guarantee is stricter than what jVPFS re-
quires: in the common case, we just require that certain
I/O operations do not overtake each other (e.g., journal
records with updated block hash sums are written before
modifying the file container or not at all).

The log-structured file system NILFS can ensure a
strict order of write operations without calling an ex-
plicit API such as fsync(). NILFS ensures that writes
reach stable storage in the same order in which an ap-
plication issued them. Our prototype implementation of
Txn_manager exploits this behavior to eliminate I/O de-
lays caused by fsync(), if possible. We extend reuse of
existing consistency support even further by leveraging
support for efficient checkpointing of file system state
that is built into NILFS. Whenever Sync_manager wants
to checkpoint its own file system state before starting a
new journal, we create a checkpoint in the underlying
NILFS file system.

5 Evaluation

We built jVPFS on a platform based on the Fiasco.OC [7]
microkernel from the L4 family. The kernel ensures
strong isolation of trusted and untrusted components
and uses kernel-protected capabilities to enable secure
resource access. The trusted part of jVPFS and test
applications utilize libraries and services of the L4Re
user-level environment [25]. jVPFS hooks into the
generic, POSIX-like VFS interface of L4Re. We use
L4Linux [26], a paravirtualized Linux 2.6.36 kernel, to
run the untrusted parts of the jVPFS stack.

5.1 Complexity
Table 2 shows a breakdown of the source complexity of
the jVPFS stack, which is written in C++ (cryptographic
library routines are in C). All figures were generated us-
ing David A. Wheeler’s ’SLOCCount’ [27]. In addition
to the subsystems listed in the table, jVPFS also reuses
an AVL-tree implementation that is part of the TCB of
any L4Re application. It comprises approximately 800
lines of C++ code. The L4Re VFS supports file-system
plugins and is also linked to any L4Re application.

The main contribution of jVPFS compared to VPFS is
its new persistency layer. In our prototype implementa-
tion, it comprises 729 source lines of code (SLOC). The
functionality that implements journaling and replay of
metadata operations requires 325 SLOC, including cryp-
tographic protection as explained in Section 3.5. This
is an order of magnitude smaller than in typical mono-
lithic file systems; for example, the journal block device
layer (JBD2) for Ext4 comprises almost 5,000 SLOC in
Linux 2.6.36. We attribute this significant reduction of

Subsystem SLOC
L4Re: VFS 2,303
jVPFS: memory file system 2,444
jVPFS: Sync_manager (persistency) 404
jVPFS: Sync_manager (journal/replay) 325
L4Re: libcrypto 667

Table 2: Source complexity of jVPFS: Sync_manager
contributes 729 lines of code to the TCB. Only 325 lines
of code are related to journaling and replay.

complexity to key design decisions in jVPFS: First, the
logic to add operation-level journaling is a simple ex-
tension of the code that implements write batching us-
ing the shared ring buffer. We mainly added additional
record types for different operations (e.g., File_create
or File_unlink) and consistency state tracking. Sec-
ond, Sync_manager reuses the same API entry points
as the VFS layer to replay operations; parameters for
API calls are retrieved from journal records. We im-
plemented less than a dozen SLOC for replay of each
type of operation in a switch statement. The remaining
404 SLOC of Sync_manager’s current implementation
would be required for persistency anyway (e.g., transfer
of data blocks, shared memory setup, ring buffer logic).

The functionality in the TCB could only be reduced
this much, because Txn_manager (which is approxi-
mately 1,300 SLOC in size) makes extensive reuse of the
complex untrusted Linux file system stack.

5.2 Write Performance

Due to space constraints, we focus our performance eval-
uation on write and metadata-intensive benchmarks and
recovery. We did all benchmarks on the same hardware
configuration we used for performance evaluation of the
original version of VPFS [1]. The evaluation machine
has two 2.0 GHz dual-core Opteron processors and 2 GB
of DDR RAM. We restricted the hardware resources to
one core and 256 MB of physical RAM in all bench-
marks. We used two storage mediums, a 80 GB SATA
hard disk (Samsung HD080HJ) and a USB flash disk
(Buffalo Firestix, 1 GB).

Using strace, we recorded all file-system calls that
benchmarking tools executed on Linux. Like we did for
VPFS, C++ programs generated from these traces were
compiled for L4Re and used to replay all file-system op-
erations on a jVPFS stack; we also ran Linux versions
of the trace players on native Linux without any encryp-
tion to establish a baseline. Native Linux could use the
full 256 MB of RAM, whereas the jVPFS configuration
allocated 64 MB of it to its trusted buffer cache that is
isolated from L4Linux. Some traces were also used to



Trace VPFS jVPFS
PM-1 2.52 s 1.02 s (0.16 s)

bonnie++ (encrypted) 32.0 MB/s 38.4 MB/s
bonnie++ (plaintext) 42.0 MB/s 53.1 MB/s

Table 3: Performance comparison between jVPFS and
original version of VPFS using ReiserFS on the hard disk
(VPFS figures taken from [1]).

Trace Storage Base w/o Jrnl w/ Jrnl
PM-2 ReiserFS 5.11 s 6.37 s 9.56 s

HDD (0.10s) (0.14s) (0.27s)
PM-2 NILFS 27.12 s 12.36 s 13.49 s

Flash (0.20s) (0.60s) (0.54s)
untar ReiserFS 1.61 s 2.07 s 2.14 s

HDD (0.06s) (0.02s) (0.03s)
untar NILFS 7.09 s 9.65 s 9.83 s

Flash (0.04s) (0.09s) (0.13s)

Table 4: Execution times and standard deviation for
benchmarks of jVPFS with and without journaling en-
abled, compared against native Linux as a baseline.

benchmark VPFS [1], so we can roughly compare jVPFS
against its predecessor, too. Unless stated otherwise, all
benchmarks were run ten times and the results averaged;
we give standard deviations for increased confidence.

Throughput. We first tested throughput performance
by writing two 1 GB files using a bonnie++ trace (see
Table 3). With metadata journaling, jVPFS achieves 38.4
and 53.1 MB/s for encrypted and for plaintext files, re-
spectively, with ReiserFS on the hard disk. When we
disabled jVPFS journal writes, the underlying legacy
file system was eight percent faster to write the unen-
crypted, but integrity-protected, file containers: effective
throughput was 57.1 MB/s, which is close the 58.1 MB/s
we measured for native Linux (figures not in Table 3).
jVPFS clearly outperforms VPFS (32 and 42 MB/s).

PostMark. PostMark is a synthetic benchmark that
creates, modifies, and then deletes a large number of
files. The PM-1 trace we used to measure the original
VPFS configuration operated on 5,000 files with a size
in the order of a few kilobytes [1]. We replayed this
mostly-cache workload on jVPFS, which shows signif-
icantly better performance than the older VPFS. Another
PostMark trace, PM-2 with ten times as many opera-
tions on 50.000 files, causes a large number of evictions
from the trusted buffer cache and writes to the storage
medium. We used this metadata-intensive trace to mea-
sure the journaling overhead (see Table 4, or Figure 5 for
visual representation). With ReiserFS on the hard disk

Ex
ec

ut
io

n 
tim

e 
in

 se
co

nd
s

0

5

10

15

20

25

30

PM-2
ReiserFS

HDD

PM-2
NILFS
Flash

untar
ReiserFS

HDD

untar
NILFS
Flash

Baseline, native Linux
jVPFS, no journal
jVPFS, journal

Figure 5: Benchmark results for Postmark and untar
traces; see Table 4 for exact values of execution times
with standard deviation.

providing the untrusted storage, we see a 1.5x overhead
when journaling is enabled, and about a factor of two
compared to the baseline. We expected such a behavior,
because calling fsync() on the journal file when required
for consistency is expensive on magnetic disks.

With NILFS driving the flash disk, we found that
jVPFS can actually perform better than running the
benchmark natively in Linux. We determined the strict
write ordering of NILFS to be the cause for this unintu-
itive result: PostMark frequently modifies the small files
it created, causing a large number of serialized block up-
dates (i.e., log writes) in NILFS. The jVPFS buffer cache
absorbs many of these updates, such that less data actu-
ally reach the legacy file system. On the other hand, our
system greatly benefits from the ordering guarantees of
NILFS, as it does not require synchronous writes to up-
date its journal. Nevertheless, journal writes do cause
increased write traffic, as can be seen in the figures. We
measured 3.5 MB of journal records, but they arrive in
groups smaller than the NILFS block size, thus causing
the 9 percent journal I/O overhead we measured.

Untar. The untar trace simulates unpacking a tar
archive with thousands of small and large files (kilobytes
to megabytes); when done, it flushes all data and meta-
data to stable storage. We measured 3 and 2 percent jour-
naling overhead for the ReiserFS/HDD and NILFS/flash
configuration, respectively. This overhead correlates
well with the actual size of the journal file, which ac-



counted for 2.3 percent of all data written to the un-
trusted storage. These figures are lower than for the Post-
Mark benchmark, as there is a number of very large files
among the more than 3,000 files and directories that are
created—those files dominate write traffic.

The total overhead of the jVPFS stack over the Linux
baseline in this benchmark is 33 percent for ReiserFS and
39 percent for NILFS. Virtualization, increased commu-
nication costs, and cryptographic operations contribute
to this overhead. While significant, but we believe this
overhead is acceptable considering the security advan-
tages jVPFS has over monolithic systems.

5.3 Recovery Performance
We tested jVPFS’ recovery functionality using the untar
trace both in simulation and on real hardware.

Simulations. In simulation mode, we let Txn_manager
terminate itself after it logged a specific amount of data
to the journal (about 70 percent of the files were written
up to that point). We did not power-cycle the machine,
but only restarted Txn_manager and the trusted com-
ponent of jVPFS. Sync_manager successfully replayed
all records from completed transactions as reported by
Txn_manager. We then ran a test application that tried to
open all files referenced in the journal and read their con-
tents. In total, jVPFS recovered 13 directories containing
1,761 files, which could all be opened and read. Meta-
data for 26 files was not recovered, because the last trans-
action they were part of was incomplete; the application
received an ENOENT error for these files. This test suc-
ceeded reliably and no integrity errors were found.

We repeated the tests with journal writes being dis-
abled, such that jVPFS behaved like the original VPFS.
Txn_manager was allowed to write Checkpoint records
only. After the simulated crash, the file system could be
remounted, but the application received an integrity error
when the trusted file-server component of jVPFS tried to
look up names in the root directory. The file system was
inaccessible afterwards and all data was lost.

Real Hardware. We then tested our system on real
hardware. We power-cycled the machine right in the
middle of the benchmark and let Linux recover the par-
tition containing the legacy file system. Due to its strict
write ordering, NILFS quickly recovered file containers
and a valid jVPFS journal, which could successfully be
replayed. In multiple tests, hundreds to thousands of files
were recovered, depending on the exact moment of the
power loss. For example, in one particular instance our
system restored 2,710 files consisting of 9,826 blocks of
user data within 5.1 seconds; the journal contained 1.2
MB of valid metadata updates. All recovered files could

be read; for all other files, the aforementioned test appli-
cation received an ENOENT error. No corruptions (i.e.,
intergrity errors) were reported, as we expected.

In the configuration utilizing the hard disk, ReiserFS
replayed varying numbers of transactions in its own jour-
nal and jVPFS recovered files with no errors other than
ENOENT for missing files. We did however also use
Ext4 in our experiments and got unexpected results: after
recovering the Ext4 partition, jVPFS found a checkpoint
record in the journal, but no transactions. We determined
an Ext4 optimization called “delayed allocation” to be
the reason for this behavior: it may produce zero-sized
files after recovery, if the application did not call fsync()
on the file descriptor. Due to our own optimization in
jVPFS, which we explained in Section 4, Txn_manager
did not use fsync() in the untar benchmark, except right
after the file system had been created and the Checkpoint
record was written. We are currently investigating ways
to make jVPFS reliable on Ext4, too.

6 Related Work

We shall now discuss other work that relates to the im-
provements we made to VPFS [1] in order to securely
add robustness against unclean shutdowns.

File System Consistency. jVPFS implements journal-
ing and replay of high-level metadata operations. A sim-
ilar approach is used by journaling file systems such as
Windows NTFS. Others, including Ext3/4 and ReiserFS,
instead append complete metadata blocks to their jour-
nal in order to log inode, directory, and allocation up-
dates [11]. They implement full-block journaling. We
considered this approach for jVPFS, but rejected it as we
found it to be more complex in our architecture. Jour-
naling metadata blocks requires much more fine-grained
dependency tracking within the TCB. Operations such as
creating a file modify many metadata structures, which
are distributed across multiple blocks in the buffer cache.
Furthermore, the fact that more than one inode (or direc-
tory entry) is stored in a single metadata block causes ad-
ditional false dependencies. For example, when writing
back metadata for one file, the directory block contain-
ing the filename might contain an entry for another file
that has recently been created, but whose data or inode
has not been written yet. Thus, writing such a directory
block actually creates an inconsistency in the on-disk
state. To avoid having to increase transaction sizes by in-
cluding a potentially large number of unrelated files, sys-
tems that use full-block journaling implement roll-back
mechanisms that temporarily remove incomplete updates
from metadata blocks before they are written. We tried to
integrate such mechansims into jVPFS, but found them



to add more complexity to the TCB than operation-level
journaling as described in Section 3.

Transactional file systems such as ZFS [28] share the
problem of false metadata dependencies. They use a
copy-on-write approach to prevent inconsistent on-disk
state in the first place. Instead of updating data and
metadata in-place, they write all modified blocks to free
space and then adjust pointers to reference those updated
blocks. In conjunction with a hash tree, updates must al-
ways propagate to the root. As explained in Section 3.1,
the overhead incurred by this approach is significant.

The soft update [10] approach makes sure that a con-
sistent file system can always be restored. The key idea
is to apply in-place updates in such an order that only
minor inconsistencies occur after a crash. Pointers are
guaranteed to be valid, however, old and new metadata
(or blocks with user data) may be mixed. This relaxation
is inherently incompatible with Merkle tree updates. We
therefore did not further consider the soft update ap-
proach for solving the robustness problems of VPFS.

The journaling scheme in jVPFS is related to the log-
structured approach [22]. What sets our system apart
from this type of file systems, is that its consistency
mechanism is split into two isolated parts, with complex
garbage collection not being part of the TCB.

Untrusted Storage. The logging approach the Trusted
Database System (TDB) [19] uses to protect its trans-
action log is similar to that of jVPFS. It also uses a
Merkle tree to ensure integrity. However, jVPFS splits
the implementation of journaling and replay into two
isolated components using a novel cooperation scheme.
jVPFS also reuses existing consistency primitives of an
untrusted file system, whereas TDB implements a com-
plete, new database in the TCB.

The protected file system (PFS) [29] unifies journaling
and hash logging in a way similar to jVPFS in order to
securely use untrusted storage. However, it operates at
the level of file-system blocks rather than metadata oper-
ations and has a monolithic codebase.

SiRiUS [30] is an example for a network file system
that uses untrusted servers. It also stacks onto existing
network file systems such as Sun NFS [31] and delegates
management of persistent file storage to untrusted infras-
tructure. However, to the best of our knowledge, SiRiUS
does not have an integrated recovery mechanism to en-
sure consistency of its metadata freshness files.

Non-standard Consistency Primitives. Systems such
as Featherstitch [32] offer efficient means to applications
to specify write-before constraints. The untrusted part
of jVPFS can benefit from such expressive consistency
primitives in the same way as it benefits from write-order
guarantees in NILFS.

7 Conclusions

We built jVPFS, a secure stacked file system that imple-
ments post-crash recovery with a minimal trusted com-
puting base (TCB): it requires only 325 lines of C++ code
for the security-critical functionality of metadata journal-
ing and recovery, which is an order of magnitude less
than widely-used Linux file systems require to provide
crash resistence. It reuses an untrusted Linux file system,
from which it is strictly isolated through address spaces
and virtual-machine boundaries. jVPFS delegates most
of the work for managing a physical storage medium to
the Linux file system stack, while making extensive use
of existing consistency primitives. For example, it can
exploit strict write-order guarantees offered by NILFS.
Thus, the trusted core of jVPFS can operate at a high ab-
straction level of metadata operations, greatly reducing
the complexity that file-system consistency mechanisms
usually contribute to the TCB.

jVPFS outperforms its predecessor VPFS in all bench-
marks we did and was shown to be much more robust
against unclean shutdowns. It successfully and reliably
recovered from temporary damage after power loss. Its
strong integrity checks did not detect any corruptions
in the recovered secure file system, which was layered
on top of ReiserFS on a hard disk, or NILFS, a log-
structured Linux file system optimized for flash storage.

8 Acknowledgements

We would like to thank the anonymous reviewers and
our shepherd Bryan Ford for their valuable feedback
and suggestions for improvement of this paper. Thanks
also go to the members of the Operating System Re-
search group at Technische Universität Dresden for help-
ful discussions and feedback. This work has been
supported by the German Research Foundation (DFG-
Geschäftszeichen HA 2461/9-1).

References

[1] Carsten Weinhold and Hermann Härtig. VPFS: Build-
ing a Virtual Private File System With a Small Trusted
Computing Base. In Eurosys ’08: Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Com-
puter Systems 2008, pages 81–93, New York, NY, USA,
2008. ACM.

[2] The Month of Kernel Bugs (MoKB) Archive.
http://projects.info-pull.com/mokb/, Novem-
ber 2006.

[3] Apple Inc. About the security content of iPhone OS 3.1.3
and iPhone OS 3.1.3 for iPod touch. http://support.
apple.com/kb/HT4013, February 2010.

http://projects.info-pull.com/mokb/
http://support.apple.com/kb/HT4013
http://support.apple.com/kb/HT4013


[4] Removing iPhone 3G[s] Passcode and Encryption.
http://www.youtube.com/watch?v=5wS3AMbXRLs,
July 2009.

[5] Apple Inc. About the security content of iPhone OS
3.0.1. http://support.apple.com/kb/HT3754, Au-
gust 2009.

[6] iPad Jailbreak - Jailbreak Your iPad. http://www.
ipadjailbreak.com/p/jailbreak-your-ipad.
html.

[7] The Fiasco Microkernel. Located at:
http://os.inf.tu-dresden.de/fiasco/.

[8] Michael Hohmuth, Michael Peter, Hermann Härtig, and
Jonathan S. Shapiro. Reducing TCB size by using
untrusted components — small kernels versus virtual-
machine monitors. In Proceedings of the Eleventh ACM
SIGOPS European Workshop, Leuven, Belgium, Septem-
ber 2004.

[9] Lenin Singaravelu, Calton Pu, Hermann Härtig, and
Christian Helmuth. Reducing tcb complexity for security-
sensitive applications: three case studies. SIGOPS Oper.
Syst. Rev., 40(4):161–174, 2006.

[10] Marshall Kirk McKusick and Gregory R. Ganger. Soft
updates: a technique for eliminating most synchronous
writes in the fast filesystem. In ATEC ’99: Proceed-
ings of the annual conference on USENIX Annual Techni-
cal Conference, pages 24–24, Berkeley, CA, USA, 1999.
USENIX Association.

[11] Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Analysis and evolution of
journaling file systems. In ATEC ’05: Proceedings of the
annual conference on USENIX Annual Technical Confer-
ence, pages 8–8, Berkeley, CA, USA, 2005. USENIX As-
sociation.

[12] Valerie Aurora. Soft updates, hard problems.
http://lwn.net/Articles/339337, July 2009.

[13] Junfeng Yang, Paul Twohey, Dawson Engler, and Madan-
lal Musuvathi. Using model checking to find serious file
system errors. ACM Trans. Comput. Syst., 24(4):393–423,
2006.

[14] Andrea C. Arpaci-Dusseau. Model-based failure analysis
of journaling file systems. In DSN ’05: Proceedings of the
2005 International Conference on Dependable Systems
and Networks, pages 802–811, Washington, DC, USA,
2005. IEEE Computer Society.

[15] Haryadi S. Gunawi, Cindy Rubio-González, Andrea C.
Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Ben Li-
blit. EIO: Error Handling Is Occasionally Correct. In
FAST’08: Proceedings of the 6th USENIX Conference
on File and Storage Technologies, pages 1–16, Berkeley,
CA, USA, 2008. USENIX Association.

[16] Trusted Computing Group. Trusted Platform Module.
http://www.trustedcomputinggroup.org/
developers/trusted_platform_module.

[17] ARM Limited. ARM Security Technology - Building a
Secure System using TrustZone Technology.

http://infocenter.arm.com/help/topic/
com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C_trustzone_security_
whitepaper.pdf.

[18] Matt Blaze. A Cryptographic File System for UNIX. In
ACM Conference on Computer and Communications Se-
curity, pages 9–16, 1993.

[19] Umesh Maheshwari, Radek Vingralek, and Bill Shapiro.
How to Build a Trusted Database System on Untrusted
Storage. In Proceedings of the 4th USENIX Symposium
on Operating System Design and Implementation (OSDI),
pages 135–150, San Diego, CA, oct 2000.

[20] R. Merkle. Protocols for Public Key Cryptosystems. In
Proceedings of the IEEE Symposium on Security and Pri-
vacy, pages 122–134, 1980.

[21] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Mes-
sage Authentication Using Hash Functions: the HMAC
Construction. CryptoBytes, 2(1):12–15, 1996.

[22] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. In
SOSP ’91: Proceedings of the thirteenth ACM symposium
on Operating systems principles, pages 1–15, New York,
NY, USA, 1991. ACM.

[23] ReiserFS on Namesys website (archived 2007).
http://web.archive.org/web/20071023172417/
www.namesys.com/, 2007.

[24] NILFS - Continous Snapshotting Filesystem for Linux.
http://www.nilfs.org/en/.

[25] Adam Lackorzynski and Alexander Warg. Taming sub-
systems: capabilities as universal resource access control
in L4. In IIES ’09: Proceedings of the Second Workshop
on Isolation and Integration in Embedded Systems, pages
25–30, New York, NY, USA, 2009. ACM.

[26] L4Linux Website.
http://os.inf.tu-dresden.de/L4/LinuxOnL4/.

[27] D. Wheeler. SLOCCount. available at:
http://www.dwheeler.com/sloccount/.

[28] ZFS Website. http://hub.opensolaris.org/bin/
view/Community+Group+zfs/WebHome.

[29] C. Stein, J. Howard, and M. Seltzer. Unifying File Sys-
tem Protection. In Proceedings of the USENIX Technical
Conference, pages 79–90, 2001.

[30] E. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiR-
iUS: Securing Remote Untrusted Storage. In Proceed-
ings of the 10th Network and Distributed Systems Security
(NDSS) Symposium, pages 131–145, February 2003.

[31] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun network
filesystem. Innovations in Internetworking, pages 379–
390, 1988.

[32] Christopher Frost, Mike Mammarella, Eddie Kohler, An-
drew de los Reyes, Shant Hovsepian, Andrew Matsuoka,
and Lei Zhang. Generalized File System Dependencies.
In SOSP ’07: Proceedings of Twenty-First ACM SIGOPS
Symposium on Operating Systems Principles, pages 307–
320, New York, NY, USA, 2007. ACM.

http://www.youtube.com/watch?v=5wS3AMbXRLs
http://support.apple.com/kb/HT3754
http://www.ipadjailbreak.com/p/jailbreak-your-ipad.html
http://www.ipadjailbreak.com/p/jailbreak-your-ipad.html
http://www.ipadjailbreak.com/p/jailbreak-your-ipad.html
http://os.inf.tu-dresden.de/fiasco/
http://lwn.net/Articles/339337
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://www.trustedcomputinggroup.org/developers/trusted_platform_module
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://web.archive.org/web/20071023172417/www.namesys.com/
http://web.archive.org/web/20071023172417/www.namesys.com/
http://www.nilfs.org/en/
http://os.inf.tu-dresden.de/L4/LinuxOnL4/
http://www.dwheeler.com/sloccount/
http://hub.opensolaris.org/bin/view/Community+Group+zfs/WebHome
http://hub.opensolaris.org/bin/view/Community+Group+zfs/WebHome

	Introduction
	Background
	Security Model
	Cryptographic Protection

	Design
	Consistency Paradigm
	Architecture Overview
	Being Prepared for Crashes
	Recovering From Crashes
	Journal Details
	Managing File Containers

	Optimizations
	Evaluation
	Complexity
	Write Performance
	Recovery Performance

	Related Work
	Conclusions
	Acknowledgements

