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Abstract
We present algorithms for shrinking and expanding a
hash table while allowing concurrent, wait-free, linearly
scalable lookups. These resize algorithms allow Read-
Copy Update (RCU) hash tables to maintain constant-
time performance as the number of entries grows, and re-
claim memory as the number of entries decreases, with-
out delaying or disrupting readers. We call the resulting
data structure a relativistic hash table.

Benchmarks of relativistic hash tables in the Linux
kernel show that lookup scalability during resize im-
proves 125x over reader-writer locking, and 56% over
Linux’s current state of the art. Relativistic hash lookups
experience no performance degradation during a resize.
Applying this algorithm to memcached removes a scala-
bility limit for get requests, allowing memcached to scale
linearly and service up to 46% more requests per second.

Relativistic hash tables demonstrate the promise of
a new concurrent programming methodology known
as relativistic programming. Relativistic programming
makes novel use of existing RCU synchronization prim-
itives, namely the wait-for-readers operation that waits
for unfinished readers to complete. This operation, con-
ventionally used to handle reclamation, here allows or-
dering of updates without read-side synchronization or
memory barriers.

1 Introduction

Hash tables offer applications and operating systems
many convenient properties, including constant average
time for accesses and modifications [3, 10]. Hash tables
used in concurrent applications require some sort of syn-
chronization to maintain internal consistency. Frequently
accessed hash tables will become application bottlenecks
unless this synchronization scales to many threads on
many processors.

Existing concurrent hash tables primarily make use of
mutual exclusion, in the form of locks. These approaches
do not scale, due to contention for those locks. Alterna-
tive implementations exist, using non-blocking synchro-
nization or transactions, but many of these techniques
still require expensive synchronization operations, and

still do not scale well. Running any of these hash-table
implementations on additional processors does not pro-
vide a proportional increase in performance.

One solution for scalable concurrent hash tables
comes in the form of Read-Copy Update (RCU) [18,
16, 12]. Read-Copy Update provides a synchronization
mechanism for concurrent programs, with very low over-
head for readers [13]. Thus, RCU works particularly
well for data structures with significantly more reads than
writes; this category includes many data structures com-
monly used in operating systems and applications, such
as read-mostly hash tables.

Existing RCU-based hash tables use open chaining,
with RCU-based linked lists for each hash bucket. These
tables support insertion, removal, and lookup operations
[13]. Our previous work introduced an algorithm to
move hash items between hash buckets due to a change
in the key [24, 23], making RCU-based hash tables even
more broadly usable.

Unfortunately, RCU-based hash tables still have a ma-
jor deficiency: they do not support dynamic resizing.

The performance of a hash table depends heavily on
the number of hash buckets. Making a hash table too
small will lead to excessively long hash chains and poor
performance. Making a hash table too large will con-
sume too much memory, increasing hardware require-
ments or reducing the memory available for other appli-
cations or performance-improving caches. Many users of
hash tables cannot know the proper size of a hash table
in advance, since no fixed size suits all system configura-
tions and workloads, and the system’s needs may change
at runtime. Such systems require a hash table that sup-
ports dynamic resizing.

Resizing a concurrent hash table based on mutual ex-
clusion requires relatively little work: simply acquire the
appropriate locks to exclude concurrent reads and writes,
then move items to a new table. However, RCU-based
hash tables cannot exclude readers. This property proves
critical to RCU’s scalability and performance, since ex-
cluding readers would require expensive read-side syn-
chronization. Thus, any RCU-based hash-table resize al-
gorithm must cope with concurrent reads while resizing.

Solving this problem without reducing read perfor-
mance has seemed intractable. Existing RCU-based scal-
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able concurrent hash tables in the Linux kernel, such
as the directory-entry cache (dcache) [17, 11], do not
support resizing; they allocate a fixed-size table at boot
time based on system heuristics such as available mem-
ory. Nick Piggin proposed a resizing algorithm for
RCU-based hash tables, known as “Dynamic Dynamic
Data Structures” (DDDS) [21], but this algorithm slows
common-case lookups by requiring them to check multi-
ple hash tables, and this slowdown increases significantly
during a resize.

As our primary contribution, we present the first al-
gorithm for resizing an RCU-based hash table with-
out blocking or slowing concurrent lookups. Because
lookups can occur at any time, we keep our relativistic
hash table in a consistent state at all times, and never al-
low a lookup to spuriously miss an entry due to a concur-
rent resize operation. Furthermore, our resize algorithms
avoid copying the individual hash-table nodes, allowing
readers to maintain persistent references to table entries.

A key insight made our relativistic hash table possi-
ble. We use an existing RCU synchronization primi-
tive, the wait-for-readers operation, to control which ver-
sions of the hash-table data structure concurrent readers
can observe. This use of wait-for-readers generalizes
and subsumes its original application of safely manag-
ing memory reclamation. This general-purpose ordering
primitive forms the basis of a new concurrent program-
ming methodology, which we call relativistic program-
ming (RP). Relativistic programming enables scalable,
high-performance data structures previously considered
intractable for RCU.

We use the phrase relativistic programming by anal-
ogy with relativity, in which observers can disagree on
the order of causally unrelated events. Relativistic pro-
gramming aims to minimize synchronization, by allow-
ing reader operations to occur concurrently with writers;
writers may never block readers to enforce a system-wide
serialization of memory operations. Inevitably, then, in-
dependent readers can disagree on the order of unrelated
writer operations, such as the insertion order of two items
into separate hash-table chains; however, writers can still
synchronize to preserve the order of causally related op-
erations. Whereas concurrent programming methodolo-
gies such as transactional memory always preserve the
ordering of even unrelated writes—at significant cost to
performance and scalability, since readers must use syn-
chronization to support blocking or retries—relativistic
programming provides the means to program even com-
plex, whole-data-structure operations such as resizing
with excellent performance and scalability.

Section 2 compares our algorithms to other related
work. Section 3 provides an introduction to RCU and to
the relativistic programming techniques supporting this
work. Section 4 documents our new hash-table resize al-

gorithms, and the corresponding lookup operation. Sec-
tion 5 describes the other hash-table implementations
we tested for comparison. Section 6 discusses the im-
plementation and benchmarking of our relativistic hash-
table algorithm, including both microbenchmarks and
real-world benchmarks. Section 7 presents and analyzes
the benchmark results. Section 8 discusses the future
of the relativistic programming methodology supporting
this work.

2 Related Work

Relativistic hash tables use the RCU wait-for-readers op-
eration to enforce the ordering and visibility of write op-
erations, without requiring synchronization operations in
the reader. This novel use of wait-for-readers evolved
through a series of increasingly sophisticated write-side
barriers. Paul McKenney originally proposed the elim-
ination of read memory barriers by introducing a new
write memory barrier primitive that forced a barrier on all
CPUs via inter-processor interrupts [14]. McKenney’s
later work on Sleepable Read-Copy Update (SRCU) [15]
used the RCU wait-for-readers operation to manage the
order in which write operations became visible to read-
ers, providing the first example of using wait-for-readers
to order non-reclamation operations; this use served the
same function as a write memory barrier, but without re-
quiring a corresponding read memory barrier in every
RCU reader. Philip Howard further refined this approach
in his work on relativistic red-black trees [9], using the
wait-for-readers operation to order the visibility of tree
rotation and balancing operations and prevent readers
from observing inconsistent states. Howard’s work used
wait-for-readers as a stronger barrier than a write mem-
ory barrier, enforcing the order of write operations re-
gardless of the order a reader encounters them in the
data structure. Relativistic programming builds on this
stronger barrier.

Relativistic and RCU-based data structures typically
use mutual exclusion to synchronize between writers.
Philip Howard and Jonathan Walpole [8] demonstrated
an alternative approach, combining relativistic readers
with software transactional memory (STM) writers, and
integrating the wait-for-readers operation into the trans-
action commit. This approach provides scalable high-
performance relativistic readers, while also allowing
scalable writers within the limits of STM. Relativis-
tic transactions could substantially simplify relativis-
tic hash-table writers compared to fine-grained locking,
while still providing good scalability.

Prior attempts to build resizable RCU hash tables have
arisen from the limitations of fixed-size RCU hash tables
in the Linux kernel. Nick Piggin’s DDDS [21] supports
hash-table resizes, but DDDS slows down all lookups by
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requiring checks for concurrent resizes, and furthermore
requires that lookups during resizes examine both the old
and the new structures; relativistic hash tables do nei-
ther. We discuss DDDS further in section 5. Herbert
Xu implemented a resizable multi-hash-table structure
based on RCU, in which every hash-table entry contains
two sets of linked-list pointers so it can appear in the
old and new hash tables simultaneously [25]. Together
with a global version number for the structure, this al-
lows readers to effectively snapshot all links in the hash
table simultaneously. However, this approach drastically
increases memory usage and cache footprint.

Various authors [7, 5, 19, 2] have proposed resizable
concurrent hash tables. Unlike relativistic hash tables,
these algorithms require expensive synchronization op-
erations on reads, such as locks, atomic instructions, or
memory barriers. Furthermore, like DDDS, several of
these algorithms require retries on failure.

Maurice Herlihy and Nir Shavit documented numer-
ous concurrent hash tables, including both open-chained
and closed tables [7]; all of these require expensive syn-
chronization, and some require retries. Gao, Groote, and
Hesselink proposed a lock-free hash table using closed
hashing [5]; their approach relies on atomic operations
and on helping concurrent operations complete.

Maged Michael implemented a lock-free hash table
based on compare and swap (CAS) [19], though he did
not propose a resize algorithm. Michael’s table lookups
avoid most expensive synchronization operations in the
common case (with the exception of read barriers), but
must retry on any concurrent modification. To support
safe memory reclamation, Michael uses hazard pointers
[20], which provide a wait-for-readers operation simi-
lar to that of RCU; hazard pointers can reduce wait-for-
readers latency, but impose higher reader cost [6].

Relativistic hash tables use open hashing with per-
bucket chaining. Closed hash tables, which store entries
inline in the array, can offer smaller lookup cost and bet-
ter cache behavior, but force copies on resize. Closed
tables also require more frequent resizing, as they do not
gracefully degrade in performance when overloaded, but
rather become pathologically more expensive and then
stop working entirely. Depending on the implementa-
tion, removals from the table may not make the table any
emptier, as the entries must remain as “tombstones” to
preserve reader probing behavior.

Cliff Click presented a scalable lock-free resizable
hash for Java based on closed hashing [2]; this hash
avoids most synchronization operations for readers and
writers by leaving the ordering of memory operations
entirely unspecified and reasoning about all possible
resulting memory states and transitions. (Readers re-
quire a read memory barrier but no other synchroniza-
tion. Writers require a CAS but not a write memory

barrier.) Click’s use of state-based reasoning to avoid
ordering provides an interesting and potentially higher-
performance alternative to the causal-order enforcement
in relativistic writers. In contrast with relativistic hash
tables, but like DDDS, Click’s hash-table readers must
probe alternate hash tables during resizing.

Other approaches to resizable hash tables include that
of Ori Shalev and Nir Shavit, who proposed a “split-
ordered list” structure consisting of a single linked list
with hash buckets pointing to intermediate list nodes
[22, 7]. This structure allows resizing by adding or re-
moving buckets, splitting or joining the existing buckets
respectively. This approach keeps the underlying linked
list in a novel sort order based on the hash key, as with
the variation of our algorithms proposed in section 4.3,
to allow splitting or joining buckets without reordering.
Split-ordered lists seem highly amenable to a simple rel-
ativistic implementation, making the lookups scalable
and synchronization-free while preserving the lock-free
modifications and simple resizes; we plan to implement
a relativistic split-ordered list in future work.

Our previous work developed a relativistic algorithm
for moving a hash-table entry from one bucket to another
atomically [24, 23]. This algorithm introduced the no-
tion of cross-linking hash buckets to make entries appear
in multiple buckets simultaneously. However, this move
algorithm required changing the hash key and potentially
copying the entry.

We chose to implement our benchmarking framework
rcuhashbash-resize as a Linux kernel module, as
documented in section 6.1. However, several portable
RCU implementations exist outside the Linux kernel.
Mathieu Desnoyers reimplemented RCU as a POSIX
userspace library, liburcu, for use with pthreads, with
no Linux-specific code outside of optional optimizations
[4]. For our real-world benchmarks with the memcached
key-value storage engine (documented in section 6.2),
we used liburcu to support our modified storage engine.

3 Read-Copy Update Background

Read-Copy Update (RCU) provides synchronization be-
tween readers and writers of a shared data structure.
In sharp contrast to locking, non-blocking synchroniza-
tion, or transactional memory, RCU readers perform no
expensive synchronization operations whatsoever: no
locks, no atomic operations, no compare-and-swap, and
no memory barriers. RCU readers typically incur lit-
tle to no overhead even compared to concurrency-unsafe
single-threaded implementations; furthermore, by avoid-
ing expensive synchronization, RCU readers avoid the
need for communication between threads, allowing wait-
free operation and excellent scalability.

RCU readers execute concurrently, both with each
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other and with writers, and thus readers can potentially
observe writers in progress. (Other concurrent program-
ming models prevent readers from viewing intermediate
memory states via locking or conflict detection.) The
methodologies of RCU-based concurrent programming
primarily address the safe management of reader/writer
concurrency. Since writers may not impede readers in
any way, programmers must reason about the memory
states readers can observe, and avoid exposing inconsis-
tent intermediate states from writers.

Commonly, writers preserve data-structure invariants
by atomically transitioning data structures between con-
sistent states. On all existing CPU architectures, aligned
writes to machine-word-sized memory regions (such as
pointers) have atomic semantics, such that a reader sees
either the old or the new state, with no intermediate
value; thus, structures linked together via pointers sup-
port many structural manipulations via direct updates.
For more complex manipulations, such as insertion of a
new item into a data structure, RCU writers typically al-
locate memory initially unreachable by readers, initialize
it, and then atomically publish it by updating a pointer
in reachable memory. The publish operation requires a
write memory barrier between initialization and publica-
tion, to ensure that readers traversing the pointer will ob-
serve initialized memory. Readers may also require com-
piler directives to prevent certain aggressive optimiza-
tions across the pointer dereference; RCU wraps those
directives into a read primitive.1

These operations allow RCU writers to update data
structures and maintain invariants for readers. However,
RCU writers must also manage object lifetimes, which
requires knowing when readers might hold references to
an item in memory. Unlinking an item from a data struc-
ture makes it unreachable to new readers, but does not
stop accesses from unfinished readers; writers may not
reclaim the unlinked item’s memory until all such read-
ers have completed. This resembles a garbage collection
problem, but RCU must support runtime environments
without automatic garbage collection.

To this end, RCU provides a barrier-like synchroniza-
tion operation called wait-for-readers, which blocks until
all readers which started before the barrier have com-
pleted. Thus, once a writer makes memory unreach-
able from the published data structure, a wait-for-readers
operation ensures that no readers still hold references
to that memory. Wait-for-readers does not prevent new
readers from starting; it simply waits for existing unfin-
ished readers to complete. This barrier operates conser-
vatively: the currently unfinished readers might not hold
references to that item, and the barrier itself may wait
longer than strictly necessary in order to run efficiently or

1On certain obsolete architectures (DEC Alpha), readers must also
use a memory barrier.

batch several reclamations into a single wait operation.
This conservative semantic allows much more efficient
and scalable implementations, particularly for readers.
The portion of a writer that follows a wait-for-readers
barrier often consists only of memory reclamation; be-
cause memory-reclamation operations can safely occur
concurrently and need not occur immediately (assuming
sufficient memory), common RCU APIs also provide an
asynchronous wait-for-readers callback.

However, writers have more reasons to order opera-
tions than just reclaiming memory. Our work on rela-
tivistic programming provides a general framework for
writers to enforce the ordering of operations visible to
readers, using the same wait-for-readers primitive. Rel-
ativistic programming builds on RCU’s key benefits—
minimized communication, minimized expensive syn-
chronization, and readers that run concurrently with
writers—for scalability. We present here a specific ap-
plication of the relativistic programming methodology
to maintain the data-structure invariants of a hash table
while resizing it; section 8 discusses the future develop-
ment of the general methodology to support maintenance
of arbitrary data-structure invariants.

4 Relativistic Hash Tables

Any hash table requires a hash function, which maps en-
tries to hash buckets based on their key. The same key
will always hash to the same bucket; different keys will
ideally hash to different buckets, but may map to the
same bucket, requiring some kind of conflict resolution.
The algorithms described here work with hash tables us-
ing open chaining, where each hash bucket has a linked
list of entries whose keys hash to that bucket. As the
number of entries in the hash table grows, the average
depth of a bucket’s list grows and lookups become less
efficient, necessitating a resize.

Resizing the table requires allocating a new region of
memory for the new number of hash buckets, then link-
ing all the nodes into the new buckets. To allow resizes
to atomically substitute the new hash table for the old,
readers access the hash-table structure through a pointer;
this structure includes the array of buckets and the size
of the table.

Our resize algorithms synchronize with the corre-
sponding lookup algorithm using existing RCU program-
ming primitives. However, any semantically equivalent
implementation will work.

The RP hash lookup reader follows the standard al-
gorithm for open-chain hash table lookups:

1. Snapshot the hash-table pointer in case a resizer re-
places it during the lookup.
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2. Hash the desired key, modulo the number of buck-
ets.

3. Look up the corresponding hash bucket in the array.

4. Traverse the linked list, comparing each entry’s key
to the desired key.

5. If the current entry’s key matches the desired key,
the desired value appears in the same entry; use or
return that value.2

In a concrete implementation, lookup (like any RCU
reader) will include explicit operations delimiting the
start and end of the reader. Depending on the choice
of RCU implementation, these delimiter operations may
compile to compiler directives, to requests to prevent
preemption, to manipulation of CPU-local or thread-
local counters, or to other lightweight operations.

Lookups will traverse the hash table concurrently with
other operations, including resizes. To avoid disrupting
lookups, we require that a lookup can never fail to find
a node, even in the presence of a concurrent resize. This
means that each hash chain must contain those items that
hash to the corresponding bucket. Most prior hash ta-
ble resize algorithms ensure that a hash chain contains
exactly those items. We loosen this constraint, instead
allowing hash chains to ephemerally contain items that
hash to different buckets. We call such hash chains im-
precise since they include all items which hash to that
bucket but may include others as well. Readers and writ-
ers must tolerate imprecise hash chains (although some
operations, such as lookup, require no adaptation). Im-
precise hash chains allow us to resize hash tables and
otherwise manipulate buckets without copying items or
wasting memory.

For simplicity, relativistic hash tables constrain resiz-
ing to change the number of buckets by integral factors—
for instance, doubling or halving the number of buckets.
This guarantees two constraints: First, when shrinking
the table, each bucket of the new table will contain all en-
tries from multiple buckets of the old table; and second,
when growing the table, each bucket of the new table will
contain entries from at most one bucket of the old table.

Based on the first constraint, the RP hash shrink
writer can shrink a table as follows:

1. Allocate the new, smaller table.

2. Link each bucket in the new table to the first bucket
in the old table that contains entries which will hash
to the new bucket.

3. Link the end of each such bucket to the beginning
of the next such bucket; each new bucket will thus

2If the lookup algorithm needs to hold a reference to the entry after
the reader ends, it must take any additional steps to protect that entry
before ending the reader.

chain through as many old buckets as the resize fac-
tor.

4. Set the table size.

5. Publish the new, valid hash table.

6. Wait for readers. No new readers will have refer-
ences to the old hash table.

7. Reclaim the old hash table.

Concurrent inserts and removes must block until the
shrink algorithm finishes publishing the new hash table
and waits for readers to drop references to the old ta-
ble. See section 4.1 for further details on insertion and
removal.

For an example of the shrink algorithm, see figure 1.
Based on the second constraint, the RP hash expand

writer can expand a table as follows:

1. Allocate the new, larger table.

2. For each new bucket, search the corresponding old
bucket for the first entry that hashes to the new
bucket, and link the new bucket to that entry. Since
all the entries which will end up in the new bucket
appear in the same old bucket, this constructs an en-
tirely valid new hash table, but with multiple buck-
ets “zipped” together into a single imprecise chain.

3. Set the table size.

4. Publish the new table pointer. Lookups may now
traverse the new table, but they will not benefit from
any additional efficiency until later steps unzip the
buckets.

5. Wait for readers. All new readers will see the new
table, and thus no references to the old table will
remain.

6. For each bucket in the old table (each of which con-
tains items from multiple buckets of the new table):

6.1 Advance the old bucket pointer one or more
times until it reaches a node that doesn’t hash
to the same bucket as the previous node. Call
the previous node p.

6.2 Find the subsequent node which does hash to
the same bucket as node p, or NULL if no such
node exists.

6.3 Set p’s next pointer to that subsequent node
pointer, bypassing the nodes which do not
hash to p’s bucket.

7. Wait for readers. New readers will see the changes
made in this pass, so they won’t miss a node during
the next pass.
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(a) Initial state:
odd

even

1 3

2 4

(b) Initialize new buckets:

odd

even

all

1 3

2 4

(c) Link old chains:

odd

even

all

1 3

2 4

(d) Publish new buckets:
all

odd

even

1 3 2 4

(e) Wait for readers:
all

odd

even

1 3 2 4

(f) Reclaim:
all 1 3 2 4

Figure 1: Shrinking a relativistic hash table. (a) The
initial state has two buckets, one for odd numbers and
one for even numbers. White nodes indicate reacha-
bility by odd readers, and black nodes by even read-
ers. (b) The resizer allocates a new one-bucket table and
links it to the appropriate old bucket. Dashed nodes exist
only in writer-private memory, unreachable by readers.
(c) The resizer links the odd bucket’s chain to the even
bucket, making the odd bucket’s chain imprecise. Gray
nodes indicates reachability by both odd and even read-
ers. (d) The resizer publishes the new table. (e) After
waiting for readers, (f) the resizer can free the old table.

8. If any changes occurred in this pass, repeat from
step 6. Note that this loop depends only on the in-
terleaving of nodes with different destination buck-
ets in the zipped bucket, not on subsequent inserts
or removals; thus, this loop cannot livelock.

9. Reclaim the old hash table.

The wait in step 7 orders unzip operations for con-
current readers. Without it, a reader traversing a zipped
chain could follow an updated pointer from an item in a
different bucket, and thus erroneously skip some items
from its own bucket.

For an example of the expansion algorithm, see figure
2.

This version of the algorithm uses the old hash table
for auxiliary storage during unzip steps. The algorithm
could avoid this auxiliary storage at the cost of additional
traversals.

Concurrent inserts and removes on a given bucket
must block until after all unzips have completed on that
bucket.

4.1 Handling Insertion and Removal
Existing RCU-based hash tables synchronize insertion
and removal operations with concurrent lookups via stan-
dard RCU linked-list operations on the appropriate buck-
ets. Multiple insertion and removal operations synchro-
nize with each other using per-bucket mutual exclusion.
(Herlihy and Shavit describe a common workload for
hash tables as 90% lookups, 9% insertions, and 1% re-
movals [7], justifying an emphasis on fast concurrent
lookups. Nevertheless, several other hash table imple-
mentations offer finer-grained update algorithms based
on compare-and-swap [2, 22], which we could poten-
tially adapt to improve concurrent update performance.)
Resizes, however, introduce an additional operation that
modifies the hash table, and thus require synchroniza-
tion with insertions and removals. We initially consider
it sufficient to minimize performance degradation versus
a non-resizable hash table, particularly with no concur-
rent resize running.

During the initial period of initializing new buckets
and publishing the new table, our resizers block all up-
dates, either using a hash-table-wide reader-writer lock
(where inserts and removes acquire a read lock and re-
sizers acquire the write lock) or by acquiring all per-
bucket locks [7]. In the simplest case, concurrent up-
dates can continue to block until the resize completes;
however, concurrent updates can potentially run earlier
if they carefully handle the intermediate states produced
by the resizer. For a sufficiently large hash table, this may
prove necessary to avoid excessive delays on concurrent
updates.
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(a) Initial state:
all 1 2 3 4

(b) Initialize new buckets:
all

odd

even

1 2 3 4

(c) Publish new buckets:
all

odd

even

1 2 3 4

(d) Wait for readers:
aux

odd

even

1 2 3 4

(e) Unzip one step:
aux

odd

even

1 2 3 4

(f) Wait for readers:
aux

odd

even

1 2 3 4

(g) Unzip again:
aux

odd

even

1 2 3 4

(h) Final state:
odd

even

1 3

2 4

Figure 2: Growing a relativistic hash table. Colors as in figure 1. (a) The initial state contains one bucket. (b) The
resizer allocates a new two-bucket table and points each bucket to the first item with a matching hash; this produces
valid imprecise hash chains. (c) The resizer can now publish the new hash table. However, an even reader might have
read the old hash chain just before publication, making item 1 gray—reachable by both odd and even readers—and
preventing safe modification of its next pointer. (d) The resizer waits for readers; new even readers cannot reach item
1. (e) The resizer updates item 1’s next pointer to point to the next odd item. (f) After another wait for readers, (g) the
unzipping process can continue. (h) The final state.

In our shrink algorithm, the resizer must complete all
cross-link steps before publishing the table; once the re-
sizer has published the table, the algorithm has effec-
tively completed with the exception of reclamation, al-
lowing no opportunity for concurrent updates. However,
the shrink algorithm could choose to publish the initial-
ized table for updaters as soon as it completes initializa-
tion, allowing concurrent updates to proceed while the
cross-linking continues. The shrink algorithm may then
drop the per-bucket lock for a bucket as soon as it has
finished cross-linking that bucket, allowing concurrent
insertions and removals on that bucket.

Insertion and removal operations during expansion
must take extra care when operating on the zipped buck-
ets. When performing a single unzip pass on a given
set of buckets, the expansion algorithm must acquire the
per-bucket locks for all buckets in that set. This proves
sufficient to handle insertions, which simply insert at the
beginning of the appropriate new bucket without disrupt-
ing the next resize pass.

Removal, however, may occur at any point in a zipped
bucket, including at the location of the resizer’s aux
pointer that marks the start of the next unzip pass. If a
removal occurs with a table expansion in progress, the re-
moval must check for a conflict with this aux pointer, and
update the pointer if it points to the removed node. Given

the relatively low frequency of removal versus lookup
and insertion, and the even lower frequency of resizes,
we consider it acceptable to require this additional check
in the removal algorithm.

4.2 Variation: Resizing in Place

The preceding descriptions of the resize algorithms as-
sumed an out-of-place resize: allocate a new table, move
all the nodes, reclaim the old table. However, given a
memory allocator which can resize existing allocations
without moving them, we can adapt the resize algorithms
to resize in place. This has two primary side effects: the
resizer cannot count on the new table remaining private
until published, and the buckets shared with the old table
will remain initialized to the same values.

To shrink a hash table in place, we adapt the previous
shrink algorithm to avoid disrupting unfinished readers:

1. The smaller table will consist of a prefix of the cur-
rent table, and the buckets in that prefix already
point to the first of the lists that will appear in those
buckets.

2. As before, concatenate all the buckets which con-
tain entries that hash to the same bucket in the
smaller table.
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3. Wait for readers. All new readers will see the con-
catenated buckets.

4. Set the table size to the new, smaller size.

5. Wait for readers. No new readers will have refer-
ences to the buckets beyond the common prefix.

6. Shrink the table’s memory allocation.

To expand a hash table in place, we can make a similar
adaptation to the expansion algorithm by adding a single
wait-for-readers before setting the new size. However,
the algorithm still requires auxiliary storage equal to the
size of the current table. Together with the newly ex-
panded allocation, this makes in-place expansion require
the same amount of memory as out-of-place expansion.

4.3 Variation: Keeping Buckets Sorted
Typically, a hash table implementation will not enforce
any ordering on the items within a hash bucket. This
allows insertions to take constant time even if a bucket
contains many items. However, if we keep the items in a
bucket sorted carefully, modulo-based hashing will keep
all the items destined for a given new bucket together in
the same old bucket. This allows a resize increasing the
size of the table to make only as many passes as the resize
factor, minimizing the number of waits for readers. This
approach optimizes resizes significantly.

Furthermore, an application may find sorted buck-
ets useful for other reasons, such as optimizing failed
lookups. Sorted buckets do not provide an algorithmic
improvement for lookups, nor can they do anything to
accelerate successful lookups; however, sorted buckets
do allow failed lookups to terminate sooner, providing a
constant-factor improvement for failed lookups and for
removals. Blind inserts without checking for duplicates
will incur a performance penalty to find the insertion
point; however, insertions which check for duplicates
will incur minimal additional cost.

Our hash-table expansion algorithm already performs
a stable partition of the entries in a bucket, preserving
the relative order of entries within each of the subsets
that move to the buckets of the new table. The shrink al-
gorithm, however, simply concatenates a set of old buck-
ets into a single new bucket. A simple sort will not al-
low concatenation or splitting to preserve the sort, but
a well-chosen sort order based on the hash key can al-
low concatenation without a merge step. Ori Shalev and
Nir Shavit presented such a sorting mechanism in their
“split-ordered list” proposal [22, 7]: they propose sorting
by the bit-reversed key. Alternatively, the bucket selec-
tion could use the high-order bits of the hash key.

We do not pursue this variation further in this paper,
but we do consider it a potentially productive avenue for
future investigation.

5 Comparisons with Other Algorithms

We evaluated relativistic hash tables through both mi-
crobenchmarks on the data structure operations them-
selves, and via real-world benchmarks on an adapted ver-
sion of the memcached key-value storage engine. The
microbenchmarks directly compare our hash-table resize
algorithm with two other resize algorithms: reader-writer
locking and DDDS. The real-world benchmarks com-
pare memcached’s default storage engine with a modi-
fied memcached storage engine based on relativistic hash
tables.

First, as a baseline, we implemented a simple resizable
hash table based on reader-writer locking. In this im-
plementation, lookups acquired a reader-writer lock for
reading, to lock out concurrent resizes. Resizes acquired
the reader-writer lock for writing, to lock out concurrent
lookups. With lookups excluded, the resizer could sim-
ply allocate the new table, move all entries from the old
table to the new, publish the new table, and reclaim the
old table. We do not expect this implementation to scale
well, but it represents the best-known method based on
mutual exclusion, and we included it to provide a base-
line for comparison.

For a more competitive comparison, we turned to Nick
Piggin’s “Dynamic Dynamic Data Structures” (DDDS)
[21]. DDDS provides a generic algorithm to safely move
nodes between any two data structures, given only the
standard insertion, removal, and lookup operations for
those structures. In particular, DDDS provides another
method for resizing an RCU-protected hash table with-
out outright blocking concurrent lookups (though it can
delay them).

The DDDS algorithm uses two technologies to syn-
chronize between resizes and lookups: RCU to detect
when readers have finished with the old data structure,
and a Linux construct called a sequence counter or seq-
count to detect if a lookup races with a resize. A seqcount
employs a counter incremented before and after moving
each entry; the reader can use that counter, together with
an appropriate read memory barrier, to check for a resize
step running concurrently with any part of the read.

The DDDS lookup reader first checks for the presence
of an old hash table, which indicates a concurrent resize.
If present, the lookup proceeds via the concurrent-resize
slow path; otherwise, the lookup uses a fast path that sim-
ply performs a lookup within the current hash table. The
slow path uses a sequence counter to check for a race
with a resize, then performs a lookup first in the current
hash table and then in the old table. It returns the result
of the first successful lookup, or loops if both lookups
fail and the sequence counter indicates a race with a re-
size. Note that the potentially unbounded number of re-
tries makes DDDS lookups non-wait-free, and could the-
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oretically lead to a livelock, though in practice resizes do
not occur frequently enough for a livelock to arise.

We expect DDDS to perform fairly competitively with
relativistic hash tables. However, the DDDS lookup in-
curs more overhead than relativistic hash tables, due to
the additional conditionals, the secondary table lookup,
the expensive read memory barrier in the sequence
counter, and the potential retries with a concurrent re-
size. Thus, we expect relativistic hash tables to outper-
form DDDS significantly when running a concurrent re-
size, and slightly even without a concurrent resize.

For a real-world benchmark, we chose memcached, a
key-value storage engine widely used in Internet appli-
cations as a high-performance cache. Memcached stores
key-value associations in a hash table, and supports a
network protocol for setting and getting key-value pairs.
Memcached also supports timed expiry of values, and
eviction of values to limit maximum memory usage.

The default memcached storage engine makes exten-
sive use of global locks. In particular, a single global
lock guards all accesses to the hash table. As a result, we
expect memcached’s default engine to hit a hard scalabil-
ity limit, beyond which it will not scale to more requests
regardless of available resources.

Memcached requires the ability to scale to various
workload sizes at runtime; as a result, it requires a re-
sizable hash table. Previous non-resizable RCU hash ta-
bles could not provide the flexibility necessary for mem-
cached.

We implemented a new RP-based storage engine in
memcached, and modified memcached to support a new
fast path for the GET request. memcached’s default im-
plementation goes to great lengths to avoid copying data
when servicing a GET request; memcached also ser-
vices multiple concurrent client connections per thread
in an event-driven manner. As a result of these two
constraints, memcached maintains reference counts on
each key-value pair in the hash table, and holds a refer-
ence to the found item for a GET from the time of the
hash lookup to the time the response gets written back
to the client. In implementing the RP-based storage en-
gine, we chose instead to copy the value out of a key-
value pair while still within an RP reader; this allows the
GET fast path to avoid interaction with the reference-
counting mechanism entirely. The GET fast path checks
the retrieved item for potential expiry or other conditions
which would require mutating the store, and falls back to
the slow path in those cases.

We expect that with the new RP-based storage en-
gine, memcached will no longer hit the hard scalability
limit observed with the default engine, and GET requests
should continue to scale up to the limits of the test ma-
chine. Since we added wait-for-readers operations to the
SET handling, SET will become marginally slower, but

the scalability of SET requests should not change; we be-
lieve this tradeoff will prove acceptable in exchange for
making GET requests scalable.

6 Benchmark Methodology

6.1 Microbenchmark: rcuhashbash-resize
To compare the performance and scalability of our algo-
rithms to the alternatives, we created a test harness and
benchmarking framework for resizable hash-table imple-
mentations. We chose to implement this framework as a
Linux kernel module, rcuhashbash-resize. The
Linux kernel already includes a scalable implementation
of RCU, locking primitives, and linked list primitives.
Furthermore, we created our hash-table resize algorithms
with specific use cases of the Linux kernel in mind, such
as the directory entry cache. This made the Linux kernel
an ideal development and benchmarking environment.

The rcuhashbash-resize framework provides
a common structure for hash tables based on Linux’s
hlist abstraction, a doubly-linked list with a sin-
gle head pointer. On top of this common base,
rcuhashbash-resize includes the lookup and re-
size functions for the three resizable hash-table imple-
mentations: our relativistic resizable hash table, DDDS,
and the simple rwlock-based implementation.

The current Linux memory allocator supports shrink-
ing memory allocations in place, but does not support
growing in place. Thus, we implemented the in place
variation of our shrink algorithm and the copying imple-
mentation of our expansion algorithm.
rcuhashbash-resize accepts the following con-

figuration parameters:

• The name of the hash-table implementation to test.
• An initial and alternate hash table size, specified as

a power of two.
• The number of entries to appear in the table.
• The number of reader threads to run.
• Whether to run a resize thread.

rcuhashbash-resize starts by creating a hash
table with the specified number of buckets, and adds
entries to it containing integer values from 0 to the
specified upper bound. It then starts the reader
threads and optional resize thread, which record statis-
tics in thread-local variables to avoid the need for ad-
ditional synchronization. When the test completes,
rcuhashbash-resize stops all threads, sums their
recorded statistics, and presents the results via the kernel
message buffer.

The reader threads choose a random value from the
range of values present in the table, look up that value,
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and record a hit or miss. Since the readers only look
up entries that should exist in the table, any miss would
indicate a test failure.

The resize thread continuously resizes the hash table
from the initial size to the alternate size and back. While
continuous resizes do not necessarily reflect a common
usage pattern for a hash table, they will most noticeably
demonstrate the impact of resizes on concurrent lookups.
In practice, most hash tables will choose growth factors
and hysteresis to avoid frequent resizes, but such a work-
load would not allow accurate measurement of the im-
pact of resizing on lookups. We consider a continuous
resize a harsh benchmark, but one which a scalable con-
current implementation should handle reasonably. Fur-
thermore, we can perform separate benchmark runs to
evaluate the cost of the lookup in the absence of resizes.

The benchmark runs in this paper all used a hash ta-
ble with 216 entries. For each of the three implementa-
tions, we collected statistics for three cases: no resizing
and 213 buckets, no resizing and 214 buckets, and contin-
uous resizing between 213 and 214 buckets. We expect
lookups to take less time in a table with more buckets,
and thus if the resize algorithms have minimal impact on
lookup performance, we would expect to see the num-
ber of lookups with a concurrent resizer fall between the
no-resize cases with the smaller and larger tables.

For each set of test parameters, we performed 10
benchmark runs of 10 seconds each, and averaged the
results.

Our test system had two Intel “Westmere” Xeon DP
processors at 2.4GHz, each of which had 6 hardware
cores of two logical threads each, for a total of 24
hardware-supported threads (henceforth referred to as
“CPUs”). To observe scalability, we ran each benchmark
with 1, 2, 4, 8, and 16 concurrent reader threads, with
and without an additional resize thread. In all cases, we
ran fewer threads than the hardware supported, thus min-
imizing the need to pass through the scheduler and al-
lowing free CPUs to soak up any unremovable OS back-
ground noise. (We do however expect that performance
may behave somewhat less than linearly when passing 12
threads, as that matches the number of hardware cores.)

All of our tests occurred on a Linux 2.6.37 kernel, tar-
geting the x86-64 architecture. We used the default con-
figuration (make defconfig), with the hierarchical
RCU implementation, and no involuntary preemption.

6.2 Real-World Benchmarks: memcached

As a client-server program, memcached required a sep-
arate benchmarking program. At the recommendation
of memcached developers, we used mc-benchmark, de-
veloped by Salvatore Sanfilippo. To minimize the im-
pact of network overhead, we ran the client and server

on the same system, communicating via the loopback
interface. To generate enough load to reach the lim-
its of memcached, the benchmarking program requires
resources comparable to those supplied to memcached.
Thus, on the same 24-CPU system, we chose to run 12
memcached threads and up to 12 benchmark processes.

mc-benchmark runs a single thread per process, but
simulates multiple clients per process using the same
kind of event-driven socket handling that memcached
does. Experimentation showed that on the test system,
one mc-benchmark process could run up to 4 simulated
clients with increasing throughput, but at 4 clients it
reached the limit of available CPU power, and adding
additional clients would result in the same total request
throughput. Thus, we ran from 1 to 12 mc-benchmark
processes, each of which simulated 4 clients.

To run the memcached server and mc-benchmark
client, and collect statistics on the request rate, we used
a benchmark script supplied by the memcached develop-
ers. For each test run, the benchmark would start mem-
cached and wait for it to initialize, start the desired num-
ber of concurrent mc-benchmark processes, wait 20 sec-
onds for the processing to ramp up (mc-benchmark has
to first run SET commands to insert test data, then either
SET or GET requests depending on the benchmark), and
then collect samples of the rate of processed requests di-
rectly from memcached; the benchmark collected three
rate samples at 2 second intervals, and took the highest
observed rate among those three samples.

7 Benchmark Results

To evaluate baseline reader performance in the absence
of resizes, we first compare lookups per second for all the
implementations with a fixed table size of 8192 buckets;
figure 3 shows this comparison. As predicted, our rela-
tivistic hash table, shown as RP, and DDDS remain very
competitive when not concurrently resizing, though as
the number of concurrent readers increases, our imple-
mentation’s performance pulls ahead of DDDS slightly.
Reader-writer locking does not scale at all. In this test
case, the reader-writer lock never gets acquired for writ-
ing, yet the overhead of the read lock acquisition prevents
any reader parallelism.

We observe the expected deviation from linear growth
for 16 readers, likely due to passing the limit of 12 hard-
ware cores. In particular, notice that the performance for
16 threads appears approximately 50% more than that
for 8, which agrees with the expected linear increase for
fully utilizing 12 hardware cores rather than 8.

Figure 4 compares the lookups per second for our im-
plementation and DDDS in the face of concurrent re-
sizes. (We omit rwlock from this figure, because it would
vanish against the horizontal axis; with 16 CPUs, rela-
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Figure 3: Lookups/second by number of reader threads
for each of the three implementations, with a fixed hash-
table size of 8k buckets, and no concurrent resizes.
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Figure 4: Lookups/second by number of reader threads
for our RP-based implementation versus DDDS, with a
concurrent resize thread continuously resizing the hash-
table between 8k and 16k buckets. rwlock omitted as it
vanishes against the horizontal axis.

tivistic hash tables provide 125 times the lookup rate of
rwlock.) With a resizer running, our lookup rate scales
better than DDDS, with its lead growing as the num-
ber of reader threads increases; with 16 threads, rela-
tivistic hashing provides 56% more lookups per second
than DDDS. DDDS has sub-linear performance, while
our lookup rate improves linearly with reader threads.

To more precisely evaluate the impact of resizing on
lookup performance for each implementation, we com-
pare the lookups per second when resizing to the no-
resize cases for the larger and smaller table size. Figure
5 shows the results of this comparison for our implemen-
tation. The lookup rate with a concurrent resize falls be-
tween the no-resize runs for the two table sizes that the
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Figure 5: Lookups/second by number of reader threads
for our resize algorithms. “8k” and “16k” indicate fixed
hash-table sizes in buckets; “resize” indicates continuous
resize between the two sizes.
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Figure 6: Lookups/second by number of reader threads
for the DDDS resize algorithm. “8k” and “16k” indicate
fixed hash-table sizes in buckets; “resize” indicates con-
tinuous resize between the two sizes.

resizer toggles between. This suggests that our resize al-
gorithms add little to no overhead to concurrent lookups.

Figure 6 shows the same comparison for the DDDS
resize algorithm. In this case, the lookup rate with a re-
sizer running falls below the lower bound of the smaller
hash table. This suggests that the DDDS resizer adds
significant overhead to concurrent lookups, as predicted.

Finally, figure 7 shows the same comparison for the
rwlock-based implementation. With a resizer running,
the rwlock-based lookups suffer greatly, falling initially
by two orders of magnitude with a single reader, and
struggling back up to only one order of magnitude down
at the 16-reader mark.

Figure 8 shows the results of our benchmarks on mem-
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Figure 7: Lookups/second by number of reader threads
for the rwlock-based implementation. “8k” and “16k”
indicate fixed hash-table sizes in buckets; “resize” indi-
cates continuous resize between the two sizes.

cached. Note that the default engine hits the expected
hard limit on GET scalability, and fails to improve its re-
quest processing rate beyond that limit. The RP-based
engine encounters no such scalability limit, and the GET
rate grows steadily up to the limits of the system. With
a full 12 client processes and 12 server threads, mem-
cached with the RP-based engine services 46% more
GET requests per second than the default engine.

As expected, SET requests do not scale in either en-
gine. In the RP engine, SET requests incur the expected
marginal performance hit due to wait-for-readers oper-
ations; however, this tradeoff will prove acceptable for
many workloads, particularly when a successful GET re-
quest corresponds to a cache hit that can avoid a database
query or other heavyweight processing.

We hypothesize that memcached’s default engine only
managed to scale to as many clients as it did because it
spends the vast majority of its time in the kernel rather
than in the memcached userspace code, and the kernel
code supported more concurrency than the serialized en-
gine code. Profiling confirmed that memcached spends
several times as much time in the kernel as in userspace,
regardless of storage engine.

We also performed separate runs of the benchmark us-
ing the mutex profiler mutrace. By doing so we observed
that the default engine spent long periods of time con-
tending for the global lock, whereas with the RP-based
engine, GET requests no longer incurred any contention
for the global lock.

7.1 Benchmark Summary

Our relativistic resizable hash table provides linearly
scalable lookup performance in both microbenchmarks
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Figure 8: GET and SET operations per second by num-
ber of mc-benchmark processes for the default mem-
cached storage engine and our RP-based storage engine.
Each mc-benchmark process simulated 4 clients to satu-
rate the CPU.

and real-world benchmarks. In our microbenchmarks,
the relativistic implementation surpassed DDDS by
a widening margin of up to 56% with 16 reader
threads; both implementations vastly dwarfed reader-
writer locks, with our RP implementation providing a
125x improvement with 16 readers. Furthermore, our
resize algorithms minimized the impact of concurrent re-
sizing on lookup performance, as demonstrated through
the comparison with fixed-size hash tables. In the real-
world benchmarks using memcached, the RP-based en-
gine eliminated the hard scalability limit of the default
storage engine, and consistently serviced more GET re-
quests per second than the default engine—up to 46%
more requests per second when saturating the machine
with a full 12 client processes and 12 server threads.

8 Future Work

Our proposed hash-table resize algorithms demonstrate
the use of the wait-for-reader operation to order update
operations. We use this operation not merely as a write
memory barrier, but as a means of flushing existing read-
ers from a structure when their current position could
otherwise cause them to see writes out of order. Figure 2
provided a specific example of this, in which a reader has
already traversed past the location of an earlier write, but
would subsequently encounter a later write if the writer
did not first wait for such readers to finish.

We have developed a full methodology for ordering
writes to any acyclic data structure while allowing con-
current readers, based on the order in which readers tra-

12



verse a data structure. This methodology allows writers
to consider only the effect of any prefix of their writes,
rather than any possible subset of those writes. This
proves equivalent to allowing a reader to perform a full
traversal of the data structure between any two write op-
erations, but not overlapping any write operation. This
methodology forms the foundation of our work on rela-
tivistic programming.

Relativistic readers traversing a data structure have a
current position, or read cursor. Writes to a data struc-
ture also have a position relative to read cursors: some
read cursors will subsequently pass through that write,
while others have already passed that point. In an acyclic
data structure, readers will start their read cursors at
designated entry points, and advance their read cursors
through the structure until they find what they needed to
read or reach the end of their path.

When a writer performs two writes to the data struc-
ture, it needs to order those writes with respect to any po-
tential read cursors that may observe them. These writes
will either occur in the same direction as reader traver-
sals (with the second write later than the first), or in the
opposite direction (with the second write earlier than the
first). If the second write occurs later, read cursors be-
tween the two writes may observe the second write and
not the first; thus, the writer must wait for readers to fin-
ish before performing the second write. However, if the
second write occurs earlier in the structure, no read cur-
sor may observe the second write and subsequently fail to
observe the first write in the same pass (if it reaches the
location of the first); thus, the writer need only use the
relativistic publish operation, which uses a simple write
memory barrier.

“Laws of Order” [1] presents a set of constraints on
concurrent algorithms, such that any algorithm meeting
those constraints must necessarily use expensive syn-
chronization instructions. In particular, these constraints
include strong non-commutativity: multiple operations
whose order affects the results of both. Our relativistic
programming methodology allows readers to run with-
out synchronization instructions, because at a minimum
those readers do not execute strongly non-commutative
operations: reordering a read and a write cannot affect
the results of the write.

We originally developed a more complex hash-table
resize operation, which required lookups to retry in a sec-
ondary hash table if the primary lookup failed; this ap-
proach mirrored that of the DDDS lookup slow path. Our
work on the RP methodology motivated the simplified
version that now appears in this paper. We plan to use the
same methodology to develop algorithms for additional
data structures not previously supported by RCU.

As an immediate example, the RP methodology al-
lows a significantly simplified variation of our previous

hash-table move algorithm [24, 23]. This variation will
no longer need to copy the moved entry and remove the
original, a limitation which breaks persistent references,
and which made the original move algorithm unsuitable
for use in the Linux dcache.

9 Availability

The authors have published the code supporting
this paper as Free and Open Source Software un-
der the GNU General Public License. For de-
tails, see http://git.kernel.org/?p=linux/
kernel/git/josh/rcuhashbash.git.
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