Online migration for geo-distributed storage systems

Nguyen Tran Marcos K. Aguilera Mahesh Balakrishnan
Microsoft Research Silicon Valley

Abstract which represents data as stacked layers stored in different
We consider the problem of migrating user data belaces. Overlays are a flexible way to support data migra-
tween data centers. We introdudistributed storage tion;they can be used to cache data at remote data centers,
overlays a simple abstraction that represents data aggrate these caches from one data center to another, and

stacked layers in different places. Overlays can be readilyigrate thehomeof a data object—the data center where
used to cache data objects, migrate these caches, andthg-object is stored when it is not cached. If data is repli-
grate the home of data objects. We implement overlays @&ted across data centers, overlays can be used to migrate
part of a key-value object store called Nomad, designeditdividual replicas.

span many data centers. Using Nomad, we compare overWith overlays, migration can be performedline, that

lays against common migration approaches and show tligitwhile the data is accessible to users. This is important
overlays are more flexible and impose less overhead. iy three reasons. First, user data can be massive and the
drive migration decisions, we propose policies for prépandwidth across data centers is limited, so that migration
dicting the location of future accesses, focusing on a welan take a long time and we do not wish to disable the
mail application. We evaluate the migration policies usingser account during migration. Second, we want to mi-

real traces of user activity from Hotmalil. grate data opportunistically in the background, using pos-
_ sibly small amounts of left-over bandwidth. This is so be-
1 Introduction cause large companies such as Microsoft pay for private

Internet web applications are increasingly important tinks with fixed bandwidth to connect data centers, which
our everyday lives, as we rely on them for email, searcimeans that unused bandwidth is wasted money. Third, the
ing, online storage, online calling, and much more. Thegmlicies of when to migrate data can be complex, and we
applications face a data scalability challenge that is gete not want to complicate them further with constraints
ting worse, for two reasons. First, there is a growing nunand predictions of when users will access their data.
ber of users in an increasing number of regions. And Online migration is challenging due to races; it requires
second, the storage neegsr userare growing as more careful coordination as clients in the network read and
applications become available online, users accumulateite data while the migration process copies the data and
more data, and systems collect more information frohe system possibly creates, flushes, and removes caches
users to target ads and personalize their experience. &semote locations. Overlays are an easy, flexible, and ef-
a result, these applications need to den-distributed ficient way to handle this coordination, as we demonstrate
which means they are deployed across multiple data cen-this paper.
ters around the world, due to constraints on the size, bandWe implement overlays in a system called Nomad,
width, and power consumption of a single data center. Be#ich is a key-value object store that supports online mi-
sides providing scalability, geo-distribution also alkbe gration. Key-value stores were recently proposed to sup-
user to be served from a nearby data center, thereby pert large-scale applications in data centers (e.g., [16])
ducing user response times and bandwidth consumptidiough Nomad is a key-value store, overlays are appli-
For that, the user’s data should be at the right data cereble to other types of storage, such as distributed linear-
ter, namely, a data center close to the user. This is calladdress stores [9], block stores [31], and file systems.
access locality We evaluate the mechanism for migration using a wide-

Unfortunately, data is not always where it should berea deployment on five data centers around the world.
users relocate, and the load at data centers becomes @Qor experiments show that overlays impose a small over-
balanced due to new applications, new data centers, amehd and provide flexibility for supporting caching and
changes in the network topologies. In these cases, usggration. They also show that overlay-based migration is
data needs to be migrated from one location to anothenpre efficient than existing methods based on data lock-
migration is essential to provide access locality and fag and logging.
balance load. This paper considers the problem of migrat-The mechanism for migration is independent of the
ing data across data centers. We propose a simple abstgagicies used to trigger migration. We study some sim-
tion calleddistributed data overlapr overlayin short, ple policies that track the location of users as they move.
We evaluate these policies using real traces of user ac-
cesses; we compare policies based on access count, time,

*Current affiliation: New York University
Inot to be confused with a network overlay.

and rate, and we show that, although they are all reasareent user data (e.g., recent emails). She then travels to
able, the one based on count performs the best. Russia, and so the system migrates the cache in China to
Summary of contributions. We consider the problem of a data center in Russia. She stays in Russia for some time,
building distributed storage systems deployed over maapd so the system starts to migrate her data from France
data centers, with support for flexible online migratioto Russia, which takes several days. Before the migration
of data across data centers. We propose distributed digt@ver, she returns to France, so the system applies all
overlays, a simple but flexible abstraction designed wpdates done in China and Russia to her data in France.
hide the complex distributed protocols (which we pro- Scenario 3 (Data center expansioy:data center in
vide) required to coordinate access to data at many Ibrance is nearing maximum storage capacity, and so a
cations. We also propose policies for driving the migredata center in Spain is created and the system migrates
tion of user data, and evaluate them using real traces fr@®me users from France to Spain. During this migration,
Hotmail. We implement overlays to produce the Nomathe two above scenarios may happen with some of the
system, and use it to compare our approach against lésers being migrated from France to Spain.
flexible but common alternatives for storage migration. More generally, migrations can Ephemerabr per-
manent Ephemeral migrations are reversed in the future;
2 Background they are implemented by creating a cache of the user data
There are many data centers around the world, eagha new location and possibly pre-fetching parts of the
with thousands or more machines, subject to crash faglata. Later, the cache is flushed if it has dirty data and then
ures. We do not consider Byzantine failures in this papeemoved. Permanent migrations are not reversed; they are
We target a setting where partitions across data cent@tslemented by copying the user data to the new location,
are rare in the absence of disasters. This can be achiewgtlle coordinating updates to the data so that they go to
by connecting data centers via private leased lines withe right location. Sometimes, a migration may start off as
high availability [1, 2]; by using redundant links to main-being ephemeral, but may end up being permanent—this
tain operation during planned link downtime (e.g., usingould happen, for example, if a user travels to location
aring topology across data centers); and by routing traffi;d ends up staying there for the rest of her life. In that
via the Internet should all the redundant links become uBase, the cache gets transformed into the home of the data.
available. The data centers run web applications that st@ghemeral and permanent migrations may occur simulta-

user data, such as these: neously, say because the user is traveling but her home
Application | User data data center is being reassigned.
web mail emails Migration must functionally appear as a no-op: reads
web phone | voice mails and writes should functionally behave the same way
‘(’:Vheabt storage feirji%‘:églﬁisstory whether or not migration has occurred or is in progress,
search search history except in terms of performance (a completed migration
ALL profile, activity logs will improve performance by reducing the number of re-

This data should often be stored at a data center closBiqt€ 8ccesses). Moreover, migration is an optimization
to the user, where the user logs into. Migration refers {§her than atask required for correct operation of the sys-
moving the data from one data center to another—to iflgm- We do notwish mlgrgtlon to disrupt the performarjce
prove access locality or to balance load across data cé’rﬁ-the system by consuming large amoun_ts of bandW|d.th
ters.Online migration means that, during migration, thedurlng busy t|mes._ We thus_ e>_<pect migrations to occur in
data remains accessible to the applications. the background with low priority.

We now illustrate some migration use cases with thref?

. . Distributed data overlays
scenarios; we later explain overlays and how they sup-

port these use cases. In these scenarios, “user data” referl.g this section, we describe our approach to migration

to the data specific to a user that an application needs "9 distributed data overlays or simpiyerlays Our

serve that user. For example, it could be the user's emal Se.scrlptlon is targeted at a fairly general distributed-sto

Scensrio 1 (A ong i o Chin French usr goes 0 VSIS, I Secon & we pryide h deials of over
to China. After several days, the system starts to migrafaey P y ; yster . o
QOverlays are an abstraction to provide online migra-

her user data to China. If she goes back, the French co I . . ;
n. Migration results in partial copies of data at two

's updated with any changes made in China. If she st more locations—such as cached fragments and partly-

in China longer, all her data is migrated and the French . . .
copy is deleted. copied data—which need to be managed carefully while

Scenario 2 (Backpacking in Asia)?he French user the system orchestrates accesses, to ensure writes are not

makes a short trip to China and, soon after, the syste!ﬂ%t and reads return vghd data. For exqmplg, .'f datg IS
}tten at the old location at the same time it is being

creates a cache at a data center in China containing e

client

client
librar

con- migration
tainer |server | coordinator

A 12 5

----- R &

12 64
(7] C 74 64
Figure 1: Overlays. > A ;
= - directory
g server
cache - HEl—- HEl—t Hl— O
% storage
SEIVEI2 oo —- —_ cT) server
4 E= containers
server] e —- — “6 |
data center ve.,
(a) (b) (©) o
. . . %, |objects (®s°4
Figure 2: It is easy to use overlays to migrate data from serverl 5

to server2. The black bars indicate regions with data. (a) Initially,

data is in serverl, and there is a dirty cache at a data center Figure 3: Standard object store architecture used in Nomad.
close to the user. (b) First, insert an overlay at server2 between
serverl and the cache, and copy data from serverl to server2.

(c) Then, remove the overlay at serverl; dirty cache remains in Function | Description

place. The distributed protocols that implement overlays ensure read(container, oid, off, len, buf) | read object

that the insertion and removal of overlays will never cause the write(container, oid, off, len, buf) | write object

loss of data in ongoing read or write operations. creatg{container;, oid, len, buf) create and write object
deletgcontainer, oid) delete object

migrated to a new location, the system may fail to mi-
grate the new write. This example becomes more com-
plex when there are dirty caches, those caches themsel i
are being migrated, and/or migrations are canceled a\z\a?
restarted; the number and complexity of the different SCH new overlay. The protocols implementing overlays
narios that must be handled can be problematic for t hich are hidden from the designers who just want to
system developer. Overlays are an abstraction that he

deali it th o ol d unified them) ensure that reads and writes on an overlay stack
e: Ing with t gse scelnarlos ina S|1np ean hun|t|ef twa?) to the right overlay, and that overlays can be created,
S an everyday analogy, an overiay 1 a sheet of tran serted, and removed atomically even if reads and writes
parent plastic that is placed over a piece of paper. Whe Ecur concurrently. With overlays, it is easy to support

Figure 4: Nomad API to access objects.

le migration occurs, data can be written at the cache,
d the cache can be flushed by writing its contents to

(Figure 1). Overlays can be stacked, to create many Iaa'-
ers, so that looking at the stack reveals their combintf
conte_nts; if many overlays have content at the same plaﬁ’ﬁgration is achieved by creating overlays and copying
the higher overlays occlude the lower ones. data between them.

This idea has an analogue to storage systems. We now
explain it in a context where the user data is a byte sg- Nomad design

quence, such as a file, a data object, or the sequence Qfyg it Nomad, a prototype of a distributed key-value
blocks on a disk—depending on the nature of the storaggect store that incorporates overlays to support flexi-
system. Data is stored at some base location and it Mk anq online migration in a geo-distributed setting. We
be partly stored in another data center, which serves a§&ycripe overlays in Nomad for concreteness; however,
cache. We can view the base location and cache as a St@%rlays are applicable to other types of storage systems,

of two overlays, as shown in Figure 2(a), where each ovelj -, as file systems or block storage systems.
lay is stored in a server in a data center. For uniformity,

the base layer is also called an overlay. The combinatidnl Basic architecture
of all overlays determines what data is seen on the stack Nomad has a typical architecture for a distributed key-
with higher overlays having priority over lower overlays.value object store, shown in Figure 3. This architecture is
With the abstraction of overlays, migrating data isot novel; we describe it in this section for completeness.
straightforward: (1) we create an overlay below the Objects are stored on a set of storage servers, which
caching overlay, residing at the destination server, (2) vage commodity machines running a standard operating
populate the new overlay by copying data from the basystem; they store each object as a separate file in the
overlay, (3) we delete the base overlay, so that the ndacal file system. Throughout the papelient refers to
overlay becomes the new base (see Figures 2(b) and 2(t)g entity that uses Nomad, which is an application run-

ta between overlays to migrate. Note that each overlay
kept at a fixed server, that is, an overlay does not move;

ning at a server in the data center, whengserrefers to at the directory service, so that the migration engine does
the entity that uses the application, which is often outiot have to reimplement this functionality. In particular,
side the data center—for example, the user could bebafore migration, the directory maps some unit of data to
person using a web mail system. Clients access Nomsaime server; after migration, this unit must be mapped
via a client library that implements functions for readingto a different server without leaving behind intermediate
writing, creating, and deleting objects, as shown in Fignappings.

ure 4. There are also functions to read or write multiple Consequently, migrations in Nomad are done at the
objects in the same request for efficiency; these are rgranularity of a container, and we intend that applica-
shown for simplicity. This interface is simple: a write astion designers collaborate with system administrators to
sociates a key with a new value, and a read returns tbleoose an appropriate organization around such contain-
latest value associated with the key. Each object is pants. For example, in some web applications, all of a user’s
of a container similar to a directory in a file system, apersonal information and preferences could be stored in
bucket in Amazon’s S3 [5], or a blob container in Mi-a container. In a web mail system, there could be a con-
crosoft Azure [6]. A container is stored in one of the stortainer per email folder per user, so that containers are not
age servers, and there is a function for enumerating tegtremely large.

objectidentifiers in a container, and to create/remove con-A related consideration is the specificity of the desti-
tainers (not shown). The mapping of containers to storagation of migration. In Nomad, the migration targets are
nodes is kept by a directory service, which is replicateservers, but a high-level migration decision by an admin-
asynchronously across data centers. For flexibility, Nastrator could be to move a container from one data center
mad allows any container to be mapped to any storageanother. In this case, there has to be a component that
server; the mapping is represented as a list of containegfines this decision and picks actual servers; this com-
server pairs. The client library caches part of the majponent, as well as the actual policies for migration, are
ping, and the directory service need not keep track of whwthogonal to the migration mechanisms in Nomad.
caches what: if the mapping changes (because the cgns

tainer is migrated), the client library may try to access an Our description of overlays in Section 3 assumed sim-

object at the wrong location, in which case the client li- listicallv that th s d d miarati lari

brary gets an error, consults the directory to find the riglhatIStIca y that the user's data and migration granu arity

location, and tries ;i ain. Itis possible to expire entries |- & duence of bytes. We extend the description to No-
' gain. P P mad, where the migration granularity is an object con-

the client cache for efficiency, so that the client does not. : . .
use too old information, but Nomad does not do that. Th%mer’ which consists of a set of objects, where each ob

; . A o . JSCt is a sequence of bytes. An overlay for the container is
directory service also indicatesnaigration coordinator S .
) . an overlay for each object in the container plus an overlay
for each container (Section 4.5).

for an array of bytes representing the set of object iden-
4.2 Migration granularity tifiers in the container. All objects in the container have
At what data granularity should migration occur? Wedentical overlays, except that the data contents for dif-
discuss this issue from three perspectives: the applitatiderent objects are different. Thus, for efficiency, Nomad
the system administrator, and the storage system. keeps a singleverlay structuregper container, which rep-
From an application perspective, applications shoulésents the (identical) overlays of all objects in the con-
organize and migrate data in units that are likely to be againers, without any data; the data is kept separately as a
cessed together within a given location, to provide locaget of extents for each object at each overlay. An object
ity. For example, in a web application, a user usually logday have several extents at a given overlay.
in at a data center close to where she lives; her persisteijer|ay internal information. Recall that the directory
data, such as personal information and preferences, foggtvice maps each container to a storage server, which in
a coherent unit for migration. It would not make sense t@rn stores the base overlay for the objects in that con-
migrate a user's name without migrating her address, fg§iner. Normally, the base overlay is the only overlay in
example. the stack, but when the container is being migrated or
From the system administrator's perspective, theached, there may be additional overlays. The overlay

choice of granularity comes from a balance of managstructure consists of the following information:

enough to allow reasonable control over the allocation of . |gcation: server that stores the data in the overlay;
storage capacity and bandwidth. On the other hand, mi-, above-pointerpointer to the overlay above, or nil;
gration should be coarse enough so that the number of. pejow-pointerpointer to the lower overlay, or nil;

units to be administered is small. _ . frozen:a flag indicating that overlay pointers cannot
From the storage systems perspective, the migration pe changed:

granularity should match the granularity of the mappindp, gyerlay structure is associated with the following:

Overlaysin Nomad

Function - | Description _ (aboveor below) to specify whether to insert above or be-
insert(server overlay, direction, flags) | create overlay and insert low the specified overlay and aflag with properties forthe

removéoverlay) remove overlay)

getstackbaseoverlay) get entire overlay stack ~ New overlay. Currently, the only property is whether the
start.copy(overlay, direction, list]) copy to adjacent overlay new overlay holds unique data or not. If it does not, then
stop.copy(copy job) stop copying when a write happens at the overlay, the write is also for-

warded to the overlay below; this mechanism can be used
to implement a write-through cache. Tétart.copyoper-
« data: a set of extents for each object, withuaique ~ation copies the objects in the overlay to the overlay above
bit and atimestamgfor each extent. or below. It can copy all object or just those indicated on
) .) . alist—this is useful to populate caches with certain ob-
The unique bit is unset when the extent is a repetition @+ only. The remove operation is self-descriptive: the
_data in a lower ov_erlay; this _blt is similar to the dirty b'tsystem takes care of copying the overlay’s unique data to
in a cache. The timestamp is used to handle concurregt o erjay below before removing it. It is not legal to re-
writes when data is replicated at many overlays: the Wriigye an overlay if it is the only overlay in the stack. Not
with highest timestamp wins. We explain replication ingpqn in the figure are the operations that return the base
Section 4.6. overlay for a container and for an object.
Reading and writing data. To write data to an object, To simplify the design, we require that overlay opera-
the client first finds the highest overla@j;gp, by start- tions be executed one at a time per container. This seri-
ing with the base location and successively traversirgization occurs per container, not across containers, and
the above-pointerat each overlay until it becomes nil.so it does not pose a performance problem since over-
Then, the client sends the data to be written to the overlgyy operations on a container are relatively rare. To seri-
Ohigh If theabove-pointeat Opig, remains nil, the stor- alize, overlay operations can be called by only one server
age server aDhigh accepts the write and sets the uniquper container: in Nomad, this server is indicated by the
bit for the newly written extent. (The checking that thelirectory service and it is called th@ordinatorof the
above-pointer is nil and the acceptance of the write mug@ntainer. The coordinator ensures that an overlay has at
be performed atomically with respect to the processiri§ost one outstanding overlay operation. To achieve fault
of other client requests for the overlay.) Otherwise, thetelerance, we can fail over the coordinator as we explain
has been a concurrent operation to insert an overlay abd@ter. Note that read and write operations aog¢overlay
Ohighe SO the storage server returns an error together wigiperations: they can be executed concurrently with over-
the value oibove-pointerthe client continues the traver-lay operations and with each other, at many clients. The
sal to find the new highest overlay, and retries the wrifgfotocols thatimplement overlay operations, described in
there. When the client has completed the write, it cach&§ction 4.5, ensure correct behavior in these cases.
the_; identity_of the highest overlay it found. In its nexty 4 Using overlays in Nomad
write, the client starts the traversal from the cached over-

Itiy,tfor Iefﬂmency._ 'I;hebcached v_?lue could bedan_oveLI_ igrate the cache, and migrate data back, as we now de-
at no longer exists (because it was removed), in whi ribe. We provide intuitive explanations in English, lut i

case th? client gets an error and (?onsults the directory Sf’%r'easy to translate these explanations into code that calls
vice to find the base location again.

. o . the functi in Fi 5.
To read an object, the process is similar but slightly © functions inFigure

more complex, because the highest overlay may not hotigr ate data to another server. The system creates an
the data to be read; in that case, the client goes back to fierlay at the destination server on top of the source over-
lower overlays until it finds the data it wants. It is possiblé2y to be migrated; at this point, writes will no longer go
that an overlay holds only part of the interval to be read® the source overlay. The system then invokes the oper-
in which case the client goes to the lower overlays for trion to copy the data from the source to the destination
missing pieces. overlay. When the copy is finished, it removes the source

Note that when there is a single overlay—which is ofoverlay. As we mentioned, because we designed the over-
ten the case for most objects—its location is the serviy operations so that clients can concurrently access data
indicated by the directory service, and a read or write rédigration proceeds concurrently with these accesses, and
quest proceeds as in a system without overlays, witholytthout causing reads or writes to be lost.

additional communication rounds. Cancel migration. Sometimes, migration should be

Overlay operations. The operations that insert, removecanceled because of changes in the workload. For in-
and copy overlays are shown in Figure 5. The insert opestance, if a user is traveling for some time and migration
ation indicates the server for the new overlay, an existirgarts, but the user returns before migration has finished,
overlay where the new overlay will be inserted, a directiotihe system may decide to cancel the migration. This is

Figure 5: Operations on overlays.

Itis easy to use overlays to migrate data, create a cache,

easy: we simply stop the copying operation and removteatO2’s top pointer is nil, and step (3) above is skipped.
the new overlay that was created for migration. Recallo insert O2 at the bottom, the process is also simi-
that the operation to remove an overlay copies the ovédar except thatO2’s bottom pointer is nil, and step (2)
lay’s content to the overlay below. If the new overlay alehanges the base pointer at the directory service to point
ready has lots of data, the following optimization is effecto O2. There one subtlety: the directory service is repli-
tive. Note that only data written by the client needs to beated asynchronously; the coordinator changes only the
copied, not data written by the migration, which is alreadglirectory server in its own data center and the others are
present in the overlay below. To identify these writes, theventually updated; in the meantime, the remove direc-
writes by the client have a speciahiquebit set (Sec- tory servers may temporarily point to the wrong base;
tion 4.3), while the writes by the migration do not. this is not a problem since the directory service is used

Create cache at a data center. We can create two typesonly for finding the top overlay (see “Reading and writ-
of caches at a data center: write-back or write-througlg data” in Section 4.3).

(Caching can also be done at the client; this can be doRemoving overlays (part 1). To remove an overlag?2,

by the application if desired, not by Nomad.) To establisive first consider the case whep2 is completely oc-

a cache, one simply inserts a new top overlay stored in theided by the overlay above: that means all dat&h
desired data center; write-back or write-through behavitg covered by data at the overlay above, so that the data
is indicated by thdlag parameter of the insert operationjn O2 is useless. In that case, the coordinator can remove
which indicates whether the overlay will forward writes taD2 without fear of losing data; to do so, the coordinator
the overlay below or not. To flush the cache, one invoké$) changes the overlay below to point to overlay above,
the copy operation to the overlay below. To remove th@) changes the overlay above to point to the overlay be-
cache, one invokes the operation to remove the overlaylow and sets the unique bit for all extents in the overlay

Migratethecache. To migrate a cache (which may haveabOVé. If there is no overlay below, becaus® is the
dirty data), we use the procedure to migrate the data at @se overlay, the coordinator changes the base pointer at

overlay, described above. the local directory server (instead of the overlay below);
_ _ the other replicas of the directory server may temporarily
4.5 Implementing the overlay operations point to the deleted?2, so we leave a tombstone @

We now describe how to implement the overlay opepointing to the overlay above; the tombstone is removed
ations of Figure 5. We make the following design deciafter a period long enough that all directory servers have
sions: (1) it is reasonable to serialize overlay operatiosgen the update (say, one hour).
on the same container, but we should allow operations onAnother easy case is to remo@2 when the overlay
different containers to run in parallel, and (2) an overlagelow is in the same storage server. In that case, the coor-
operation on a container must allow reads and writes @nator asks the storage server to execute three actions:
the container to proceed in parallel, because these opgiB- locally copy the contents aP2 to the overlay be-
tions are sensitive to performance. Therefore, we assigw O1, (2) redirect any writes t@2 so that it goes to
a (migration) coordinatorper container, which executesO1, and (3) makeD1.above-pointer point t@2.above-
overlay operations on that container one at a time, and weinter. These three actions can be done without races
design the coordinator protocol carefully so that reads abécause they are done in the same server. Finally, if there
writes are never blocked. The coordinator is indicated by an overlay abov®2, the coordinator makes its below-
the directory service, and it manipulates the overlay stap@inter point toO1.
at each server via remote procedure calls (RPCs), as wéThe removal process we described so far does not allow
now explain. one to remove the top overlay, or some overlay that is not

Inserting overlays. To insert an overlay)2 at storage completely occluded. We come back to that soon, because
serverS above overlayO1 and below overlayD3, 01 such an operation uses the next operation.
and O3 must point toO2, and O2 must point to both. Copying data between overlays. To copy data from an
To do so, the coordinator executes the following actiorsverlay to the overlaypelow the coordinator asks the
(using RPCs), in this order: (1) crea® at S with point- server of the overlay above to send the data to the server
ers toO1 and O3; (2) changeD1.above-pointer ta)2; below. This idea can also be used to copy from an over-
(3) changeO3.below-pointer toO2. Note that after (2) lay to the overlayabove but it is more efficient to ask for
before (3),02 is already visible to read and write operathe overlayaboveto pull the data from the overlay below,
tions becaus@1 points to it, butO2 is in a funny state because if the overlay above already has data for certain
whereO3 does not point to it yet. This is not a problempbjects, these objects need not be copied (since the over-
because&)2 has no data and it is impossible for it to getay above occludes the overlay below at those objects).
any data (writes would go tO©3 instead).

To insertO2 at the top, the process is similar except 2Setting the unique bit this way is a conservative choice.

Removing overlays(part 2). We can now describe how As a consequence, read and write operations are lineariz-
to remove an overlag? that is not completely occluded. able [20], which provides a strong form of consistency.
The procedure to do that reduces to invoking existing pr&oughly speaking, linearizability ensures that each oper-
cedures that we already described. There are two caseation appears to take place instantaneously at a point be-
1. If there is an overlay abov®2, the coordinator tween the invocation and response of the operation.
invokes the copy operation froi®2 to that overlay, to ~ To show the property of equivalence to a single-overlay
occludeO2. The coordinator then uses the previouslysystem, we examine the steps of the protocols to insert, re-
described procedure to remove an overlay that is ogove, and copy data between overlays, and we show that
cluded. This works without any races, because once aach of these steps always cause a concurrent write or a
overlay is occluded, it remains occluded as no writes caead operation to occur at a proper overlay: a write always
go to it—unless the overlay above is removed, but as veecurs at an overlay that is not occluded (at the time the
explained above, this does not happen since all operatiomste is applied to the overlay), so that the write behaves
on an overlay are serialized by the coordinator. equivalently as in the single-overlay system; and a read
2. If O2 is the top overlay then it must have some ovemlways occurs at the highest overlay with data. The proof
lay O1 below it at some storage servgi(the last overlay requires an exhaustive examination of all cases, which is
cannot be removed, which would result in data loss). THeng but conceptually simple.
coordinator first creates a new temporary ovedyover Availability and fault tolerance of migration. We op-
O2 at storage served. Then, the coordinator remove® timize to provide high-availability for reads and writes;
using the above procedure, sinGe is no longer the top migration operations may pause due to failures. A coor-
overlay. We are left with overlay81 andO3 at serverS. dinator crash affects only its own migration operations:
The coordinator now uses the above procedure to remane designed the protocols so all clients continue reading
an overlay when the overlay below is in the same storag@d writing consistently without blocking if the coordi-
server. nator crashes. We recover from coordinator crashes using
Copy optimization. The coordinator serializes overlaystandard techniques. The coordinator logs each operation
operations, but this is inefficient in one case: the copy opnd each step within the operation; the log is stored in
eration can take a long time and hence delay further ové&temad itself. If the coordinator crashes, another coordi-
lay operations. For example, suppose that we have a basgor reads the log and picks up from where the crashed
overlay and a cache, and we want to migrate the base fraordinator left off.

a server to another one. During this migration, we may oving the coordinator. There is a unique coordinator

want to also migrate the cache to another place, but if th@r container, indicated by the directory service, but the
overlay operations on the same container are serialize@ordinator can be easily changed, as follows. The old co-
the cache migration must wait for the server migratiogrdinator finishes its current operation and then performs
to finish, which is undesirable. We address this problemree actions: (]_) start the new coordinator, (2) Change the

by having copy operations run in the background, there®inter at the directory service, (3) stop.
allowing concurrent execution of other overlay operations

on the same container. For this to work, we need to restrit® Replication

the other overlay operations so that they do not change théPata replication can be implemented at two places in
source and destination overlays involved in a copy (féhe component stack: at the storage node level, called
example, it would be problematic to remove the sourdéode-level replicationor at the directory level, called

or destination overlay while the copying is going on). Wélirectory-level replication

do this simply by setting a “frozen” flag at the overlay; With node-level replication, a storage node is respon-
an overlay operation that encounters the frozen flag exible for replicating itself, and all the replicas are tezht

its with an error and retries later. It suffices to freeze thiy the higher layers as a single virtual node. The migra-
lower of the two overlays, because the operations to réon engine is above the replication mechanism, and we
move the higher or lower overlay or to insert an overlagnigrate data from one virtual node to another as if the
between them will access the lower overlay first and fingode were not replicated at all. For example, if there are
the frozen flag. two replicas rl and r2 of a storage node, they are both
Correctness proof. The operations to insert, remove reated as virtual node r; containers in r can be migrated
and copy data between overlays ensure that reads dad@nother virtual node s that could have replicas s1 and
writes behave equivalently as if they were executing i#2- The advantage of node-level replication is that it is
a single-overlay systenthat is, a system that has a sine€xtremely simple and modular, because migration is de-
gle fixed overlay where all the reads and writes oécurcoupled from replication. For example, node-level repli-

3This holds when overlays are not replicated. Replicationliss tated by the replication scheme; for instance, asynchmneplication
cussed in Section 4.6. It provides a consistency guarahtgeis dic- provides only eventual consistency.

nique: when writes occur at different replicas, the write
with higher timestamp obliterates the other writes; if a
""" replica receives a write with a lower timestamp than the
Figure 6: Replication of base overlays. The overlays in New York ~ data it has, the replica ignores the write. Note that times-
gnd San Francisco are asynchronous replicas. There are overlays tamps are globally unique (done by appending a machine
in Miami and San Diego used as caches of these locations. . e : P
identifier to break ties). To obtain timestamps, we assume
cation can be easily provided using a disk array at ti{Bat clocks are synchronized, say via NTP; machines with
storage nodes, or by using state machines coordinated {@#/ty clocks can be disabled using a simple monitoring
Paxos [24]. The drawback of node-level replication is th&€TVice. Timestamps are kept forever for each extent. We
it cannot benefit from the versatility of overlays—for in-0elieve that is a small overhead, but if desired it is pos-
stance, we cannot use overlays to cache or migrate ingib!e to garbage collect the timestamp at a replica after
vidual replicas, since these replicas are abstracted at a I IS known that the data at other replicas cannot have a
level in the system. s_maller tlm(_astamp, using th(_e conve_n'uon that data with no
With directory-level replication, the directory servicdimestamp is treated as having-ac timestamp. _
maps an object/container to several servers (instead of Vith both schemes above (asynchronous primary-
single server) holding replicas of the base overlay; theB&CKUp or timestamped), if a client fails while writing,
replicas are coordinated by the read-write protocol us&d Write may be applied to some but not all replicas. For
by clients. The migration engine is below the replicatiofhat reason, the migration coordinator runs a cleaner that
mechanism, and migration moves data from one phygenodmally chegks for these falle_d writes gnd completes
cal storage server to another. With directory-level replih®m. To make it easy to recognize the failed writes, the
cation, individual replicas can benefit from overlays, aglient leaves amarkin the overlays that it writes to, which
illustrated in Figure 6. This scheme is particularly uséh® client clears asynchronously after the client has writ-
ful when data is replicated across data centers. We n&@ to all replicas. If the client crashes without having
explain how Nomad can be extended to support repM\zrltten to all replicas, the marker will bg left at the over-
cation of this sort. (This extension is not implementely- Both asynchronous schemes described above provide
in our prototype.) The replicated base overlays are edventual consistency. o
tablished when a client creates a container and indicates/Vith synchronous replication, when a client issues a
that it should be replicated. Each replicated base ovéf!ité to one of the overlay stacks, the client must write
lay may subsequently have a different stack of overlaj@ the other replica stacks synchronously (i.e., before
on top of it, so the stacks are not copies of each oth&€ Write is acknowledged to the client). As with asyn-
The data in the different overlay stacks are kept in syrfdironous replication, a write includes a timestamp to or-
using the desired replication scheme. We believe ovéfer concurrent writes, and we use a marker to recognize
lays should work with most replication schemes, by treat@iled writes. To read, a client reads from one of the over-
ing each overlay stack as a black-box to which the d&2Y Stacks and then checks that the data being read has no
sired replication protocol issues writes and reads. We [Parker (the common case); if it has a marker, the client
lustrate how this is done via three well-known replicatiod"it€s the data and its timestamp synchronously to the
schemes—asynchronous primary-backup, asynchronéﬁ@er rephca.stacks. This is done to ensure th_at later reads
timestamped, and synchronous. Under all schemes, #eother replllcas cannot not return data that is oIder.than
directory service indicates the locations of all replicas ¢he data being returned by the current read, to provide a
the base overlay; when a client writes to one of the overl@jfong form of consistency. This synchronous replication
stacks, it performs the write at the other stacks as well; §heme provides linearizability [20]. _
write on a given stack, the client uses the write procedure With all of the replication schemes, we can migrate a
described in Section 4.3. We now explain the specifics B#Plica using the procedure described in Section 4.4.
each replication scheme. 4.7 Multi-way caching and split overlays
With asynchronous primary-backup replication, one of In Section 4.4, we described how to use overlays to
the overlay stacks is designated as the primary and tb&che data at one location. It may be desirable to set up
other stacks are read-only; writes are only permitted afulti-way caches, where data is cached at many locations
the primary stack, and the client applies the write asyfrom a single replica. In other words, there is a single
chronously (in the background) to the other stacks. replica of the full data set, and many caches each with
With asynchronous timestamped replication, writes agbme (possibly overlapping) part of the data set. To do
permitted at all replica stacks, and the clients apply thfis, we need the notion of a split overlay, which is illus-
writes asynchronously to the other stacks; a write includ@sited in Figure 7. (This extension is not implemented in
a unique real-time timestamp to order concurrent writesur prototype.)
by other clients at other replicas. This is a standard tech-Caches exist for performance, and so they should al-

| Mia| [chi| [Mmia] [chi] [NY]]cChi] Chi

Figure 7: Split overlays are used to cache the data in New York at hﬁ NY
both San Francisco and Chicago.
(a) (b) (c) (d)

low for efficient reads and writes without synchronizatiog;g,re g: Removing a split overlay. Miami (Mia) and Chicago (Chi)
across the caches in different data centers. As a result initially split and we wish to remove Miami.

split overlays provide only a weak form of consistency,]
namely eventual consistency. A split overlay occurs whefPrk and Chicago. We use the procedure to remove an

an overlay has several overlays over it on the next levéverlay described in Section 4.5, with a small modifica-
each of these overlays is calledsglit. A split is estab- tiontoincorporate the invalidation mechanism that we de-
lished using the operation to insert a new overlay of Figicribed above. More precisely, as shown in Figure 8, we
ure 5, with a special flag indicating it is a split. This flagirst create an overlay in New York on top of Miami; we
causes the overlay below the point of insertion to stof8€n copy the data from Miami to the overlay above it in
an additionalabove-pointeto the new overlay. When a Néw York; next we remove the overlay in Miami. We are
write occurs at one of the splits, the write occurs as in af§ft with a split overlay where New York is on top of New
other overlay: the data is marked as unique (dirty) and it 2"k, as shown in Figure 8(c). The final step is to locally
not propagated to other splits. A client can cause the ds#8Py the data from the higher to the lower overlay in New
at a split to be copied to the common overlay below, viyork, send invalidation messages to Chicago, and finally
the start.copyoperation of Figure 5. This corresponds t¢@move the higher overlay in New York.

flushing the cache. When the overlay below receives theNOte that split overlays can be migrated as well, using
data, it invalidates older data at the same position in th@e procedure described in Section 4.4. This modularity
other splits, using the data’s timestamps to decide whzkes overlays a flexible mechanism.

is older. As a result, content initially written to a split is . C
not visible at the other splits, but asysoon as the Co%ten S The policy of geo'd.ISt”bUtlon

flushed down, it becomes visible. In the example of Fig- ' NS far, we have described the Nomad system and the
ure 7, when the dirty writes in Miami are flushed to thénechanisnof migration it provides. We now discuss the
common overlay in New York, New York sends an invaliP0licy of migration: what data to migrate, where to mi-
dation message to Chicago, which causes Chicago to dKate it, and when to do so. There is no one-size-fits-all

card any older writes. Subsequent reads in Chicago whplicy: migration policies depend on the specifics of data
read the data from New York. center deployments as well as application requirements.

In general, the protocol works as follows. Supposg€low: we describe some of the key deployment factors
there is an overlay at levelk andm splitsO1, ..., 0,, thatapolicy layer must take into consideration.
atlevelk + 1. If a write occurs at an overlag; or above, ~ Datacenter granularityA geo-distributed system may
the write remains in the split with the unique bit set, SugEonsist of a few large data centers, or many small data
sequently, when the data@ is copied to overlay, the centers. The fprmer charact.erlzes currgnt deployments of
server of overlayO sends an invalidation message witHarge companies such as Microsoft, while the latter alter-

the data’s timestamp and position to the other splits gative is based on the use of containers [12]. Smaller data
level k-+1. Each of these overlays checks whether it h&&nters allow data to be closer to users, but place greater
older data in the same position and, if it does, remov&&@in on the migration scheme.

such data from the overlay. If there are further overlays NetWOrk costsA geo-distributed system usually com-

above, the invalidation message is forwarded recursivefjlunicates on two different networks: an internal one be-

If the server of an overlay crashes and recovers, it m&y€en data centers, and an external one to connect with

lose this invalidation message (e.g., it may have receivdgers (the Intemet). The cost model for the internal net-

the message and then crashed without having the time'{grk can vary. If the internal network consists of ded-

process it). For that reason, the overlay that originates titated. privately owned links, the cost and speed of the
message retransmits it periodically until it gets acknow[l€Work are fixed. Alternatively, network cost on Ieas.ed
edgements from the top overlays in each branch. An ovdflks can depend on the amount of data transferred; for

lay may process the same invalidation message twice, @MPI€, it is common for network operators to bill cus-
this is not a problem since the message is idempotent. tomers based on 95th percentile network utilization. The
Now suppose that we want to remove a split OVe”ay_external network is provided by Internet ISPs, and the cost

say, in the example of Figure 7, we wish to remove thdepends on the amount of data transferred in and out.
Access protocoldVhen a user accesses the service via

split in Miami and be left with an unsplit stack with New)) :
the web, the request is redirected via DNS-based load-

balancing to a local data center. If the data the user needs Rate:Data is accessed from the same remote loca-
(e.g., her inbox) is in a different data center, the system tion above a certain rate (e.g., 3 accesses per day).

has two options: For example, suppose Alice moves from Redmond to

« Redirect.The system redirects the user to the apprd-ondon. Suppose she accesses her mailbox twice on each
priate data center. Subsequently, the local data cen@éithe first five days in London, twelve times on the sixth
is not in the communication path, and the commun@ay, and then returns to Redmond on the seventh day. The
cation from the user to the appropriate data centerpount-based policy with a threshold of 10 accesses mi-
via the Internet. This option saves bandwidth on thgrates her mailbox to London on the fifth day; the Time-
internal network, but may impair the user experiendeased policy with a threshold of 10 days does not migrate
because the Internet provides no quality of serviceher mailbox. The Rate-based policy with a threshold rate

« Relay.The local data center continues to serve thef 3 accesses per day migrates her mailbox to London on
user and fetches needed data from the remote d#tg sixth day. In this case, the Time-based policy is the
center using the internal network. Thus, the locdlest. Since Alice returns to Redmond after a short trip,
data center is in the communication path. This oger mailbox should not be migrated. In other cases, the
tion tends to provide more predictable access timegount and Rate-based policies may work better.
and it allows the local data center to satisfy parts of We later report on the efficacy of these different poli-
the request locally (e.g., ads). However, this optiogies when applied to real user traces taken from a large
is more expensive because one must provision tié&b mail service. Since these policies are predicated on
internal network adequately. the movement of users in the real world (rather than the

semantics of a specific application like webmail), we be-

Agfaunst. this backc_irop, a m'gfa“"” policy must trad'ﬁeve the results to be relevant for other web applications,
off migration bandwidth on the internal network for re-

. such as the ones mentioned in Section 2.
duced access latencies. If the system usefR#layop-
tion, the policy also has to factor in the bandwidth costog | mplementation

the inFernaI netyvork of remoFe accesses on non-migrated e implemented overlays in a prototype of Nomad as
data; in theRedirectmodel, this is not a factor. we described in Section 4, except that we did not im-
A policy layer for online services. In addition to the plement replication (Section 4.6) and split overlays (Sec-
deployment factors listed above, migration policies alsgyn 4.7)—which are unnecessary to compare Nomad to
depend on application characteristics. For example, Ngther migration schemes. The Nomad prototype has 6,000
mad could be used with a policy layer that periodicalljnes of C# code, comprising a client library, a storage
computes optimal placements for data given the locatie@rver, and directory server. The directory server pravide
of recent accesses of users and the capacity of each dafcs to get and set the location of the base overlay of a
center, as in the Volley system [7]. The effectiveness @bntainer given its 64-bit identifier. A storage server pro-
this policy depends on the application; it works well i jdes RPCs for the following: (1) Read/write to an over-
user movements tend to be permanent, but can resuldy: (2) Get the overlay above and below of an overlay;
excessive migration if users move back and forth. (3) Delete an overlay; (4) Create new top overlay at an-
We describe a new policy layer based on predictioRsiher storage server for a given overlay; (5) Copy data of
of future user movement. This layer provides insight intgp, overlay to its upper overlay; (6) Migrate an overlay to
how predictions of user movement can be used to achieygother storage server.
access locality while eliminating unnecessary migrations storage servers store data for an overlay as a directory
Our policy layer makes the decision to migrate a Usf the local file system, containing a metadata file and one
based on the cost of doing so versus its predicted e for each extent of the overlay, named by the object
ture benefit. If we could perfectly predict the benefit, thigy start offset and end offset. A write to an overlay may
choice would be easy; since we cannot, we must settle fplerge extent files. Storage servers cache overlay meta-

heuristics that use past behavior to try to predict future agata in memory to improve read performance.
cesses at the same location. We consider three simple mi-

gration policies. They all monitor the location of the use¥ Evaluation of mechanism

when she accesses the data, and trigger migration when @ this section, we evaluate the use of overlays for mi-
conditionis met. The three conditions we consider are thgation, through experiments that measure overlay over-
following: heads, verify their flexibility, and compare their perfor-

« Count:Data is accessed from the same remote locglance against alternatives.

tion a certain number of times (e.g., 10times); 7.1 Alternative schemes for migration

* Time: Data is accessed from the same remote loca-\ye consider two alternative schemes for migration,
tion for a certain period (e.g., 10 days); which are often used in practice:

« Lock-based migrationwhile the data is copied from

the old location to the new location, the system _ ~ 1000¢ 1stWrite 350 3
i ; ; 7] E 2nd Write szssesz

blocks write operations. Read operations are not g F
blocked; they are served at the old location. Writes § 100 £ E
are unblocked after the old location is marked as in- & :
valid and the directory is updated to point to the new g ol]
location. s

. Log-base_d migrationThe system creates a log at thg . o 2 o - =
old _Iocat|0n to store the updates W_h|Ie the_data is CA WA MA UK oN
copied from the old to the new location. During the CA WA MA UK
copying, reads and writes are served at the old loca- CA VCV/f\\ \'m
tion. Once the copying is finished, the system blocks CA

write OPeFat'onS' copies the IOg _from t_he Ol_d to th@igure 9: Write latency using several overlays in many geograph-
new location, marks the old location as invalid, modical locations. The x-axis indicates the number and location of

ifies the directory to point to the new location, andgverlays.
then unblocks write operations.

faster. The exact latency for subsequent reads depends on
7.2 Experimental setup the first overlay that has the data: if it is the top over-
Our setup consists of machines in data centers i@y, it is just a local-area-network latency, otherwisesit i
five locations: Mountain View (CA), Redmond (WA), the sum of the latencies to communicate with each suc-
Boston (MA), Cambridge (UK), and Beijing (CN). Eachcessive overlay until data is found. We implemented an
machine consists of a PC with two quad-core 2.27 GHptimization so that if a read does not hit the top overlay
Xeon processors, 16 GB of RAM, an internal disk arrahen it writes the data there so that the next read of the
with several 10,000 rpm SAS disks, running 64-bit Winsame data will be faster—thereby treating the top overlay
dows Server 2008 R2. Machines are connected to a @p a cache. A client-settable flag determines whether this
gabit switch, and the various locations are connected Bytimization is enabled or not.
a dedicated network. The median ping latencies between
locations are as follows, in ms:

| WA MA CN UK

CA | 19 11z 167 237 Overlay space. We measure the space overhead of over-
WA 79 141 204 H H

VA 220 283 !ays. The on-disk orin-memory metadata for each overlay
CN 345 is smaller than 1 KB. A larger overhead occurs because

lower overlays may store useless data occluded by higher
7.3 Overhead of overlays . overlays. In theory, a container’s storage space across all
We now evaluate the overhead imposed by OVerlays'servers could be multiplied by the number of overlays.
Access latency. In this experiment, we measure the lay, hractice, most overlays are usually empty, but even if
tency that overlays incur on accesses to data. A clieffey were not, it is easy to introduce a garbage collection
reads or writes a small object with up to five overlays ifyechanism that periodically detects and erases occluded
different locations, as we measure the latency of reads @t;, (we have not implemented this). The garbage col-

writes in two separate experiments. The client is in thg(ion period can be many minutes because most storage
same location as the top overlay, which is typical of haVs‘ystems are over-provisioned.

ing a cache at the local data center.
Figure 9 shows the results for writes. We see that the4 Flexibility of migration mechanism
first write incurs a higher latency, because the client needsln terms of functionality, overlays provide the flexibil-
to traverse overlays in different locations from bottom tity to migrate data while clients are concurrently reading
top. Once the client learns the top overlay, it caches it fand write data; during migration, the system may create
the entire container; subsequent writes on any object off flush a remote cache, and the cache itself could be in-
the container are much faster, incurring only a local-aredependently migrated. Lock-based and log-based migra-
network latency plus a disk-write latency. We can avoition do not provide this flexibility, but they could sup-
the higher latency for the first write by keeping a hint oport a static cache layer, which cannot be removed or
the location of the highest overlay at the directory servicadded. With extensions, lock-based and log-based migra-
We implemented this optimization, but Figure 9 shows thigon could support migration of the cache layer, possibly
unoptimized scheme, representative of the worst case. concurrently with migration of the storage layer, but this
For reads, the situation is similar (not shown). The firgsequires additional careful design. The flexibility of each
read discovers the overlays, while subsequent reads acheme is summarized in the table below.

We devised an experiment to demonstrate the flexibil- :
ity of overlays as a user moves between four locations. 20 Wk,
The user is initially at the United Kingdom (UK), where ol *"***“ i
she has 50 MB of data. Her workload consists of reading L o o R
or writing small objects within some working set of size 0 Eoopea) sooalpd Gesesss
2 MB. At time 60s, she moves to Boston (MA). At that 0 50 100 150 _200 250 300 350 400
time, we start a process to migrate her data to MA, start- Time [s]
ing with her active set, using 300 Kbps of bandwidth. ThiEigure 11: Read and write latency before, during, and after migra-
could be the maximum bandwidth a given user is allowetEP”' Migration starts at 50s and completes at around 300s.

to consume in a system with many users. The entire Ming once the user moves and migration starts, the latency
grat.|on-W|II take a_round 1600s, but her active set can l%‘?Jikes to around 1s for a few accesses: this is the time it
copied in 60s. Attime 180s she moves to Redmond (WAles to lookup the user's data and traverse the overlay
but the migration UK-MA has not finished yet, so we Crestack. Soon after, the write latency drops<6, because

ate a cache in the WA data center and start populatingffiies are now done locally. The read latency gradually
with her working set, copying the df';\ta from the MA datqjrops as the working set is migrated from UK to MA,
center at a rate of 400 Kbps. At time 300s, she MOVES,ich, takesv70s. At 180s and 300s, we observe the same

to California (CA), and we migrate her cache from WAp_henomenon, except that the working set is copied faster,
to CA at a rate of 400 I_(bps. There are se_parate EXPEH-~40s, since more bandwidth is available for populating
ments for reads and writes. Note that in this experimeny, migrating the client's cache.

we compress travel time so that we can fit the scenario in
one small graph. In a more realistic setting, the user mdyd Performance comparison
remain at a location for several days, and the correspondn this experiment, we evaluate the latency of accesses
ing graph would look like the one we give, except it wouldo data during migration. A container with 50 MB of data
have large segments depicting no interesting informatiéfinitially located in the WA data center (source location)
while the user remains at a location. and a client periodically reads or writes small objects in
Figure 10 shows the latency of the user’s reads afigat container from the CA data center. At 50s, the sys-
writes during this scenario. The latency refers to a clietg@m starts migrating the container to CA (destination lo-
running on the user’s behalf at the data center closest@ation), which is the same data center as the client, using
the user—this client could be a web application that readsMbps of bandwidth. We measure the latency of reads
and writes within the data center. We can see that irind writes to the objects as the migration progresses.

tially the latency is close to 0, reflecting a local access. At Figure 11 shows the results for Nomad and log-based
migration. With the latter, there is a period of write un-

support | create | remove migrate 60
Scheme static cache | cache cache " Read Log'-baselzi !
cache layer layer 50 L Write, Log-based---%---
Lock-based Yes No No Extension Read, Nomad---*---
Log-based Yes No No Extension T Write, Nomad & |
Overlay Yes Yes Yes Yes £
>
e 30 B 0 96 26 -X =)= 3¢ - 96 26 X=X X=X 3¢ 3¢ K T
S ;
o
-

300 Usel Location: availability at the end of migration when the log is copied.
H The write unavailability is given by the formula:
250 MA
filesize write-rate filesizex write-rate
g 200 - migrate-rate>< migrate-rate migrate-raté
E 150 L wherewrite-rate refers to the new writes during migra-
IS tion, andmigrate-rateis the rate at which data is copied.
g 100 L The unavailability can be reduced by using a second
log to store updates while the log is being migrated (and
50 L this can be done repeatedly).
Log-based migration has two other drawbacks com-
o k& ; pared to Nomad. First, read and write latency remains
0 60 120 180 240 300 360 420

high during migration because operations are served at
the source location until migration is completed. In con-
trast, with Nomad, the write latency immediately de-
creases when the migration starts while the read latency
progressively decreases, because the client reads ran-

Time [s]

Figure 10: Read and write latency as the user moves between
4 locations and we migrate her data and cached data as she
moves.

miles from each other) intaisits Thus, if a user logged
in twice from New York City and twice from New Jersey
(which are very close), we consider that as a single visit
of four accesses. If the user then logs in from Seattle, and
later again from New York City, that is three visits.

As we explained in Section 5, data center granularity
is an important consideration: the movement of a user is
only relevant for migration if the closest data center to the

50

Latitude
o

o
S

1 1 1

-150 -100 -50 0 50 100 150 user changes. We consider that the data center changes

Longitude only if the distance between one visit and the next is

Figure 12: Movement patterns of sample users that traveled ghove athreshold. We consider three such thresholds, cor-

>2000 miles for >3 weeks with >7 accesses. Disclaimer: sample s ra5n0nding to three data center granularities:
not statistically significant, provided for illustrative purposes only, not nec-

essarily representative of Hotmail’s market penetration. i Large-DC:ThreshoId is2000miles, corresponding

]] to a deployment with massive data centers serving a
domly chosen objects and, as time passes, a larger frac- |5ge area. 1% of the users in the trace have visits
tion of these objects are in the same location as the client. 5t satisfy this criteria.

Another drawback of log-based migration is that it con- . pmedium-DC: Threshold isL000miles, correspond-
sumes three times as much bandwidth for new writes ing to data centers serving a mid-sized geographical

done during migration (not shown on the graph). These region. 1.8% of the users in the trace have visits that
writes must be (1) received at the source, (2) sent from the satisfy this.

source, and (3_) receiv_ed at f[he o!estination. Intuitivelg t . Small-DC: Threshold is 450 miles, correspond-

is pecause writes during migration are sent to the source. ing to having data centers for individual states or
This must b_e so, because read; are_serveq atthe source. In metropolitan areas. 3.5% of the users in the trace
con':rast, r\:wtg ovgrla_y—bat;sed mlgrahtlon, writes can go di- paye visits that satisfy this.

rectly to the destination, ecause_t e_system can uUse Overe, o ach data center granularity, we study the three mi-
lays to serve reads from a combination of the source and._.. licies d ‘bed in Section 5. F h

the destination. gration policies described in Section 5. For each user, we

We also tried lock-based migration (not shown on thscan the trace until we findramotevisit—a visit whose
9 gistance from the first visit exceeds the distance thresh-

graph). The result is what one would expect: during mE g (2000, 1000 or 450). We then apply the policy to that

g_ra'uon there are no writes, and reads h_ave high Iater\%’mote visit to see if migration is triggered; for example,
since they are served at the source location.

the Count policy with a threshold of 10 triggers migration
8 Evaluation of policy if the visit contains 10 or more accesses.

| Figure 13 shows what fraction of users trigger migra-

We evaluate three simple migration policies using re . o .
traces from Hotmail. Generally, migration can be trig?'on as.afunctlon of each policy’s threshold. The_fr_actlon
relative to the users with at least one remote visit.

gered by a combination for factors, including balancian‘ We now examine the effectiveness of the three policies

of storage capacity, balancing of bandwidth, and move- . . :
9 pactty 9 ng the metric okaved remote accesseghich mea-

ment of users. The policies we consider here are baslél?res the benefit of migration: these are accesses that
on movement of users; a more comprehensive set of poj\'/fthout migration WOU|C? have .been served at the origi ,
cies may consider the other factors as well [7]. We evalu- 9 ’ ; A g

al data server far from the user, but with migration, are

ate policy independent of the mechanism used for migrg- g dat ter ol o th F |
tion, to separate concerns. Our traces comprise the |o§%“’e rom a data center Close 10 Ine User. -or example,

records 0f~50,000 randomly chosen Hotmail users, col- atljuser acctﬁssgs hetr mlz?ulbox_tﬁootﬁmei ?g”?%g E[rr:p
lected over two months (Aug-Sept 2009). For each usgir,1 Wwe use the Lount policy with a threshold of SU, the

it contains the login time and IP address from which thgug_lber o{za\;]ed act(;esses IS 450. ber of d
user logged in. We use a public IP-based geolocation ser- igure 14 Snows the average number of saved accesses

vice to map each IP address to latitude, longitude codts r3|grtateddlfnﬁallboi< tﬁn tk;]e Iﬁ'?x's' E?]Ch pl).omtfcortrhe-
dinates. To apply our policies, we view each login as onds to a difterent threshold for each poicy, for the

separate access, and the unit of migration is a mailbcgé‘rge'DC and Small-DC granularity (the Medium-DC is

Figure 12 shows examples of the movement patterns gtween those two, and not shqwn). The x-axis has .the
the trace. percentage of migrated users using that threghold, points
To eliminate errors introduced by the geo-location seF-) the right correspond to thresholds that migrate more

vice, we first pre-process the trace by clustering Jusers. For the Count and Rate policies, the curves de-

guences of close-by accesses by a user (less than ?é%se monotonlca_lly as more users are _rmgrated; there-
ore, most of the migration benefit is obtained by choos-

o ' small-DC ' § = Small-DC
mall- + K e mall- +
120 Medium-DC x 20 F Fg . g 30 Medium-DC x
100 Large-DC - 0 K » Large-DC x -
- & 15} % .]
S 80 1 £ S 8 .
— 60 - e 10t % N = N
40 . = Smal-DC + o -
00 | 5 Medium-DC x x, 1 & |
Large-DC x *x) 8 ™™
0 i L L TTRKK 0 Lt X N [, o J IS L 2
10 100 10 100 10 100
Percentage of users migrated Percentage of users migrated Percentage of users migrated
Figure 13: Effect of varying thresholds for Count (Left), Time (Middle) and Rate (Right) policies.
e}
o 450 ——— . —_— 0 — .
3 . count, Large-DC o o count, Large-DC o
; 400 = rate, Large-DC = B o 100F rate, Large-DC © 7
J count, Small-DC + ot count, Small-DC +
S 350 rate, Small-DC x 7 3 rate, Small-DC *
=) = time, Large-DC © g 80f time, Large-DC = »
. N [m]
€ 300 time, Small-DC x 1 @ time, Small-DC ~ x Lea .
- . . [Ea0 4 oX
) Migration Cost =======- =
o 250 B g
o
S 200} . °
% o
g 150 -] g
8 100 »]
3 T, TDog o
< 50, 0 c00 o o ooo?ozg+5+ﬁmﬂ%2 Q
* xxxl xxx%xxxxxxxoxg gﬂw
0
10 100 10 100
Percentage of users migrated Percentage of users migrated
Figure 14: The benefit per migration for different policies. Figure 16: Effectiveness of policies in saving remote accesses.
cific case where the bandwidth needed for migration is
10000 equivalent to 100 remote accesses (e.g., for migrating re-
' ' ' cent emails). This number could be different, correspond-
@ 1000 L N 1 ing to different horizontal lines. The break-even point is
Q . . .
g . E where the horizontal line intersects the curve of each pol-
S 4 .
; 100 k + . icy. _ _
< *++] In both theRelayand theRedirectmodel, the inter-
= 10 + 4 nal network may have limited bandwidth for migration if
ek] other traffic is given priority. In this case, migration can b
L icti 1 H H H
1) 1'0 1;)0 1000 10000 done opportunistically, using spare bandwidth during in-
i termittent idleness of the links. Which mailboxes should
Number of accesses at new location . ey i ..
after long distance movement be migrated to offer the greatest benefit? Figure 14 indi-
cates that mailboxes migrated by the largest thresholds of-
Figure 15: Distribution of # of accesses during remote visits. fer more benefit than those migrated with smaller thresh-

lds. Thi for adaptively changing the threshold t
ing a threshold that migrates few users, with more aggre% s. IS argues for acaptively changing the thresholcto

iatch available bandwidth.
sive thresholds providing diminishing returns. The graphac avaiiabie banawl

- Figure 15 explains why the Count policy works well. It
shows tha_t the Count ar_ld Rate-based policies are beg%ts the distribution of the number of accesses per remote
than the Time-based policy.

Ei 14 b d'to determine the break visit; we see that the distribution is linear on a log-log
. I?L;I’e (;]an I'e useh 0 the e[)mlne;:_t i rea ;_eng'ale and can be fitted to a heavy-tailed Pareto distribu-
point Tor €ach policy, where the benetit of migrationy, , ‘\yith a few visits containing many accesses. This ex-

(saved.remrc])g; alccesses) outV\:je|?h§ thg 0035t OT m'ghr.‘f’ltr']BThins the monotonically decreasing benefit of the Count
assuming thdRelayaccess model (Section 5), in whic policy on the previous graph: it can be analytically shown

remote accesses and migration consume _bar_1dW|dth {#3t a Pareto distribution always exhibits this propertg (w
the same internal network and can be quantitatively COMBrnit the analysis for lack of space)

pared. The line marked “Migration Cost” illustrates a spe-

Finally, we determine the overall effectiveness of thevhich we must avoid. Cloud storage services support mi-
different policies by measuring the total percentage of rgration between different locations. In Amazon'’s storage
mote accesses saved. Figure 16 plots this metric on #erver [4], the approach to migrate an elastic block store
y-axis. The Count and Rate policies are very effective i(EBS) is as follows: (1) the user stores a snapshot of the
saving remote accesses; for example, with thresholds tlERS in S3, and (2) the user creates an EBS at a differ-
migrate 10% of all users, both policies save 55 to 60% @it location and populates it with the content in S3. This
all remote accesses in the Large-DC case. As expectedheme, though simple, will fail to migrate any writes
the Time policy is not very effective, requiring almost aldone on the original EBS during migration.

users to be migrated to achieve similar savings. Distributed object systems support migration of objects
(see [11, Section 5.2.2]), which is more complex than mi-
9 Related work grating data, since objects have threads, TCP connections,

Migration mechanism. There has been a lot of workand other contextual state. The migration mechanism em-
on distributed file systems [15,17,18,21, 23, 28, 32-34)loyed is lock-based migration.

These systems either do not support migration, or em-Commercial disk array solutions such as the HP-UX
ploy lock-based or log-based migration. For exampléggical volume manager [26] support online migration by
AFS [21] allows a volume to be moved from one servesssentially using the logging technique. In this context,
to another using log-based migration. xFS [33] allows Aqueduct [25] is a system that controls migration traffic
client to borrow a file for exclusive writing, but this is dif- to maintain low access latencies during migration.

ferent from migration since the file is ultimately returned The work in [8,19,27,30] shows how to add or remove
to its home server, which serves as a coordination poirgplicas in a replicated state machine or a quorum system.
(e.g., if multiple clients want to write). In Pangea [32]-mi These techniques can be used for migration, by adding
gration is achieved by simply creating a new replica, but replica at a new location and removing from the old
the system provides only eventual consistency, in contrastation. This work is theoretical and would be inefficient
to Nomad. Ceph [34] allows (the metadata of) a directofpr wide-area-network storage.

to be moved from one server to another, using Iock-basw ration policy. Volley [7] uses system logs of ac-
migration. Coda [28] allows clients to hoard files for dis- 'gration poficy. Y u y 9

connected operation; this is different from migration gincCeSSes to determine pIacement of data across data cen
. ters, based on data access interdependencies, who has ac-
hoarded files are eventually returned to the server tha
: : . . cessed the data and when, and a balance of storage capac-
owns the file. Farsite [17] appears to support migration g

. . . - ity across data centers. This is different from our work
metadata, by changing the mapping from identifier Ior%_ecause of four reasons: (1) Volley’s placement algo-
fixes to servers, using a lock to avoid races. GFS [18] a |

pears to support migration of chunks, by copying a churFEhm computes a global placement flf data, whereas

from one server to another, and then updating the maur scheme determines where a particular piece of data
ping from chunk id’s to servers at the master using a Ioc%'oUIOI be mlgrated_, (2) _VoIIeys algorithm doe_s not_ con-
t0 avoid races. sider the cost of migrating data, so the algorithm is not

L , . . applicable to our setting where migratibasas a cost;
Migration of a virtual machine (VM) is a well under- . fact. the consideration of cost-benefit of miaration is
stood technology, done by VMware [3], and a couple df ' ! ! ! 'gration |

years later in Xen [13]. This technology is about moving g(_antral to our scheme, (3) Volley does not propose mecha-

functional VM to another host. In a first round, the entirnlsms for migration, (4) Volley does not attempt to predict
?uture user movement.

VM’s memory is copied; if a page of memory changes af- : .
ter being copied, it is marked dirty and the marked pagesPrewously, data placement has been extensively stud-

are copied in a subsequent round. The system may £d in the context of web servers and Content Delivery

ecute many rounds as further pages are marked, unti I?tworks (CDNs) [29]. Since data in these settings is

decides to pause the VM, copy the remaining dirty pagersead-only, most of these solutions are centered on replica

and start the destination VM. Subsequent work on Vl\ﬁl)e"mor.1 a?”d placement.

T . . X Predicting the movement of users has been explored
migration considered the copying of direct attached starﬁ mobile systems [10]. In contrast to this work, we are
age [22]. This body of work is different from ours becausé re sy ' 1S work, W

it focuses on migration of data accessed by a single m%qncerned with predicting movementat coarse grain (€.g.,

chine whether in memory or disk, whereas we consider 3 ¢’ staying in Asia or returning to Europe?) instead of

distributedsetting and must address the required coord? €¢15€ locations.

nation among several servers (which we do via overlay@o Conclusion
In PNUTS [14], data is replicated across data centers

and migration consists of changing the master replic%i

This scheme requires many replicas across data cent%

This paper addresses the problem of providing online
ration of data across data centers—a problem that oc-
's as users move and/or data centers become unbal-

anced due to new applications, unforeseen growth, and
new data centers. To design a migratable storage system,
we propose an abstraction called distributed data ovelt
lays, which has a simple real-world analogy based on
transparent pieces of paper. We implemented this abstr&ce]
tion within a prototype of a key-value object store called
Nomad, which spans multiple data centers and allows for
migration and caching of object containers across data
centers. It is very easy to use overlays to implement mif7]
gration; the complexity is hidden by the protocols that im-
plement overlays (which we provide), as these protocoIﬁB]
must coordinate concurrent reads, writes, migrations, and
the dynamic creation and removal of remote caches. We
also study some policies that might trigger the migratioﬁlg]
mechanism based on user movement, but other policies
could be applied as well [7]. [20]
Acknowledgements. We are grateful to Asim Kadav,
Jean-Philippe Martin, Amar Phanishayee, and Fang Y
for helpful comments on an earlier draft. We are als
grateful to our shepherd Wilson Hsieh for having pro-
vided many useful comments throughout the paper.

1]

[22]
References

[1] http://ww. veri zonbusi ness. com t er ms/ us/
products/internet/| easedline/.

http://ww. swi sscom ch/ sol uti ons/

Resour ces- en/ Dokunent e/ f act sheet /

00276- fact sheet - private-Iline-international-en. [24]
VMware news release, \VirtualCenter, Nov. 2003.
http://ww. vmnar e. conf conpany/ news/ (23]
rel eases/virtual center. htm .

Amazon elastic block store, Jan. 2011.http://aws.
amazon. conl ebs.

Amazon simple storage service, Jan. 201htt p:// aws.
amazon. conl s3.

Microsoft azure blog storage, Jan. 2011htt p:// nmsdn.

m crosoft.conlen-us/library/dd135733. aspx.

S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman,
and H. Bhogan. \olley: Automated data placement for geo-
distributed cloud services. Bymposium on Networked Systems
Design and Implementatippages 17-32, Apr. 2010.

M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynaen
atomic storage without consensudournal of the ACM58(2),
Apr. 2011.

M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Kar
manolis. Sinfonia: A new paradigm for building scalable-dis
tributed systems. ACM Transactions on Computer Systems
27(3):5:1-5:48, Nov. 2009.

D. Ashbrook and T. Starner. Using GPS to learn signifitaca-
tions and predict movement across multiple us@exsonal and
Ubiquitous Computing7(5):275-286, Oct. 2003.

R. S. Chinand S. T. Chanson. Distributed object-basedram-
ming systems. ACM Computing Survey3(1):91-124, Mar.
1991.

K. Church, A. Greenberg, and J. Hamilton. On deliveramg-
barrassingly distributed cloud services. ACM Hot Topics in
Networks Workshgmpages 55-60, Oct. 2008.

C. Clark et al. Live migration of virtual machines. 8ymposium
on Networked Systems Design and Implementapages 273—
286, May 2005.

B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Sdtmn,

P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yernen
PNUTS: Yahoo!'s hosted data serving platform.Iriternational

(23]
(2]

(31

(4]
(5]
(6]
(7]

[26]

[27]

(28]

[29]
(8]
(30]
El
(31]

[20]

[11] [32]

[12] [33]

[13] [34]

[14]

Conference on Very Large Data Baspages 1277-1288, Aug.
2008.

] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and .i&to

Wide-area cooperative storage with CFSAGM Symposium on
Operating Systems Principlegages 202—-215, Oct. 2001.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapatil_Ak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and V. V
gels. Dynamo: Amazon’s highly available key-value stora. |
ACM Symposium on Operating Systems Principtegies 205—
220, Oct. 2007.

J. R. Douceur and J. Howell. Distributed directory $esvin the
Farsite file system. IWSENIX Symposium on Operating Systems
Design and Implementatippages 321-334, Nov. 2006.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The Googlesfjie-
tem. INACM Symposium on Operating Systems Principeges
29-43, Oct. 2003.

S. Gilbert, N. A. Lynch, and A. A. Shvartsman. RAMBO: A
robust, reconfigurable atomic memory service for dynamie ne
works. Distributed Computing23(4):225-272, Dec. 2010.

M. Herlihy and J. Wing. Linearizability: A correctnessndition
for concurrent objectsTransactions on Programming Languages
and Systemsl2(3):463—492, July 1990.

J. H. Howard, M. L. Kazar, S. G. Menees, A. Nichols, M.\@at
narayanan, R. N. Sidebotham, and M. J. West. Scale and perfor
mance in a distributed file systenACM Transactions on Com-
puter Systems$(1):51-81, Feb. 1988.

A. Kadav and M. M. Swift. Live migration of direct-accesle-
vices. ACM SIGOPS Operating Systems Reyié®(3):95-104,
July 2009.

M. Kim, L. P. Cox, and B. D. Noble. Safety, visibility, drper-
formance in a wide-area file system. USENIX Conference on
File and Storage Technologiesages 131-144, Jan. 2002.

L. Lamport. The part-time parliamentACM Transactions on
Computer System46(2):133-169, May 1998.

C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: online aani-
gration with performance guarantees.USENIX Conference on
File and Storage Technologiesages 219-230, Jan. 2002.

T. Madell. Disk and file management tasks on HP-UPtentice-
Hall, Inc. Upper Saddle River, NJ, USA, 1997.

J.-P. Martin and L. Alvisi. A framework for dynamic byatne
storage. Ifnternational Conference on Dependable Systems and
Networks pages 325-334, June 2004.

L. B. Mummert, M. R. Eblig, and M. Satyanarayanan. Expig
weak connectivity for mobile file access. ACM Symposium on
Operating Systems Principlegages 143-155, Dec. 1995.

L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On the place
ment of web server replicas. IEEE International Conference
on Computer Communicationgages 1587—-1596, Apr. 2001.

R. Rodrigues and B. Liskov. Rosebud: A scalable bynanti
fault-tolerant storage architecture. Technical Repor{9BR,
MIT LCS, Dec. 2003.

Y. Saito, S. Frolund, A. Veitch, A. Merchant, and S. SperFAB:
building distributed enterprise disk arrays from commpdiim-
ponents. Ininternational conference on Architectural support
for programming languages and operating systepages 48-58,
Oct. 2004.

Y. Saito, C. Karamanolis, M. Karlsson, and M. Mhalingafam-
ing aggressive replication in the Pangaea wide-area fil@isys
In USENIX Symposium on Operating Systems Design and Imple-
mentation pages 15-30, Dec. 2002.

R. Y. Wang and T. E. Anderson. xFS: A wide area mass stor-
age file system. IiWorkshop on Workstation Operating Systems
pages 71-78, Oct. 1993.

S. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distetile
system. INUSENIX Symposium on Operating Systems Design
and Implementationpages 307—-320, Nov. 2006.

