
FVD: a High-Performance Virtual Machine Image Format for Cloud

Chunqiang Tang
IBM T.J. Watson Research Center

ctang@us.ibm.com

Abstract
Fast Virtual Disk (FVD) is a new virtual machine (VM)

image format and the corresponding block device driver
developed for QEMU. QEMU does I/O emulation for
multiple hypervisors, including KVM, Xen-HVM, and
VirtualBox. FVD is a holistic solution for both Cloud and
non-Cloud environments. Its feature set includes flexible
configurability, storage thin provisioning without a host
file system, compact image, internal snapshot, encryp-
tion, copy-on-write, copy-on-read, and adaptive prefetch-
ing. The last two features enable instant VM creation and
instant VM migration, even if the VM image is stored on
direct-attached storage. As its name indicates, FVD is
fast. Experiments show that the throughput of FVD is
249% higher than that of QCOW2 when using the Post-
Mark benchmark to create files.

1 Introduction
Despite the existence of many popular virtual machine

(VM) image formats (e.g., QEMU QCOW2 [5], Virtu-
alBox VDI [10], VMWare VMDK [11], and Microsoft
VHD [6]), FVD came out of our unsatisfied needs in the
IBM Cloud [9]. FVD distinguishes itself from existing
image formats in multiple aspects:flexible configurabil-
ity, high performance, andrich features.

Flexible configurability. As virtualization becomes per-
vasive, virtual disks of virtual machines (VM) may be
used in diverse settings. For example, the main require-
ment can be storage thin provisioning or high disk I/O
performance. A disk image can be stored as a regular file
or a logical volume. It can use direct-attached storage,
network-attached storage, or storage-area network.

Existing image formats support diverse settings in a
one-size-fit-all manner, by bundling all functions into one
inseparable, monolithic piece. This can cause inefficiency
even in common cases. Consider, for example, the copy-
on-write (CoW) feature of virtual disk. QCOW2, VDI,
VMDK, and VHD all mix the function of CoW dirty
block tracking with the function of storage space alloca-
tion. In a common setting where the image is stored on
a host file system, this leads to doing storage allocation
twice (first in the image format and then in the host file
system), which causes data fragmentation twice and dou-
bles the disk I/O overhead for metadata access.

By contrast, a design principle of FVD is to make all
functions orthogonal so that each function can be enabled

or disabled individually, even for two virtual disks at-
tached to the same VM. The purpose is to support diverse
use cases without being burdened with the overhead of
all functions. This is a significant departure from exist-
ing image formats and challenges some conventional wis-
dom in image format design. For the specific example
above, FVD can be configured to enable CoW dirty block
tracking, disable its own storage allocation, and delegate
storage allocation entirely to the host OS, which has abun-
dant options to optimize for a given workload, e.g., stor-
ing the image on a logical volume, or storing the image
as a regular file in a host file system, with the choices of
ext2/ext3/ext4, JFS, XFS, ReiserFS, etc.

VM mobility in a Cloud. FVD is a feature-rich, holis-
tic solution for both Cloud and non-Cloud environments.
This paper is focused on its copy-on-read and adaptive
prefetching features, which improve VM disk data mobil-
ity in a Cloud.

In a Cloud like Amazon EC2, the storage space for
a VM can be allocated from multiple sources, which
offer different performance, reliability, and availability
at different prices. In EC2, a VM is provided with
170GB or more ephemeral storage (i.e., direct-attached
storage (DAS)) at no additional charge. Persistent storage
(i.e., network-attached storage (NAS)) is more expensive,
which is charged not only for the storage space consumed
but also for every disk I/O performed. For example, if a
VM’s root file system is stored on persistent storage, even
the VM’s disk I/O on its temporary directory/tmp incurs
additional costs. As a result, it is popular to use ephemeral
storage for a VM’s root file system. However, using DAS
slows down the process of VM creation and VM migra-
tion, which diminishes the benefits of an elastic Cloud.

The discussion below uses KVM and QEMU as ex-
amples. In a Cloud, VMs are created based on read-
only image templates stored on NAS and accessible to
all hosts. A VM’s virtual disk can use different image
formats. QEMU’s RAW format is simply a byte-by-byte
copy of a physical disk’s content stored in a regular file.
If a VM uses the RAW format, the VM creation process
may take a long time and cause resource contentions, be-
cause the host needs to copy a complete image template
(i.e., gigabytes of data) from NAS across a heavily shared
network in order to create a new RAW image on DAS.
This problem is illustrated in Figure 1(a).

B o
o t

VM

Co
W

+C
oR

VM
 Re

ad
y Find idle time to

prefetch the rest
of the image

Pause prefetching
due to contention

Contend with
other traffic

Copy
image

VM ready
for login

Boot
VM

Time

Time

VM1
VM2
VM3

Other
Traffic

VM1
VM2
VM3

Other
Traffic

Resume
prefetching

a) VM creation using RAW images

b) VM creation using FVD images

Figure 1: Comparison of the VM creation processes. This
example creates three VMs concurrently.

QCOW2 [5] is another image format supported by
QEMU. It does copy-on-write, i.e., the QCOW2 image
only stores data modified by a VM, whereas unmodified
data are always read from the base image. QCOW2 sup-
ports fast VM creation. The host can instantly create and
boot an empty QCOW2 image on DAS, whose base im-
age points to an image template stored on NAS. Using
QCOW2, however, limits the scalability of a Cloud, be-
cause a large number of VMs may repeatedly read un-
modified data from the base image, generating excessive
network traffic and I/O load on NAS.

The solution in FVD is to do copy-on-read (CoR) and
adaptive prefetching, in addition to copy-on-write (CoW).
CoR avoids repeatedly reading a data block from NAS, by
saving a copy of the returned data on DAS for later reuse.
Adaptive prefetching uses resource idle time to copy from
NAS to DAS the image data that have not been accessed
by the VM. These features are illustrated in Figure 1(b).

In addition to instant VM creation, FVD also supports
instant VM migration, even if the VM’s image is stored on
DAS. FVD can instantly migrate a VM without first trans-
ferring its disk image. As the VM runs uninterruptedly on
the target host, FVD uses CoR and adaptive prefetching
to gradually move the image from the source host to the
target host, without user perceived downtime.

2 Overview of FVD
This paper is focused on the Cloud-inspired features of

FVD, i.e., copy-on-read and adaptive prefetching. To set
stage for the detailed discussion in Section 3, this sec-
tion first describes how a virtual disk works today, using
KVM [4], QEMU [1], and QCOW2 [5] as examples, and
then presents an overview of the holistic FVD solution.

L1 Table L2 Tables Data Blocks

X

Y

Figure 2: QCOW2’s two-level lookup index.

2.1 How a Virtual Disk Works Today

When a VM issues a disk I/O request for data at avir-
tual block address(VBA), the host Linux kernel forwards
the request to QEMU running in the user space. QEMU’s
QCOW2 driver translates the VBA into animage block
address(IBA), which specifies where the requested data
are stored in the QCOW2 image file, i.e., IBA is an offset
in the image file. Specifically, QCOW2 uses the index in
Figure 2 to perform the address translation. A VBAd is
split into three parts, i.e.,d = (d1, d2, d3). Thed1 entry
of the L1 table points to an L2 tableX. Thed2 entry of
the L2 tableX points to a data blockY . The requested
data are located at offsetd3 of the data blockY .

Initially, a QCOW2 image contains only the L1 table,
with all data blocks and L2 tables unallocated. A data
block is allocated at the end of the image file upon the
first write to that block. As a result, a block’s IBA solely
depends on when it is written for the first time, regardless
of its VBA. This behavior may end up with an undesir-
able data layout on the physical disk. For example, when
the guest OS creates a file system, it writes out the file
system metadata, which are all grouped together and as-
signed consecutive IBAs by QCOW2, despite the fact that
the metadata’s VBAs are deliberately scattered for bet-
ter reliability and locality, e.g., co-locating inodes andfile
content blocks in block groups. As a result, it may cause
a long disk seek distance between accessing a file’s meta-
data and accessing the file’s content blocks. This problem
is not unique to QCOW2. It exists in all popular image
formats, including VDI, VMDK, and VHD.

When the guest VM reads data at the VBA
d=(d1, d2, d3), the QCOW2 driver determines whether
the data block is allocated in the QCOW2 image by check-
ing if the corresponding L1 or L2 table entry is empty. If
so, the data are read from the base image. Otherwise the
data are read from the QCOW2 image. Since the lookup
index implements both dirty block tracking and storage
allocation, the two functions become inseparable.

2.2 How FVD Works

Below, we summarize the on-disk metadata used by
FVD to provide a diverse set of functions:

• A bitmap for implementing copy-on-write.

• A one-level lookup table for implementing storage al-
location.

• A metadata journal for committing changes of the
bitmap and the lookup table.

• A reference-count table for implementing internal
snapshot.

Bitmap. The bitmap is enabled only if a new FVD image
is created based on an existing image template (so-called
base image). When the VM issues a disk write, the base
image is not modified. Instead, the new data are saved in
the FVD image. This behavior is called copy-on-write. A
bit in the bitmap tracks where the latest content of ablock
is stored. The bit is 0 if the block is in the base image, and
the bit is 1 if the block is in the FVD image. The unit of a
block is configurable per virtual disk, with a default size
of 64KB. To represent the state of a 1TB base image, FVD
only needs a 2MB bitmap, which can be easily cached in
memory. The bitmap also implements copy-on-read and
adaptive prefetching.

Lookup table. The lookup table implements storage al-
location. One entry of the look table maps a datachunk’s
VBA to its IBA. The unit of a chunk is configurable per
virtual disk, with a default size of 1MB. (Note that VDI
uses 1MB chunks. VHD and the ESX version of VMDK
use 2MB chunks.) For a 1TB virtual disk, the size of
FVD’s lookup table is only 4MB. Because of the table’s
small size, there is no need to use a more complicated
two-level index as that in QCOW2.

Because FVD itself is capable of managing storage al-
location, one valid configuration is to store an FVD im-
age directly on a logical volume to avoid the overhead of
a sophisticated host file system. This configuration still
supports storage thin provisioning. The initial size of the
logical volume can be small. During the execution of the
VM, FVD asks the host OS to increase the size of the log-
ical volume when more storage space is needed.

Separating the implementation of copy-on-write from
the implementation of storage allocation provides several
benefits. First, the lookup table can be optionally disabled
to avoid the overhead and data fragmentation caused by
doing storage allocation at the image level. In this case,
FVD maintains a linear mapping between a chunk’s VBA
and IBA without any address translation, and relies on the
host file system for storage allocation.

Another benefit is that it makes the metadata smaller
and easier to cache, by using the bitmap to track data at
the finerblock granularity, and using the lookup table to
track data at the coarserchunkgranularity. The bitmap is
small because of its efficient representation. The lookup
table is small because the large chunk size leads to less
table entries. For a 1TB virtual disk, FVD’s bitmap and
one-level lookup table together are only 6MB, whereas
QCOW2’s two-level lookup table is 128MB.

Metadata journal. When the bitmap and/or the lookup
table need be modified, the changes are saved in the jour-
nal, as opposed to updating the bitmap and/or the lookup
table directly. The journal size is configurable per vir-
tual disk, with a default size of 16MB. When the journal
is full, which happens infrequently, the entire bitmap and
the entire lookup table are flushed to disk. Then the jour-
nal can be recycled for reuse. The flush avoids the over-
head of fine-grained journal cleaning operations that are
common in journaling file systems. The flush is quick,
because the bitmap and the lookup table are small.

The journal provides several benefits. First, updating
both the bitmap and the lookup table requires only a single
write to the journal. Second,k concurrent updates to any
potions of the bitmap or the lookup table are converted
to sequential writes in the journal. Finally, it increases
concurrency by allowing multiple parallel updates to the
same sector in the bitmap or the lookup table.

Reference-count table. There are two ways of imple-
menting virtual disk snapshot: external snapshot and in-
ternal snapshot. External snapshot can be easily imple-
mented on top of any image form that already supports
copy-on-write (CoW), including VMDK, QCOW2, and
FVD. When the user takes a snapshot, the current image
file Si−1 is made read-only and a new CoW image file
Si is created based onSi−1. After a series of snapshots
are taken, it creates a chain of dependent snapshot files
S0 ← S1 ← · · · ← Si. Deleting a snapshotSj−1 in the
middle of a snapshot chain can be a slow operation. Be-
fore removing the snapshot fileSj−1, it must physically
copy fromSj−1 to Sj those data chunks modified inSj−1

but not modified inSj .
Internal snapshot avoids this problem by storing all

snapshots in a single file. For each data chunkC in use,
an entry in the reference-count table records the number
of snapshots usingC. Creating/deleting a snapshot sim-
ply amounts to incrementing/decrementing the reference
count of data chunks that form the snapshot. A data chunk
is free for reuse when its reference count becomes zero.

QCOW2 and FVD are the only two image formats that
support internal snapshot, but they differ in implementa-
tion and performance. Conceptually, an image consists
of an arbitrary number of read-only historical snapshots
and a single writable current view (WCV). The WCV is
the virtual disk content perceived by the running VM.
QCOW2’s reference-count table tracks all data chunks
used by either snapshots or the WCV. Because the WCV
changes as the VM runs, during normal executions of the
VM, QCOW2 incurs disk I/O overhead for updating the
on-disk reference-count table and memory overhead for
caching the reference-count table. By contrast, FVD’s
reference-count table tracks chunks used by snapshots but
does not track chunks used by the WCV (since the WCV
is already tracked by the lookup table). Because read-only

snapshots do not change during normal executions of the
VM, FVD need not update or cache the reference-count
table during normal executions of the VM.

3 Using FVD’s Bitmap to Support Copy-
on-Write, Copy-on-Read and Prefetching

FVD is a comprehensive solution with many features.
Due to the space limitation, the rest of this paper is fo-
cused on using FVD’s bitmap to support copy-on-write,
copy-on-read, and adaptive prefetching. The discussion
below assumes that the bitmap is enabled but all other
metadata (the lookup table, the metadata journal, and the
reference-count table) are disabled. This configuration
by itself is a functional, high-performance image format.
Figure 3 shows FVD under this configuration.

3.1 Basic Read/Write Operation

With the lookup table disabled, FVD maintains a linear
mapping between a block’s VBA and IBA. When the VM
writes to a block with VBAd, FVD stores the block at
offset d of the “FVD Data Region” in Figure 3, without
any address translation. FVD relies on the host OS for
storage allocation. If the FVD image is stored on a host
file system that supports sparse files, no storage space is
allocated for a data block in the virtual disk until the VM
actually writes to that block.

To start a new VM in a Cloud, the host creates an FVD
image on its DAS, whose base image points to an image
template on NAS. The “FVD Data Region” in Figure 3
can be larger than the base image, because an image tem-
plate can be used to create VMs whose virtual disks are
of different sizes, depending on how much the user pays.
resize2fscan expand the file system in the base image to
the full size of the virtual disk.

When handling a disk write request issued by the VM,
the FVD driver stores the data in the FVD image and
updates the bitmap to indicate that those data now are
in the FVD image rather than in the base image. The
bitmap-update step is skipped if the corresponding bit(s)
in the bitmap are set previously. If the write request is not
aligned on the block boundary, before writing the data to
the image, the FVD driver reads a full block from the base
image and merges it with the data to be written.

When handling a disk read request issued by the VM,
the FVD driver checks the bitmap to determine if the re-
quested data are in the FVD image. If so, the data are
read from the FVD image. Otherwise, the data are read
from the base image and returned to the VM. While the
VM continues to process the returned data, in the back-
ground, a copy of the returned data is saved in the FVD
image. Future reads for the same data will get them from
the FVD image on DAS rather than from the base image
on NAS. This copy-on-read behavior helps avoid generat-
ing excessive network traffic and I/O load on NAS.

original disk data

FVD Metadata

Base Image

header bitmap space for
disk data

space for expanded
disk data

FVD Data Region (FDR)

Figure 3: An simplified view of the FVD image format,
with only the bitmap enabled.

3.2 Optimizations for Read/Write

Compared with the RAW image format, a copy-on-
write image format always incurs additional overhead in
reading and updating its on-disk metadata. Below, we
summarize several optimizations that eliminate this over-
head in common cases. The word “free” below means no
need to update the on-disk bitmap.

In-memory bitmap : Eliminate the need to repeatedly
read the bitmap from disk by always keeping a complete
copy of the bitmap in memory. The bitmap is only 20KB
for a 1TB FVD image based on a 10GB image template.
Note that, in Figure 3, the bitmap size is proportional to
the base image size rather than the FVD image size.

Free writes to beyond-base blocks: Eliminate the need
to update the on-disk bitmap when the VM writes to a
block residing in the “space for expanded disk data” in
Figure 3. This is a common case if the base image is re-
duced to its minimum size byresize2fs. Note that 1) a
minimum-sized image template has no unused free space,
and 2) most data in an image template are read-only and
rarely overwritten by a running VM due to the template
nature of those data, e.g., program executable. Conse-
quently, disk writes issued by a running VM mostly target
blocks residing in the “space for expanded disk data” in
Figure 3. Since those “beyond-base” blocks cannot re-
side in the base image and hence have no state bits in the
bitmap, there is simply no need to update the bitmap when
writing to those blocks.

Free writes to zero-filled blocks: Eliminate the need to
update the on-disk bitmap when the VM writes to a block
whose original content in the base image is completely
filled with zeros. This is a common case if the base image
is not reduced to its minimum size byresize2fsand has
many empty spaces. This optimization is realized by us-
ing a tool to search for zero-filled blocks in the base image
and preset their state bits to 1 in the FVD bitmap. This is
an offline process only done once per image template.

Free copy-on-read and free prefetching: Eliminate the
need to update the on-disk bitmap when the FVD driver
saves a block in the FVD image due to either copy-on-
read or prefetching. This does not compromise data in-

tegrity in the event of a host crash, because the block’s
content in the FVD image is identical to that in the base
image and reading from either place gets the correct data.

Zero overhead once prefetching finishes: Entirely elim-
inate the need to read or update the bitmap, once all blocks
in the base image are prefetched. This is because the
bitmap’s content is known in a priori to be 1 for all bits.

3.3 Adaptive Prefetching

FVD uses copy-on-read to bring data blocks from NAS
to DAS on demand as they are accessed by the VM. Op-
tionally, prefetching uses resource idle time to copy from
NAS to DAS the rest of the image that have not been ac-
cessed by the VM. Prefetching is a resource intensive op-
eration, as it may transfer gigabytes of data across a heav-
ily shared network. To avoid causing a contention on any
resource (including network, NAS, and DAS), FVD can
be configured to limit prefetching rate and pause prefetch-
ing when a resource contention is detected.

Two throughput limits (KB/s) control the behavior of
prefetching data from the base image. The base image
read throughput is capped at the upper limit using a leaky
bucket algorithm. If the throughput drops below the lower
limit, the FVD driver concludes that a resource contention
has occurred. It makes a randomized decision. With a
50% probability, it temporarily pauses prefetching for a
randomized period of time. If the throughput is still be-
low the lower limit after prefetching resumes, it pauses
prefetching again for a longer period of time, and so forth.
Similarly, two throughput limits control the behavior of
writing prefetched data to the FVD image.

4 Experimental Results
We implemented FVD in QEMU. Due to the space

limitation, this paper only presents the results of one ex-
periment. (More results are available in the longer ver-
sion of this paper [8]). In this experiment, FVD’s bitmap
is enabled but all other metadata (the lookup table, the
metadata journal, and the reference-count table) are dis-
abled. Moreover, since QCOW2 does not support CoR
and prefetching, those features are disabled in FVD in or-
der to make a fair comparison of the basic CoW feature.

The experiment is conducted on IBM HS21 blades con-
nected by 1Gb Ethernet. Each blade has two 2.33GHz
Intel Xeon 5148 CPUs and a 2.5-inch hard drive (model
MAY2073RC). The blades run QEMU 0.12.30 and Linux
2.6.32-24 with the KVM kernel modules. QEMU is con-
figured to use direct I/O.

Figure 4 shows the performance of PostMark [3] under
different configurations. The execution of PostMark con-
sists of two phases. In the first “file-creation” phase, it
generates an initial pool of files. In the second “trans-
action” phase, it executes a set of transactions, where
each transaction consists of some file operations (creation,

0

200

400

600

800

1000

H
yp

er
vi

so
r

R
A

W

F
V

D

Q
C

O
W

2

R
A

W

F
V

D

Q
C

O
W

2

R
A

W

F
V

D

Q
C

O
W

2

F
ile

s
cr

ea
te

d
pe

r
se

co
nd

virtio-partition virtio-ext3 IDE-partition

(a) File creation throughput

0

10

20

30

40

50

H
yp

er
vi

so
r

R
A

W

F
V

D

Q
C

O
W

2

R
A

W

F
V

D

Q
C

O
W

2

R
A

W

F
V

D

Q
C

O
W

2

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

virtio-partition virtio-ext3 IDE-partition

(b) Transaction throughput

Figure 4: Performance of PostMark.

deletion, read, and append). In this experiment, the total
size of files created in the first phase is about 50GB, and
the size of an individual file ranges from 10KB to 50KB.

In Figure 4, the “Hypervisor” bar means running Post-
Mark in a native Linux without virtualization. The
“RAW”, “FVD”, and “QCOW2” bars mean running Post-
Mark in a VM whose image uses the different formats,
respectively. Like that in a Cloud, a QCOW2 or FVD im-
ageV is stored on the local disk of a bladeX, whereas the
base image ofV is stored on another bladeY accessible
through NFS. The base image contains Ubuntu 9.04, and
is reduced to its minimum size (501MB) byresize2fs. A
RAW image is always stored on the local disk of a blade.
The VM’s virtual disk is divided into two partitions. The
first partition of 1GB stores the root file system. The sec-
ond partition of 50GB disk is formatted into an ext3 file
system, on which PostMark runs.

For the “IDE-partition” group in the figure, the VM’s
block device uses the IDE interface and the VM image is
stored on a raw partition in the host. For the “virtio-ext3”
group, the VM’s block device uses the paravirtualizedvir-
tio interface and the VM image is stored on a host ext3 file
system, which is reformatted before each run of the exper-
iment. For the “virtio-partition” group, it usesvirtio and
the VM image is stored on a raw partition in the host.

Figure 4 shows significant advantages of FVD over
QCOW2. In the file creation phase, the throughput of
FVD is 249% higher than that of QCOW2 (by com-

paring the “FVD” bar and the “QCOW2” bar in the
“virtio-partition” group of Figure 4(a)). In the transaction
phase, the throughput of FVD is 77% higher than that of
QCOW2 (by comparing the “FVD” bar and the “QCOW2
bar in the “virtio-partition” group of Figure 4(b)).

To understand the root cause of the performance dif-
ference, we perform a deep analysis for the results in
the “virtio-partition” group of Figure 4(a). We run the
blktrace tool in the host to monitor disk I/O activities.
QCOW2 causes 45% more disk I/Os than FVD does, due
to QCOW2’s reads and writes to its metadata. Moreover,
the average seek distance in QCOW2 is 5.6 times longer
than that in FVD, due to QCOW2’s VBA-IBA mismatch-
ing problem, as explained in Section 2.1.

5 Related Work
Despite the widespread use of VMs, there is no pub-

lished research on how image formats impact disk I/O
performance. Existing popular image formats (including
QCOW2 [5], VDI [10], VMDK [11], and VHD [6]) all
allocate storage space for a data block at the end of the
image file when the block is written for the first time, re-
gardless of the block’s virtual address. This mismatch be-
tween VBA and IBA invalidates many optimizations in
guest file systems, as discussed in Section 2.1. More-
over, they all unnecessarily mix the function of CoW dirty
block tracking with the function of storage space alloca-
tion. This leads to doing storage allocation twice (first in
the image format and then in the host file system), which
causes data fragmentation twice and doubles the disk I/O
overhead for metadata access.

Existing virtual disks support neither copy-on-read
(CoR) nor adaptive prefetching. Some virtualization solu-
tions do support CoR or prefetching, but they are imple-
mented for specific use cases, e.g., virtual appliance [2]
and VM migration [7]. By contrast, FVD provides CoR
and prefetching as standard features of a virtual disk,
which can be easily deployed in many different use cases.
Moreover, those previous works use CoW and CoR but do
not study how to optimize the CoW and CoR techniques
themselves to reduce overhead.

Collective [2] provides desktop as a service across the
Internet. It uses CoW and CoR to hide network latency.
Its local disk cache makes no effort to preserve a linear
mapping between VBA and IBA, and may cause a long
disk seek distance as that in popular CoW image for-
mats. Collective also performs adaptive prefetching. It
halves the prefetch rate if a certain “percentage” of re-
cent requests experience a high latency. Our evaluation
shows that it is hard to set a proper “percentage” to re-
liably detect congestion. Because storage servers and
disk controllers perform read-ahead in large chunks for
sequential reads, a large percentage (e.g., 90%) of a VM’s
prefetching reads hit in the read-ahead caches and experi-
ence a low latency. When a storage server becomes busy,

the “percentage” of requests that hit in the read-ahead
caches may change little, but the response time of those
cache-miss requests may increase dramatically. In other
words, this “percentage” does not correlate well with the
achieved disk I/O throughput.

6 Conclusion
FVD is a holistic virtual disk solution for both Cloud

and non-Cloud environments. A design principle of
FVD is to make all functions orthogonal so that each
function can be enabled or disabled individually. The
purpose is to support diverse use cases without be-
ing burdened with the overhead of all functions. Us-
ing copy-on-write, copy-on-read, and adaptive prefetch-
ing, FVD supports instant VM creation and instant VM
migration, even if the VM image is stored on direct-
attached storage. The source code of FVD is pub-
licly available athttps://researcher.ibm.com/
researcher/view project.php?id=1852.

References
[1] F. Bellard. QEMU, a Fast and Portable Dynamic Transla-

tor. In USENIX FREENIX Track, 2005.

[2] R. Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam.
The Collective: A Cache-Based System Management Ar-
chitecture. InNSDI, 2005.

[3] J. Katcher. PostMark: A New File System Benchmark.
Technical Report TR-3022, Network Appliance Inc., Oc-
tober 1997.

[4] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
KVM: the Linux Virtual Machine Monitor. InProceedings
of the Linux Symposium, pages 225–230, 2007.

[5] M. McLoughlin. The QCOW2 Image Format.
http://people.gnome.org/∼markmc/
qcow-image-format.html.

[6] Microsoft VHD Image Format. http://technet.
microsoft.com/en-us/virtualserver/
bb676673.aspx.

[7] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
Lam, and M. Rosenblum. Optimizing the Migration of
Virtual Computers. InOSDI, 2002.

[8] C. Tang. FVD: a High-Performance Virtual Ma-
chine Image Format for Cloud. This is the longer
version of the USENIX’11 paper with the same ti-
tle, available athttps://researcher.ibm.com/
researcher/view project.php?id=1852.

[9] The IBM Cloud. http://www.ibm.com/
services/us/igs/cloud-development/.

[10] VirtualBox VDI Image Format. http://forums.
virtualbox.org/viewtopic.php?t=8046.

[11] VMware Virtual Disk Format 1.1. http:
//www.vmware.com/technical-resources/
interfaces/vmdk.html.

