FVD: a High-Performance Virtual Machine Image Format for Cloud

Chungiang Tang
IBM T.J. Watson Research Center
ctang@us.ibm.com

Abstract or disabled individually, even for two virtual disks at-

Fast Virtual Disk (FVD) is a new virtual machine (VM) tached to the same VM. The purpose is to support diverse
image format and the corresponding block device driveluse cases without being burdened with the overhead of
developed for QEMU. QEMU does /O emulation for all functions. This is a significant departure from exist-
multiple hypervisors, including KVM, Xen-HVM, and ingimage formats and challenges some conventional wis-
VirtualBox. FVD is a holistic solution for both Cloud and dom in image format design. For the specific example
non-Cloud environments. Its feature set includes flexibleabove, FVD can be configured to enable CoW dirty block
configurability, storage thin provisioning without a host tracking, disable its own storage allocation, and delegate
file system, compact image, internal snapshot, encrypstorage allocation entirely to the host OS, which has abun-
tion, copy-on-write, copy-on-read, and adaptive prefetch dant options to optimize for a given workload, e.g., stor-
ing. The last two features enable instant VM creation andng the image on a logical volume, or storing the image
instant VM migration, even if the VM image is stored on as a regular file in a host file system, with the choices of
direct-attached storage. As its name indicates, FVD iext2/ext3/ext4, JFS, XFS, ReiserFS, etc.
fast. Experiments show that the throughput of FVD is o) .)
249% higher than that of QCOW?2 when using the Post-YM mobility in a Cloud. FVD is a feature-rich, holis-

Mark benchmark to create files. tic solution for both Cloud and non-Cloud environments.
_ This paper is focused on its copy-on-read and adaptive
1 Introduction prefetching features, which improve VM disk data mobil-

Despite the existence of many popular virtual machingty in a Cloud.
(VM) image formats (e.g., QEMU QCOW?2 [5], Virtu- |n a Cloud like Amazon EC2, the storage space for
alBox VDI [10], VMWare VMDK [11], and Microsoft a VM can be allocated from multiple sources, which
VHD [6]), FVD came out of our unsatisfied needs in the offer different performance, reliability, and availabjli
IBM Cloud [9]. FVD distinguishes itself from existing at different prices. In EC2, a VM is provided with
image formats in multiple aspectfiexible configurabil- 170GB or more ephemeral storage (i.e., direct-attached
ity, high performanceandrich features storage (DAS)) at no additional charge. Persistent storage

Flexible configurability. As virtualization becomes per- (-8, network-attached storage (NAS)) is more expensive,
vasive, virtual disks of virtual machines (VM) may be which is charged no.tonly for the storage space consqmed
used in diverse settings. For example, the main requirePut also for every disk I/O performed. For example, if a
ment can be storage thin provisioning or high disk I/0 VM's root f|_Ie system is stored on persistent storage, even
performance. A disk image can be stored as a regular fil'€ VM's disk I/O on its temporary directolympincurs
or a logical volume. It can use direct-attached storage‘?‘dd't'ona| costs. As are§ult, itis popular to use e.phemeral
network-attached storage, or storage-area network. Storage for a VM's root file system. However, using DAS
Existing image formats support diverse settings in aS/0ws down the process of VM creation and VM migra-
one-size-fit-all manner, by bundling all functions into one tion, which diminishes the benefits of an elastic Cloud.
inseparable, monolithic piece. This can cause inefficiency The discussion below uses KVM and QEMU as ex-
even in common cases. Consider, for example, the copyamples. In a Cloud, VMs are created based on read-
on-write (CoW) feature of virtual disk. QCOW2, VDI, only image templates stored on NAS and accessible to
VMDK, and VHD all mix the function of CoW dirty all hosts. A VM’s virtual disk can use different image
block tracking with the function of storage space alloca-formats. QEMU’s RAW format is simply a byte-by-byte
tion. In a common setting where the image is stored orcopy of a physical disk’s content stored in a regular file.
a host file system, this leads to doing storage allocatiorf a VM uses the RAW format, the VM creation process
twice (first in the image format and then in the host file may take a long time and cause resource contentions, be-
system), which causes data fragmentation twice and dowzause the host needs to copy a complete image template
bles the disk I/0 overhead for metadata access. (i.e., gigabytes of data) from NAS across a heavily shared
By contrast, a design principle of FVD is to make all network in order to create a new RAW image on DAS.
functions orthogonal so that each function can be enabledhis problem is illustrated in Figure 1(a).

Other L1 Table L2 Tables Data Blocks

mric [l > »
VM1 I 124
VM2 1 ez
VM3 [n 1ezza Time
X -
Copy Contend with Boot VM ready |
image other traffic VM for login >
a) VM creation using RAW images

Other H .) _ H
Trafﬁc- | | Figure 2: QCOW2’s two-level lookup index.
YR I=—1 =N = 2.1 How a Virtual Disk Works Today
VM}ﬁ 3 F 3 '\:' = When a VM issues a disk I/O request for data atra
S PR . tual block addres§VBA), the host Linux kernel forwards
&L« z Findidletimeto Pause prefetching Resume . . ,
& @ § prefetchtherest due to contention prefetching the request to QEMU running in the user space. QEMU'’s
¥ 2 S oftheimage QCOW?2 driver translates the VBA into amage block
o >

address(IBA), which specifies where the requested data
are stored in the QCOW?2 image file, i.e., IBA is an offset
é'n the image file. Specifically, QCOW?2 uses the index in
Figure 2 to perform the address translation. A VBAs
split into three parts, i.ed = (di,ds2,ds3). Thed; entry

QCOW2 [5] is another image format supported byof the L1 table pqints to an L2 tabl&¥. Thed, entry of
QEMU. It does copy-on-write, i.e., the QCOW?2 image the L2 tableX points to a data block™. The requested
only stores data modified by a VM, whereas unmodifieddata_ gre located at off_ség of the daf[a block’.
data are always read from the base image. QCOW2 sup- 'Nitially, a QCOW2 image contains only the L1 table,
ports fast VM creation. The host can instantly create andVith all data blocks and L2 tables unallocated. A data
boot an empty QCOW?2 image on DAS, whose base imPlock is allocated at the end of the image file upon the
age points to an image template stored on NAS. UsindirSt write to that block. As a result, a block’s IBA solely
QCOW2, however, limits the scalability of a Cloud, be- depends on when it is written for the first time, regardless
cause a large number of VMs may repeatedly read un9f its VBA. This behavior may end up with an undesir-

modified data from the base image, generating excessivaPle data layout on the physical disk. For example, when
network traffic and I/O load on NAS. the guest OS creates a file system, it writes out the file

The solution in FVD is to do copy-on-read (CoR) and system metadatg, which are all grouped t(_)gether and as-
adaptive prefetching, in addition to copy-on-write (CoW). signed consecutive IBAs by QCOW?2, despite the fact that

CoR avoids repeatedly reading a data block from NAS, b)}he metadata’s VBAs are deliberately scattered for bet-

saving a copy of the returned data on DAS for later reuset®’ reliability and locality, €.9., co-locating inodes diiel

Adaptive prefetching uses resource idle time to copy fromcontent blocks in block groups. As a result, it may cause

NAS to DAS the image data that have not been accesseglIong disk seek.distancg b'etween accessing a.file’s meta-
by the VM. These features are illustrated in Figure 1(b). 2t and accessing the file’s content blocks. This problem
In addition to instant VM creation, FVD also supports IS not unique t9 QCOW2. It exists in all popular image

instant VM migration, even if the VM’s image is stored on formats, including VDI, VMDK, and VHD.

DAS. FVD can instantly migrate a VM without first trans- ~ When the guest VM reads data at the VBA
ferring its disk image. As the VM runs uninterruptedly on ¢=(d1, d2, d3), the QCOW2 driver determines whether
the target host, FVD uses CoR and adaptive prefetching1e data blockiis allocated in the QCOW2 image by check-

to gradually move the image from the source host to thd"d if the corresponding L1 or L2 table entry is empty. If
target host, without user perceived downtime so, the data are read from the base image. Otherwise the

data are read from the QCOW?2 image. Since the lookup
2 Overview of FVD index implements both dirty block tracking and storage

_) o allocation, the two functions become inseparable.
This paper is focused on the Cloud-inspired features of

FVD, i.e., copy-on-read and adaptive prefetching. To sep.2 How FVD Works

stage for the detailed discussion in Section 3, this sec- . .

tion first describes how a virtual disk works today, using Below, we summarize the on—d|sl_< metadata used by
KVM [4], QEMU [1], and QCOW?2 [5] as examples, and FVD to provide a diverse set of functions:

then presents an overview of the holistic FVD solution. e A bitmap for implementing copy-on-write.

b) VM creation using FVD images

Figure 1: Comparison of the VM creation processes. Thi
example creates three VMs concurrently.

e A one-level lookup table for implementing storage al- Metadata journal. When the bitmap and/or the lookup
location. table need be modified, the changes are saved in the jour-
nal, as opposed to updating the bitmap and/or the lookup
table directly. The journal size is configurable per vir-
) .) tual disk, with a default size of 16MB. When the journal
* A reference-count table for implementing internal s ¢, which happens infrequently, the entire bitmap and
snapshot. the entire lookup table are flushed to disk. Then the jour-
Bitmap. The bitmap is enabled only if a new FVD image nal can be recycled for reuse. The flush avoids the over-
is created based on an existing image template (so-callddead of fine-grained journal cleaning operations that are
base image When the VM issues a disk write, the base common in journaling file systems. The flush is quick,
image is not modified. Instead, the new data are saved ihecause the bitmap and the lookup table are small.
the FVD image. This behavior is called copy-on-write. A The journal provides several benefits. First, updating
bit in the bitmap tracks where the latest content bfack both the bitmap and the lookup table requires only a single
is stored. The bitis O if the block is in the base image, andwrite to the journal. Second, concurrent updates to any
the bitis 1 if the block is in the FVD image. The unit of a potions of the bitmap or the lookup table are converted
block is configurable per virtual disk, with a default size to sequential writes in the journal. Finally, it increases
of 64KB. To represent the state of a 1TB base image, FVroncurrency by allowing multiple parallel updates to the
only needs a 2MB bitmap, which can be easily cached irsame sector in the bitmap or the lookup table.
memory. The bitmap also implements copy-on-read and
adaptive prefetching. Reference-count table. There are two ways of imple-
menting virtual disk snapshot: external snapshot and in-
Lookup table. The lookup table implements storage al- ternal snapshot. External snapshot can be easily imple-
location. One entry of the look table maps a datanks mented on top of any image form that already supports
VBA to its IBA. The unit of a chunk is configurable per copy-on-write (CoW), including VMDK, QCOW?2, and
virtual disk, with a default size of 1MB. (Note that VDI FVD. When the user takes a snapshot, the current image
uses 1MB chunks. VHD and the ESX version of VMDK file S;_; is made read-only and a new CoW image file
use 2MB chunks.) For a 1TB virtual disk, the size of S; is created based af};, ;. After a series of snapshots
FVD’s lookup table is only 4MB. Because of the table’s are taken, it creates a chain of dependent snapshot files
small size, there is no need to use a more complicated, — S; «— --- — S;. Deleting a snapshd;_; in the
two-level index as that in QCOW2. middle of a snapshot chain can be a slow operation. Be-
Because FVD itself is capable of managing storage alfore removing the snapshot fil&;_;, it must physically
location, one valid configuration is to store an FVD im- copy fromS;_, to S; those data chunks modified ff)_;
age directly on a logical volume to avoid the overhead ofbut not modified inS}.
a sophisticated host file system. This configuration still Internal snapshot avoids this problem by storing all
supports storage thin provisioning. The initial size of thesnapshots in a single file. For each data chGhik use,
logical volume can be small. During the execution of thean entry in the reference-count table records the number
VM, FVD asks the host OS to increase the size of the log-of snapshots using'. Creating/deleting a snapshot sim-
ical volume when more storage space is needed. ply amounts to incrementing/decrementing the reference
Separating the implementation of copy-on-write from count of data chunks that form the snapshot. A data chunk
the implementation of storage allocation provides severais free for reuse when its reference count becomes zero.
benefits. First, the lookup table can be optionally disabled QCOW?2 and FVD are the only two image formats that
to avoid the overhead and data fragmentation caused bgupport internal snapshot, but they differ in implementa-
doing storage allocation at the image level. In this casetion and performance. Conceptually, an image consists
FVD maintains a linear mapping between a chunk’s VBA of an arbitrary number of read-only historical snapshots
and IBA without any address translation, and relies on theand a single writable current view (WCV). The WCV is
host file system for storage allocation. the virtual disk content perceived by the running VM.
Another benefit is that it makes the metadata smalleQCOW?2'’s reference-count table tracks all data chunks
and easier to cache, by using the bitmap to track data atsed by either snapshots or the WCV. Because the WCV
the finerblock granularity, and using the lookup table to changes as the VM runs, during normal executions of the
track data at the coarsenunkgranularity. The bitmap is VM, QCOW?2 incurs disk 1/0 overhead for updating the
small because of its efficient representation. The lookumpn-disk reference-count table and memory overhead for
table is small because the large chunk size leads to lessmching the reference-count table. By contrast, FVD’s
table entries. For a 1TB virtual disk, FVD’s bitmap and reference-count table tracks chunks used by snapshots but
one-level lookup table together are only 6MB, whereasdoes not track chunks used by the WCV (since the WCV
QCOW2’s two-level lookup table is 128MB. is already tracked by the lookup table). Because read-only

e A metadata journal for committing changes of the
bitmap and the lookup table.

Base Image

snapshots do not change during normal executions of the
VM, FVD need not update or cache the reference-count

. . Joriginal disk dat
table during normal executions of the VM. ~m OTIBINAL CISK Cata

3 Using FVD’s Bitmap to Support Copy-

- i -0ON- i o space for i space for expanded
on-Write, Copy-on-Read and Prefetching header| bitmap dskdata | disk data

FVD is a comprehensive solution with many features.
Due to the space limitation, the rest of this paper is fo-
cused on using FVD’s bitmap to support copy-on-write, Figure 3: An simplified view of the FVD image format,
copy-on-read, and adaptive prefetching. The discussioith only the bitmap enabled.
below assumes that the bitmap is enabled but all other
metadata (the lookup table, the metadata journal, and thg 2 Optimizations for Read/Write
reference-count table) are disabled. This configuration
by itself is a functional, high-performance image format.
Figure 3 shows FVD under this configuration.

FVD Metadata FVD Data Region (FDR)

Compared with the RAW image format, a copy-on-
write image format always incurs additional overhead in
reading and updating its on-disk metadata. Below, we
3.1 Basic Read/Write Operation summarize several optimizations that eliminate this over-

i) o . head in common cases. The word “free” below means no
With the lookup table disabled, FVD maintains a linear nee(to update the on-disk bitmap.

mapping between a block’s VBA and IBA. When the VM _ o
writes to a block with VBAdJ, FVD stores the block at N-memory bitmap: Eliminate the need to repeatedly
offsetd of the “FVD Data Region” in Figure 3, without '€@d the bitmap from disk by always keeping a complete
any address translation. FVD relies on the host OS fofOPY Of the bitmap in memory. The bitmap is only 20KB
storage allocation. If the FVD image is stored on a host©' @ 1TB FVD image based on a 10GB image template.
file system that supports sparse files, no storage space NOt€ that, in Figure 3, the bitmap size is proportional to
allocated for a data block in the virtual disk until the VM (he base image size rather than the FVD image size.
actually writes to that block. Free writes to beyond-base blocksEliminate the need

To start a new VM in a Cloud, the host creates an FVDto update the on-disk bitmap when the VM writes to a
image on its DAS, whose base image points to an imagélock residing in the “space for expanded disk data” in
template on NAS. The “FVD Data Region” in Figure 3 Figure 3. This is a common case if the base image is re-
can be larger than the base image, because an image tetuced to its minimum size byesize2fs Note that 1) a
plate can be used to create VMs whose virtual disks areninimum-sized image template has no unused free space,
of different sizes, depending on how much the user paysand 2) most data in an image template are read-only and
resize2fan expand the file system in the base image taarely overwritten by a running VM due to the template
the full size of the virtual disk. nature of those data, e.g., program executable. Conse-

When handling a disk write request issued by the VM, quently, disk writes issued by a running VM mostly target
the FVD driver stores the data in the FVD image andblocks residing in the “space for expanded disk data” in
updates the bitmap to indicate that those data now arEigure 3. Since those “beyond-base” blocks cannot re-
in the FVD image rather than in the base image. Theside in the base image and hence have no state bits in the
bitmap-update step is skipped if the corresponding bit(spitmap, there is simply no need to update the bitmap when
in the bitmap are set previously. If the write request is notwriting to those blocks.

aligned on the block boundary, before writing the data Free writes to zero-filled blocks Eliminate the need to

the image, the FVD driver reads a full block from the baseupdate the on-disk bitmap when the VM writes to a block

image and merges it V_Vith the data to b(_a written. whose original content in the base image is completely
When handling a disk read request issued by the VM¢jaq with zeros. This is a common case if the base image
the FVD driver checks the bitmap to determine if the re-ig 1ot reduced to its minimum size bgsize2fsand has

quested data are in the FVD image. If so, the data arg,5ny empty spaces. This optimization is realized by us-

read from the FVD image. Otherwise, the data are reaghq 5 too| to search for zero-filled blocks in the base image
from the base image and returned to the VM. While the

)) and preset their state bits to 1 in the FVD bitmap. This is
VM continues to process the returne_d data, in the backzh offine process only done once per image template.
ground, a copy of the returned data is saved in the FVD
image. Future reads for the same data will get them fronfrée copy-on-read and free prefetching Eliminate the
the FVD image on DAS rather than from the base image'€€d to update the on-disk bitmap when the FVD driver
on NAS. This copy-on-read behavior helps avoid generatSaves a block in the FVD image due to either copy-on-

ing excessive network traffic and 1/0 load on NAS. read or prefetching. This does not compromise data in-

tegrity in the event of a host crash, because the block’s

= 1000
content in the FVD image is identical to that in the base ~ § 1
image and reading from either place gets the correct data. °§ 800
Q
Zero overhead once prefetching finishesEntirely elim- %‘ 600
inate the need to read or update the bitmap, once all blocks § 400
in the base image are prefetched. This is because the E 200
bitmap’s content is known in a priori to be 1 for all bits. E o H H H
: , 3 zog zgog e
3.3 Adaptive Prefetching 2 % | 3e5| 323
§ & o4 o
I

FVD uses copy-on-read to bring data blocks from NAS virtio-partition | Virtio-ext3 |IDE-partition
to DAS on demand as they are accessed by the VM. Op- (a) File creation throughput
tionally, prefetching uses resource idle time to copy from

NAS to DAS the rest of the image that have not been ac- 0 m
cessed by the VM. Prefetching is a resource intensive op- § 40
eration, as it may transfer gigabytes of data across a heav- % 30 4
ily shared network. To avoid causing a contentiononany &
resource (including network, NAS, and DAS), FVD can g 20 H H H
be configured to limit prefetching rate and pause prefetch- 5 10 H H
ing when a resource contention is detected. % o

Two throughput limits (KB/s) control the behavior of 8 $83 $8% $8%
prefetching data from the base image. The base image g ©Tg ©Tg ©Tg
read throughput is capped at the upper limit using a leaky T | virtio-partition | virtio-ext3 | IDE-partition
bucket algorithm. If the throughput drops below the lower (b) Transaction throughput
limit, the FVD driver concludes that a resource contention Figure 4: Performance of PostMark.

has occurred. It makes a randomized decision. With a
50% probability, it temporarily pauses prefetching for a geletion. read. and append)

randomized period of time. If the throughput is still be- g, o ot files created in the first phase is about 50GB, and

low the !ower Iimit after prefetch.ing resumes, it PaUSESihe size of an individual file ranges from 10KB to 50KB.
prefetching again for a longer period of time, and so forth.

Similarly, two throughput limits control the behavior of !N Figure 4, the “Hypervisor” bar means running Post-

In this experiment, the total

writing prefetched data to the FVD image. Mark in a native Linux without virtualization. The
“RAW”, “FVD”, and “QCOW?2" bars mean running Post-
4 Experimental Results Mark in a VM whose image uses the different formats,

,) respectively. Like that in a Cloud, a QCOW?2 or FVD im-
. \(Ve'lmpler.nented FVD in QEMU. Due to the space ageV is stored on the local disk of a bladg, whereas the
limitation, this paper only presents the results of one eXhase image oF is stored on another bladé accessible
periment. (More results are available in the longer ver-through NFS. The base image contains Ubuntu 9.04, and
sion of this paper [8]). In this experiment, FVD’s bitmap is reduced to its minimum size (501MB) bgsize2fs A
is enabled but all other metadata (the lookup table, theRAW image is always stored on the local disk of a blade.
metadata journal, and the reference-count table) are disen \/\1's'irtual disk is divided into two partitions. The

abled. Moreover, since QCOW2 does not support CORrirst partition of 1GB stores the root file system. The sec-

gnd prefeLchin?,_those fea_tures ?rﬁ dti)sak_JIed in FfVD in O5nd partition of 50GB disk is formatted into an ext3 file
er to make a fair comparison of the basic CoW feature. system, on which PostMark runs.

The experiment is conducted on IBM HS21 blades con- B]]
nected by 1Gb Ethernet. Each blade has two 2.33GHz For the “IDE-partition” group in the figure, the VM's |
Intel Xeon 5148 CPUs and a 2.5-inch hard drive (modelblOCk device uses the IDE interface and the VM image is
MAY2073RC). The blades run QEMU 0.12.30 and Linux stored on a raw partition in the host. For the “virtio-ext3”
2.6.32-24 with the KVM kernel modules. QEMU is con- 9roup, the VM’s block device uses the paravirtualized
figured to use direct /0. tio interface and the VM image is stored on a host ext3 file

Figure 4 shows the performance of PostMark [3] underSYStem, which is reformatted before each run of the exper-
different configurations. The execution of PostMark con-Iment. For the “virtio-partition” group, it usegrtio and
sists of two phases. In the first “file-creation” phase, itth® VM image is stored on a raw partition in the host.
generates an initial pool of files. In the second “trans- Figure 4 shows significant advantages of FVD over
action” phase, it executes a set of transactions, wher® COW?2. In the file creation phase, the throughput of
each transaction consists of some file operations (creatiolrVD is 249% higher than that of QCOW2 (by com-

paring the “FVD” bar and the “QCOW?2" bar in the the “percentage” of requests that hit in the read-ahead
“virtio-partition” group of Figure 4(a)). In the transacti caches may change little, but the response time of those
phase, the throughput of FVD is 77% higher than that ofcache-miss requests may increase dramatically. In other
QCOW?2 (by comparing the “FVD” bar and the “QCOW?2 words, this “percentage” does not correlate well with the
bar in the “virtio-partition” group of Figure 4(b)). achieved disk I/O throughput.

To understand the root cause of the performance dif-]
ference, we perform a deep analysis for the results iff Conclusion
the “virtio-partition” group of Figure 4(a). We run the FvD is a holistic virtual disk solution for both Cloud
blktrace tool in the host to monitor disk 1/O activities. and non-Cloud environments. A design principle of
QCOW?2 causes 45% more disk I/Os than FVD does, dugvD is to make all functions orthogonal so that each
to QCOW2's reads and writes to its metadata. Moreoverfunction can be enabled or disabled individually. The
the average seek distance in QCOW?2 is 5.6 times long&gfurpose is to support diverse use cases without be-
than that in FVD, due to QCOW2's VBA-IBA mismatch- ing burdened with the overhead of all functions. Us-
ing problem, as explained in Section 2.1. ing copy-on-write, copy-on-read, and adaptive prefetch-

ing, FVD supports instant VM creation and instant VM

5 Related Work migration, even if the VM image is stored on direct-

Despite the widespread use of VMs, there is no pubattached storage. The source code of FVD is pub-
lished research on how image formats impact disk I/O|ic|y available atht t ps: / / r esear cher . i bm cont
performance. Existing popular image formats (includingy esear cher / vi ew.pr oj ect . php?i d=1852.
QCOW?2 [5], VDI [10], VMDK [11], and VHD [6]) all
allocate storage space for a data block at the end of thReferences
image file when the block is written for the first time, re- [1] F.Bellard. QEMU, a Fast and Portable Dynamic Transla-
gardless of the block’s virtual address. This mismatch be- ~ or, |n USENIX FREENIX Tragk2005.
tween \./BA and IBA inva_lidates m_any opt_imizations in [2] R.Chandra, N. Zeldovich, C. Sapuntzakis, and M. S. Lam.
guest file systems, as d,'scu_ssed n Se_Ct'cm 2.1. More' The Collective: A Cache-Based System Management Ar-
over, they all unnecessarily mix the function of Cow dirty chitecture. INSDI, 2005.
block tracking with the function of storage space alloca- [3] J. Katcher. PostMark: A New File System Benchmark.

tlon: This leads to doing st(_)rage aIIoca_tlon twice (f|rst_|n Technical Report TR-3022, Network Appliance Inc., Oc-
the image format and then in the host file system), which tober 1997

causes data fragmentation twice and doubles the disk I/O
overhead for metadata access.

Existing virtual disks support neither copy-on-read
(CoR) nor adaptive prefetching. Some virtualization solu-
tions do support CoR or prefetching, but they are imple- [31 M. McLoughlin. The QCOW2 Image Format.
mented for specific use cases, e.g., virtual appliance [2] Nt tP://peopl e. gnome. or g/ ~mar kc/
and VM migration [7]. By contrast, FVD provides CoR gcow- i mage- format. htni .
and prefetching as standard features of a virtual disk, [6] Microsoft VHD Image Format. http://technet.
which can be easily deployed in many different use cases. M crosof t. confen-us/virtual server/
Moreover, those previous works use Cow and CoR butdo ~ PP676673. aspx.
not study how to optimize the CoW and CoR techniques [7] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S.
themselves to reduce overhead. Lam, and M. Rosenblum. Optimizing the Migration of

Collective [2] provides desktop as a service across the Virtual Computers. Ir0SD|, 2002.

Internet. It uses CoW and CoR to hide network latency. [8] C. Tang. FVD: a High-Performance Virtual Ma-
Its local disk cache makes no effort to preserve a linear ~ chine Image Format for Cloud. This is the longer
mapping between VBA and IBA, and may cause a long version of the USENIX'11 paper with the same ti-
disk seek distance as that in popular CoOW image for- (e, available athttps://researcher.ibm cont
mats. Collective also performs adaptive prefetching. It ' €S€archer/viewproj ect. php?i d=1852.

halves the prefetch rate if a certain “percentage” of re- [9] The IBM Cloud. http://ww.ibm cont
cent requests experience a high latency. Our evaluation Services/us/igs/cloud- devel opment/.

shows that it is hard to set a proper “percentage” to re{10] VirtualBox VDI Image Format. http://forums.
liably detect congestion. Because storage servers and virtual box. org/ vi ewt opi c. php?t =8046.

[4] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
KVM: the Linux Virtual Machine Monitor. InProceedings
of the Linux Symposiumpages 225-230, 2007.

disk controllers perform read-ahead in large chunks foff11] vmware Virtual Disk Format 1.1. htt p:
sequential reads, a large percentage (e.g., 90%) ofa VM's // www. vhwar e. conl t echni cal - r esour ces/
prefetching reads hit in the read-ahead caches and experi- i nterfaces/ vimdk. ht ni .

ence a low latency. When a storage server becomes busy,

