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Abstract

Event-driven architectures are currently a popular design
choice for scalable, high-performance server applications.
For this reason, operating systems have invested in effi-
ciently supporting non-blocking and asynchronous I/O, as
well as scalable event-based notification systems.

We propose the use of exception-less system calls as
the main operating system mechanism to construct high-
performance event-driven server applications. Exception-
less system calls have four main advantages over tra-
ditional operating system support for event-driven pro-
grams: (1) any system call can be invoked asyn-
chronously, even system calls that are not file descriptor
based, (2) support in the operating system kernel is non-
intrusive as code changes are not required for each sys-
tem call, (3) processor efficiency is increased since mode
switches are mostly avoided when issuing or executing
asynchronous operations, and (4) enabling multi-core ex-
ecution for event-driven programs is easier, given that a
single user-mode execution context can generate enough
requests to keep multiple processors/cores busy with ker-
nel execution.

We present libflexsc, an asynchronous system call and
notification library suitable for building event-driven ap-
plications. Libflexsc makes use of exception-less system
calls through our Linux kernel implementation, FlexSC.
We describe the port of two popular event-driven servers,
memcached and nginx, to libflexsc. We show that
exception-less system calls increase the throughput of
memcached by up to 35% and nginx by up to 120% as
a result of improved processor efficiency.

1 Introduction

In a previous publication, we introduced the concept of
exception-less system calls [28]. With exception-less
system calls, instead of issuing system calls in the tradi-
tional way using a trap (exception) to switch to the ker-
nel for the processing of the system call, applications is-

sue kernel requests by writing to a reserved syscall page,
shared between the application and the kernel, and then
switching to another user-level thread ready to execute
without having to enter the kernel. On the kernel side,
special in-kernel syscall threads asynchronously execute
the posted system calls obtained from the shared syscall
page, storing the results to the syscall page after their ser-
vicing. This approach enables flexibility in the scheduling
of operating system work both in the form of kernel re-
quest batching, and (in the case of multi-core processors)
in the form of allowing operating system and application
execution to occur on different cores. This not only sig-
nificantly reduces the number of costly domain switches,
but also significantly increases temporal and spacial local-
ity at both user and kernel level, thus reducing pollution
effects on processor structures.

Our implementation of exception-less system calls in
the Linux kernel (FlexSC) was accompanied by a user-
mode POSIX compatible thread package, called FlexSC-
Threads, that transparently translates legacy synchronous
system calls into exception-less ones. FlexSC-Threads
primarily targets highly threaded server applications, such
as Apache and MySQL. Experiments demonstrated that
FlexSC-Threads increased the throughput of Apache by
116% while reducing request latencies by 50%, and in-
creased the throughput of MySQL by 40% while reducing
request latencies by roughly 30%, requiring no changes to
these applications.

In this paper we report on our subsequent investiga-
tions on whether exception-less system calls are suitable
for event-driven application servers and, if so, whether
exception-less system calls are effective in improving
throughput and reducing latencies. Event-driven appli-
cation server architectures handle concurrent requests by
using just a single thread (or one thread per core) so as to
reduce application-level context switching and the mem-
ory footprint that many threads otherwise require. They
make use of non-blocking or asynchronous system calls
to support the concurrent handling of requests. The be-
lief that event-driven architectures have superior perfor-



mance characteristics is why this architecture has been
widely adopted for developing high-performant and scal-
able servers [12, 22, 23, 26, 30]. Widely used applica-
tion servers with event-driven architectures include mem-
cached and nginx.

The design and implementation of operating system
support for asynchronous operations, along with event-
based notification interfaces to support event-driven archi-
tectures, has been an active area of both research and de-
velopment [4, 8, 7, 11, 13, 14, 16, 22, 23, 30]. Most of the
proposals have a few common characteristics. First, the
interfaces exposed to user-mode are based on file descrip-
tors (with the exception of kqueue [4, 16] and LAIO [11]).
Consequently, resources that are not encapsulated as de-
scriptors (e.g., memory) are not supported. Second, their
implementation typically involved significant restructure
of kernel code paths into an asynchronous state-machine
in order to avoid blocking the user execution context.
Third, and most relevant to our work, while the system
calls used to request operating system services are de-
signed not to block execution, applications still issue sys-
tem calls synchronously, raising a processor exception,
and switching execution domains, for every request, status
check, or notification of completion.

In this paper, we demonstrate that the exception-less
system call mechanism is well suited for the construction
of event-based servers and that the exception-less mech-
anism presents several advantages over previous event-
based systems:

1. General purpose. Exception-less system call is a gen-
eral mechanism that supports any system call and is not
necessarily tied to operations with file descriptors. For
this reason, exception-less system calls provide asyn-
chronous operation on any operating system managed
resource.

2. Non-intrusive kernel implementation. Exception-
less system calls are implemented using light-weight
kernel threads that can block without affecting user-
mode execution. For this reason, kernel code paths
do not need to be restructured as asynchronous state-
machines; in fact, no changes are necessary to the code
of standard system calls.

3. Efficient user and kernel mode execution. One of
the most significant advantages of exception-less sys-
tem calls is its ability to decouple system call invoca-
tion from execution. Invocation of system calls can
be done entirely in user-mode, allowing for truly asyn-
chronous execution of user code. As we show in this
paper, this enables significant performance improve-
ments over the most efficient non-blocking interface on
Linux.

4. Simpler multi-processing. With traditional system
calls, the only mechanism available for applications to

1K 2K 5K 10K 20K 50K 100K
0%

10%

20%

30%

40%

50%

60%

70%
Indirect
Direct

user-mode instructions between exceptions
(log scale)D

e
g

ra
d

a
ti

o
n

 (
lo

w
e

r 
is

 f
a

s
te

r)

Figure 1: System call (pwrite) impact on user-mode instruc-
tions per cycle (IPC) as a function of system call frequency for
Xalan.

exploit multiple processors (cores) is to use an operat-
ing system visible execution context, be it a thread or
a process. With exception-less system calls, however,
operating system work can be issued and distributed to
multiple remote cores. As an example, in our imple-
mentation of memcached, a single memcached thread
was sufficient to generate work to fully utilize 4 cores.

Specifically, we describe the design and implementa-
tion of an asynchronous system call notification library,
libflexsc, which is intended to efficiently support event-
driven programs. To demonstrate the performance ad-
vantages of exception-less system calls for event-driven
servers, we have ported two popular and widely deployed
event-based servers to libflexsc: memcached and nginx.
We briefly describe the effort in porting these applications
to libflexsc. We show how the use of libflexsc can sig-
nificantly improve the performance of these two servers
over their original implementation using non-blocking I/O
and Linux’s epoll interface. Our experiments demon-
strate throughput improvements in memcached of up to
35% and nginx of up to 120%. As anticipated, we show
that the performance improvements largely stem from in-
creased efficiency in the use of the underlying processor.

2 Background and Motivation: Operating
System Support for I/O Concurrency

Server applications that are required to efficiently han-
dle multiple concurrent requests rely on operating sys-
tem primitives that provide I/O concurrency. These prim-
itives typically influence the programming model used
to implement the server. The two most commonly
used models for I/O concurrency are threads and non-
blocking/asynchronous I/O.

Thread based programming is often considered the sim-
plest, as it does not require tracking the progress of I/O op-
erations (which is done implicitly by the operating system
kernel). A disadvantage of threaded servers that utilize a
separate thread per request/transaction is the inefficiency



Server (workload) Syscalls per User Instructions User IPC Kernel Instructions Kernel IPC
Request per Syscall per Syscall

Memcached (memslap) 2 3750 0.80 5420 0.59
nginx (ApacheBench) 12 1460 0.46 6540 0.49

Table 1: The average number of instructions executed on different workloads before issuing a syscall, the average number of system
calls required to satisfy a single request, and the resulting processor efficiency, shown as instructions per cycle (IPC) of both user and
kernel execution. Memcached and nginx are event-driven servers using Linux’s epoll interface.

of handling a large number of concurrent requests. The
two main sources of inefficiency are the extra memory us-
age allocated to thread stacks and the overhead of tracking
and scheduling a large number of execution contexts.

To avoid the overheads of threading, developers have
adopted the use event-driven programming. In an event-
driven architecture, the program is structured as a state
machine that is driven by progress of certain operations,
typically involving I/O. Event-driven programs make use
of non-blocking or asynchronous primitives, along with
event notification systems, to deal with concurrent I/O op-
erations. These primitives allow for uninterrupted execu-
tion that enables a single execution context (e.g., thread)
to fully utilize the processor. The main disadvantage of
using non-blocking or asynchronous I/O is that it entails
a more complex programming model. The application is
responsible for tracking the status of I/O operations and
availability of I/O resources. In addition, the application
must support multiplexing the execution of stages of mul-
tiple concurrent requests.

In both models of I/O concurrency, the operating sys-
tem kernel plays a central role in supporting servers in
multiplexing execution of concurrent requests. Conse-
quently, to achieve efficient server execution, it is crit-
ical for the operating system to expose and support ef-
ficient I/O multiplexing primitives. To quantify the rel-
evance of operating system kernel execution experimen-
tally, we measured key execution metrics of two popular
event-driven servers: memcached and nginx.

Table 1 shows the number of instructions executed in
user and kernel mode, on average, before changing mode,
for nginx and memcached. (Sections 5 and 6 explain the
servers and workloads in more detail.) These applications
use non-blocking I/O, along with the Linux epoll facil-
ity for event notification. Despite the fact that the epoll
facility is considered the most scalable approach to I/O
concurrency on Linux, management of both I/O requests
and events is inherently split between the operating sys-
tem kernel and the application. This fundamental property
of event notification systems imply that there is a need for
continuous communication between the application and
the operating system kernel. In the case of nginx, for ex-
ample, we observe that communication with the kernel oc-
curs, on average, every 1470 instructions.

We argue that the high frequency of mode switching
in these servers, which is inherent to current event-based

facilities, is largely responsible for the low efficiency of
user and kernel execution, as quantified by the instruc-
tions per cycle (IPC) metric in Table 1. In particular, there
are two costs that affect the efficiency of execution when
frequently switching modes: (1) a direct cost that stems
from the processor exception associated with the system
call instruction, and (2) an indirect cost resulting from the
pollution of important processor structures.

To quantify the performance interference caused by fre-
quent mode switching, we used the Core i7 hardware per-
formance counters (HPC) to measure the efficiency of
processor execution while varying the number of mode
switches of a benchmark. Figure 1 depicts the perfor-
mance degradation of user-mode execution, when issuing
varying frequencies of pwrite system calls, on a high
IPC workload, Xalan, from the SPEC CPU 2006 bench-
mark suite. We used a benchmark from SPEC CPU 2006
as these benchmarks have been created to avoid signif-
icant use of system services, and should spend only 1-
2% of time executing in kernel-mode. Xalan has a base-
line user-mode IPC of 1.46, but the IPC degrades by up
to 65% when executing a pwrite every 1,000-2,000 in-
structions, yielding an IPC between 0.50 and 0.58.

The figure also depicts the breakdown of user-mode
IPC degradation due to direct and indirect costs. The
degradation due to the direct cost was measured by issu-
ing a null system call, while the indirect portion is cal-
culated by subtracting the direct cost from the degrada-
tion measured when issuing a pwrite system call. For
high frequency system call invocation (once every 2,000
instructions, or less, which is the case for nginx), the direct
cost of raising an exception and subsequent flushing of the
processor pipeline is the largest source of user-mode IPC
degradation. However, for medium frequencies of system
call invocation (once per 2,000 to 100,000 instructions),
the indirect cost of system calls is the dominant source of
user-mode IPC degradation.

Given the inefficiency of event-driver server execution
due to frequent mode switches, we envision that these
servers could be adapted to make use of exception-less
system calls. Beyond the potential to improve server per-
formance, we believe exception-less system calls is an
appealing mechanism for event-driven programming, as:
(1) it is as simple as asynchronous I/O to program to (no
retry logic is necessary, unlike non-blocking I/O), and
(2) more generic than asynchronous I/O, which mostly



supports descriptor based operations and which are only
partially supported on some operating systems due to their
implementation complexity (e.g., Linux does not offer an
asynchronous version of the zero-copy sendfile()).

One of the proposals that is closest to achieving the
goals of event-driven programming with exception-less
system calls is lazy asynchronous I/O (LAIO), proposed
by Elmeleegy et al. [11] However, in their proposal, sys-
tem calls are still issued synchronously, using traditional
exception based calls. Furthermore, a completion notifi-
cation is also needed whenever an operation blocks, which
generates another interruption in user execution.

3 Exception-Less System Call Interface and
Implementation

In this work, we argue for the use of exception-less sys-
tem calls as a mechanism to improve processor efficiency
while multiplexing execution between user and kernel
modes in event-driven servers. Exception-less system
call is a mechanism for requesting kernel services that
does not require the use of synchronous processor excep-
tions [28]. The key benefit of exception-less system calls
is the flexibility in scheduling system call execution, ulti-
mately providing improved locality of execution of both
user and kernel code.

Exception-less system calls have been shown to im-
prove the performance of highly threaded applications,
by using a specialized user-level threading package that
transparently converts synchronous system calls into
exception-less ones [28]. The goal of this work is to ex-
tend the original proposal by enabling the explicit use of
exception-less system calls by event-driven applications.

In this section, we briefly describe the original
exception-less system call implementation (FlexSC) for
the benefit of the reader; those readers already familiar
with exception-less system calls may skip to Section 4.
For space considerations, this is a simple overview of
exception-less system calls; for more information, we re-
fer the reader to the original exception-less system calls
proposal [28].

3.1 Exception-Less System Calls
The design of exception-less system calls consists of two
components: (1) an exception-less interface for user-
space threads to register system calls, along with (2) an
in-kernel threading system that allows the delayed (asyn-
chronous) execution of system calls, without interrupting
or blocking the thread in user-space.

3.1.1 Exception-Less Syscall Interface

The interface for exception-less system calls is simply a
set of memory pages that is shared between user and ker-
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Figure 2: 64-byte syscall entry from the syscall page.
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Figure 3: Illustration of synchronous and exception-less system
call invocation. The left diagram shows the sequential nature
of exception-based system calls, while the right diagram depicts
exception-less user and kernel communication through shared
memory.

nel space. The shared memory pages, henceforth referred
to as syscall pages, contain exception-less system call en-
tries. Each entry records the request status, system call
number, arguments, and return value (Figure 2).

The traditional invocation of a system call occurs by
populating predefined registers with call information and
issuing a specific machine instruction that immediately
raises an exception. In contrast, to issue an exception-
less system call, user-mode must find a free entry in the
syscall page and populate the entry with the appropriate
values using regular store instructions. The user thread
can then continue executing without interruption. It is the
responsibility of the user thread to later verify the comple-
tion of the system call by reading the status information in
the entry. None of these operations, issuing a system call
or verifying its completion, causes exceptions to be raised.

3.1.2 Decoupling Execution from Invocation

Along with the exception-less interface, the operating sys-
tem kernel must support delayed execution of system
calls. Unlike exception-based system calls, the exception-
less system call interface does not result in an explicit ker-
nel notification, nor does it provide an execution stack. To
support decoupled system call execution, we use a spe-
cial type of kernel thread, which we call syscall thread.
Syscall threads always execute in kernel mode, and their
sole purpose is to pull requests from syscall pages and
execute them on behalf of the user thread. Figure 3 il-
lustrates the difference between traditional synchronous
system calls, and our proposed split system call model.

3.2 Implementation – FlexSC

Our implementation of the exception-less system call
mechanism is called FlexSC (Flexible System Call) and
was prototyped as an extension to the Linux kernel. Two



new system calls were added to Linux as part of FlexSC,
flexsc_register and flexsc_wait.

flexsc_register() This system call is used by pro-
cesses that wish to use the FlexSC facility. Registration
involves two steps: mapping one or more syscall pages
into user-space virtual memory space, and spawning one
syscall thread per entry in the syscall pages.

flexsc_wait() The decoupled execution model of
exception-less system calls creates a challenge in user-
mode execution, namely what to do when the user-space
thread has nothing more to execute and is waiting on
pending system calls. The solution we adopted is to re-
quire that the user explicitly communicate to the kernel
that it cannot progress until one of the issued system calls
completes by invoking the flexsc_wait system call
(this is akin to aio_suspend() or epoll_wait()
calls). FlexSC will later wake up the user-space thread
when at least one of the posted system calls are complete.

3.2.1 Syscall Threads

Syscall thread is the mechanism used by FlexSC to allow
for exception-less execution of system calls. The Linux
system call execution model has influenced some imple-
mentation aspects of syscall threads in FlexSC: (1) the vir-
tual address space in which system call execution occurs
is the address space of the corresponding process, and (2)
the current thread context can be used to block execution
should a necessary resource not be available (for example,
waiting for I/O).

To resolve the virtual address space requirement,
syscall threads are created during flexsc_register.
Syscall threads are thus “cloned” from the registering pro-
cess, resulting in threads that share the original virtual ad-
dress space. This allows the transfer of data from/to user-
space with no modification to Linux’s code.

FlexSC would ideally never allow a syscall thread to
sleep. If a resource is not currently available, notification
of the resource becoming available should be arranged,
and execution of the next pending system call should be-
gin. However, implementing this behavior in Linux would
require significant changes and a departure from the basic
Linux architecture. Instead, we adopted a strategy that
allows FlexSC to maintain the Linux thread blocking ar-
chitecture, as well as requiring only minor modifications
(3 lines of code) to the Linux context switching code, by
creating multiple syscall threads for each process that reg-
isters with FlexSC.

In fact, FlexSC spawns as many syscall threads as there
are entries available in the syscall pages mapped in the
process. This provisions for the worst case where ev-
ery pending system call blocks during execution. Spawn-
ing hundreds of syscall threads may seem expensive, but
Linux in-kernel threads are typically much lighter weight

than user threads: all that is needed is a task_struct
and a small, 2-page, stack for execution. All the other
structures (page table, file table, etc.) are shared with the
user process. In total, only 10KB of memory is needed
per syscall thread.

Despite spawning multiple threads, only one syscall
thread is active per application and core at any given point
in time. If a system call does not block, then all the work
is executed by a single syscall thread, while the remain-
ing ones sleep on a work-queue. When a syscall thread
needs to block, for whatever reason, immediately before
it is put to sleep, FlexSC notifies the work-queue, and an-
other thread wakes up to immediately start executing the
next system call. Later, when resources become free, cur-
rent Linux code wakes up the waiting thread (in our case, a
syscall thread), and resumes its execution, so it can post its
result to the syscall page and return to wait in the FlexSC
work-queue.

As previously described, there is never more than one
syscall thread concurrently executing per core, for a given
process. However in the multicore case, for the same pro-
cess, there can be as many syscall threads as cores con-
currently executing on the entire system. To avoid cache-
line contention of syscall pages amongst cores, before a
syscall thread begins executing calls from a syscall page,
it locks the page until all its submitted calls have been
issued. Since FlexSC processes typically map multiple
syscall pages, each core on the system can schedule a
syscall thread to work independently, executing calls from
different syscall pages.

4 Libflexsc: Asynchronous system call and
notification library

To allow event-driven applications to interface with
exception-less system calls, we have designed and im-
plemented a simple asynchronous system call notification
library, libflexsc. Libflexsc provides an event loop for
the program, which must register system call requests,
along with callback functions. The main event loop
on libflexsc invokes the corresponding program provided
callback when the system call has completed.

The event loop and callback handling in libflexsc was
inspired by the libevent asynchronous event notification
library [24]. The main difference between these two li-
braries is that libevent is designed to monitor low-level
events, such as changes in the availability of input or out-
put, and operates at the file descriptor level. The appli-
cation is notified of the availability, but its intended op-
eration is still not guaranteed to succeed. For example,
a socket may contain available data to be read, but if the
application requires more data than is available, it must
restate interest in the event to try again. With libflexsc,
on the other hand, events correspond to the completion of



1 conn master;
2
3 int main(void)
4 {
5 /* init library and register with kernel */
6 flexsc_init();
7
8 /* not performance critical,
9 do synchronously */

10 master.fd = bind_and_listen(PORT_NUMBER);
11
12 /* prepare accept */
13 master.event->handler = conn_accepted;
14 flexsc_accept(&master.event, master.fd,
15 NULL, 0);
16
17 /* jump to event loop */
18 return flexsc_main_loop();
19 }
20
21 /* Called when accept() returns */
22 void conn_accepted(conn *c)
23 {
24 conn *new_conn = alloc_new_conn();
25
26 /* get the return value of the accept() */
27 new_conn->fd = c->event->ret;
28 new_conn->event->handler = data_read;
29
30 /* issue another accept on the master socket */
31 flexsc_accept(&c->event, c->fd, NULL, 0);
32
33 if (new_conn->fd != -1)
34 flexsc_read(&new_conn->event, new_conn->fd,
35 new_conn->buf, new_conn->size);
36 }

36 void data_read(conn *c)
37 {
38 char *reply_file;
39
40 /* read of 0 means connection closed */
41 if (c->event->ret == 0) {
42 flexsc_close(NULL, c->fd);
43 return;
44 }
45
46 reply_file = parse_request(c->buf, c->event->ret);
47
48 if (reply_file) {
49 c->event->handler = file_opened;
50 flexsc_open(&c->event, c->fd, reply_file,
51 O_RDONLY);
52 }
53 }
54
55 void file_opened(conn *c)
56 {
57 int file_fd;
58
59 file_fd = c->event->ret;
60 c->event->handler = file_sent;
61 /* issue asynchronous sendfile */
62 flexsc_sendfile(&c->event, c->fd, file_fd,
63 NULL, file_len);
64 }
65
66 void file_sent(conn *c)
67 {
68 /* no callback necessary to handle close */
69 flexsc_close(NULL, c->fd);
70 }

Figure 4: Example of network server using libflexsc.

a previously issued exception-less system call. With this
model, which is closer to that of asynchronous I/O, it is
less likely that applications need to include cumbersome
logic to retry incomplete or failed operations.

Contrary to common implementations of asynchronous
I/O, FlexSC does not provide a signal or interrupt based
completion notification. Completion notification is a
mechanism for the kernel to notify a user thread that a pre-
viously issued asynchronous request has completed. It is
often implemented through a signal or other upcall mech-
anism. The main reason FlexSC does not offer completion
notification is that signals and upcalls entail the same pro-
cessor performance problems of system calls: direct and
indirect processor pollution due to switching between ker-
nel and user execution.

To overcome the lack of completion notifications, the
libflexsc event main loop must poll the syscall pages cur-
rently in use for completion of system calls. To minimize
overhead, the polling for system call completion is per-
formed only when all currently pending callback handlers
have completed. Given enough work (e.g., handling many
connections concurrently), polling should happen infre-
quently. In the case that all callback handlers have ex-
ecuted, and no new system call has completed, libflexsc
falls back on calling flexsc_wait() (described in
Section 3.2).

4.1 Example server

A simplified implementation of a network server using
libflexsc is shown in Figure 4. The program logic is di-
vided into states which are driven by the completion of
a previously issued system call. The system calls used
in this example that are prefixed with “flexsc_” are is-
sued using the exception-less interface (accept, read,
open, sendfile, close). When the library detects the
completion of a system call, its corresponding callback
handler is invoked, effectively driving the next stage of
the state machine. During normal operation, the execution
flow of this example would progress in the following or-
der: (1) main, (2) conn_accepted, (3) data_read,
(4) file_opened, and (5) file_sent. As men-
tioned, file and network descriptors do not need to be
marked as non-blocking.

It is worth noting that stages may generate several sys-
tem call requests. For example, the conn_accepted()
function not only issues a read on the newly accepted
connection, it also issues another accept system call on
the master listening socket in order to pipeline further in-
coming requests. In addition, for improved efficiency, the
server may choose to issue multiple accepts concurrently
(not shown in this example). This would allow the operat-
ing system to accept multiple connections without having
to first execute user code, as is the case with traditional



event-based systems, thus reducing the number of mode
switches for each new connection.

Finally, not all system calls must provide a callback, as
a notification may not be of interest to the programmer.
For example, in the file_sent function listed in the
simplified server code, the request to close the file does
not provide a callback handler. This may be useful if the
completion of a system call does not drive an additional
state in the program and the return code of the system call
is not of interest.

4.2 Cancellation support
A new feature we had to add to FlexSC in order to support
event-based applications is the ability to cancel submitted
system calls. Cancellation of in-progress system calls may
be necessary in certain cases. For example, servers typi-
cally implement a timeout feature for reading requests on
connections. With non-blocking system calls, reads are
implemented by waiting for a notification that the socket
has become readable. If the event does not occur within
the timeout grace period, the connection is closed. With
exception-less system calls, the read request is issued be-
fore the server knows if or when new data will arrive (e.g.,
the conn_accepted function in Figure 4). To properly
implement a timeout, the application must cancel pending
reads if the grace period has passed.

To implement cancellation in FlexSC, we introduced a
new cancel status value to be used in the status field of the
syscall entry (Figure 2). When syscall threads, in the ker-
nel, check for new submitted work, they now also check
for entries in cancel state. To cancel the in-progress oper-
ation, we first identify the syscall thread that is executing
the request that corresponds to the cancelled entry. This is
easily accomplished since each core has a map of syscall
entries to syscall threads for all in-progress system calls.
Once identified, a signal is sent to the appropriate syscall
thread to interrupt its execution. In the Linux kernel, sig-
nal delivery that occurs during system call execution inter-
rupts the system call even if the execution context is asleep
(e.g., waiting for I/O). When the syscall thread wakes up,
it sets the return value to EINTR and marks the entry as
done in the corresponding syscall entry, after which, the
user-mode process knows that the system call has been
cancelled and the syscall entry can be reused.

Due to its asynchronous implementation, cancellation
requests are not guaranteed to succeed. The window of
time between when the application modifies the status
field and when the syscall thread is notified of cancellation
may be sufficiently long for the system call to complete
(successfully). The application must check the system call
return code to disambiguate between successly completed
calls and cancelled ones. This behavior is analogous to
cancellation support of asynchronous I/O implemented by
several UNIX systems (e.g., aio_cancel).

Server Total lines Lines of code Files
of code modifiied modified

memcached 8356 293 3
nginx 82819 255 16

Table 2: Statistics regarding the code size and modifications
needed to port applications to libflexsc, measured in lines of
code and number of files.

5 Exception-Less Memcached and nginx

This section describes the process of porting two popular
event-based servers to use exception-less system calls. In
both cases, the applications were modified to conform to
the libflexsc interface. However, we strived to maintain
the structure of code as similar to the original as possible,
to make performance comparisons meaningful.

To reduce the complexity of porting these applications
to exception-less system calls, we exploited the fact that
FlexSC allows exception-less system calls to co-exist with
synchronous ones in the same process. Consequently, we
have not modified all system calls to use exception-less
versions. We focused on the system calls that were issued
in the code paths that are involved in handling requests
(which correspond to the hot paths during normal opera-
tion).

5.1 Memcached - Memory Object Cache

Memcached is a distributed memory object caching sys-
tem, built as an in-memory key-value store [12]. It is typ-
ically used to cache results from slower services such as
databases and web servers. It is currently used by several
popular web sites as a way to improve the performance
and scalability of their web services. We used version
1.4.5 as a basis for our port.

To achieve good I/O performance, memcached was
built as an event-based server. It uses libevent to make
use of non-blocking execution available on modern oper-
ating system kernels. For this reason, porting memcached
to use exception-less system calls through libflexsc was
the simplest of the two ports. Table 2 lists the number of
lines of code and the number of files that were modified.
For memcached, the majority of the changes were done
in a single file (memcached.c), and the changes were
mostly centered around modifying system calls, as well
as calls to libevent.

Multicore/multiprocessor support has been introduced
to memcached, despite most of the code assuming single-
threaded execution. To support multiple processors, mem-
cached spawns worker threads which communicate via a
pipe to a master thread. The master thread is responsible
for accepting incoming connections and handing them to
the worker threads.



5.2 nginx Web Server
Nginx is an open-source HTTP web server considered to
be light-weight and high-performant; it is currently one of
the most widely deployed open-source web servers [26].
Nginx implements I/O concurrency by natively using non-
blocking and asynchronous operations available in the op-
erating system kernel. On Linux, nginx uses the epoll
notification system. We based our port on the 0.9.2 devel-
opment version of nginx.

Despite having had to change a similar number of lines
as with memcached, the port to nginx was more involved,
evidenced by the number of files changed (Table 2). This
was mainly due to the fact that nginx’s core code is signif-
icantly larger than that of memcached’s (about 10x), and
its state machine logic is more complex.

We substituted all system calls that could potentially be
invoked while handling client requests to use the corre-
sponding version in libflexsc. The system calls that were
associated with a file descriptor based event handler (such
as accept, read and write) were straightforward to
implement, as these were already programmed as separate
stages in the code. However, the system calls that were
previously invoked synchronously (e.g., open, fstat,
and getdents) needed more work. In most cases, we
needed to split a single stage of the state machine into two
or more stages to allow asynchronous execution of these
system calls. In a few cases, such as setsockopt and
close, we executed the calls asynchronously, without a
callback notification, which did not required a new stage
in the flow of the program.

Finally, for system calls that not only return a status
value, but also fill in a user supplied memory pointer with
a data structure, we had to ensure that this memory was
correctly managed and passed to the newly created event
handler. This requirement prevented the use of stack allo-
cated data structures for exception-less system calls (e.g.,
programs typically use stack allocated “struct stat”
data structure to pass to the fstat system call).

6 Experimental Evaluation

In this section, we evaluate the performance of exception-
less system call support for event-driven servers. We
present experimental results of the two previously dis-
cussed event-driven servers: memcached and nginx.

FlexSC was implemented in the Linux kernel, version
2.6.33. The baseline measurements were collected using
unmodified Linux (same version), with the servers con-
figured to use the epoll interface. In the graphs shown,
we identify the baseline configuration as “epoll”, and the
system with exception-less system calls as “flexsc”.

The experiments presented in this section were run on
an Intel Nehalem (Core i7) processor with the character-
istics shown in Table 3. The processor has 4 cores, each

Component Specification
Cores 4

Cache line 64 B for all caches
Private L1 i-cache 32 KB, 3 cycle latency
Private L1 d-cache 32 KB, 4 cycle latency
Private L2 cache 512 KB, 11 cycle latency
Shared L3 cache 8 MB, 35-40 cycle latency

Memory 250 cycle latency (avg.)
TLB (L1) 64 (data) + 64 (instr.) entries
TLB (L2) 512 entries

Table 3: Characteristics of the 2.3GHz Core i7 processor.

with 2 hyper-threads. We disabled the hyper-threads, as
well as the “TurboBoost” feature, for all our experiments
to more easily analyze the measurements obtained.

For the experiments involving both servers, requests
were generated by a remote client connected to our test
machine through a 1 Gbps network, using a dedicated
router. The client machine contained a dual core Core2
processor, running the same Linux installation as the test
machine.

All values reported in our evaluation represent the av-
erage of 5 separate runs.

6.1 Memcached
The workload we used to drive memcached is the mem-
slap benchmark that is distributed with the libmemcached
client library. The benchmark performs a sequence of
memcache get and set operations, using randomly gen-
erated keys and data. We configured memslap to issue
10% of set requests and 90% of get requests.

For the baseline experiments (Linux epoll), we con-
figured memcached to run with the same number of
threads as processor cores, as we experimentally ob-
served this yielded the best baseline performance. For our
exception-less version, a single memcached thread was
enough to generate enough kernel work to keep all cores
busy.

Figure 5 shows the throughput obtained from executing
the baseline and exeception-less memcached on 1, 2 and
4 cores. We varied the number of concurrent connections
generating requests from 1 to 1024. For the single core
experiments, FlexSC employs system call batching, and
for the multicore experiments it additionally dynamically
distributed system calls to other cores to maximize core
locality.

The results show that with 64 or more concurrent re-
quests, memcached programmed to libflexsc outperforms
the version using Linux epoll. Throughput is improved
by as much as 25 to 35%, depending on the number of
cores used.

To better understand the source of performance im-
provement, we collected several performance metrics of
the processor using hardware performance counters. Fig-
ure 6 shows the effects of executing with FlexSC, while
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Figure 5: Comparison of Memcached throughput of Linux
epoll and FlexSC executing on 1, 2 and 4 cores.

servicing 768 concurrent memslap connections. The most
important metric listed is the cycles per instruction (CPI)
of the user and kernel mode for the different setups, as it
summarizes the efficiency of execution (the lower the CPI,
the more efficient the execution). The other values listed
are normalized values of misses on the listed structure (the
lower the misses, the more efficient the execution).

The CPI of both kernel and user execution, on 1 and 4
cores, is improved with FlexSC. On a single core, user-
mode CPI decreases by as much as 22%, and on the 4
cores, we observe a 52% decrease in user-mode CPI. The
data shows that, for memcached, the improved execution
comes from significant reduction in misses in the perfor-
mance sensitive L1, both in the data and instruction part
(labelled as d-cache and i-cache).

The main reason for this drastic increase of user CPI on
4 cores is that with traditional system calls, a user-mode
thread must occupy each core to make use of it. With
FlexSC, however, if a single user-mode thread generates
many system requests, they can be distributed and ser-

viced to remote cores. In this experiment, a single mem-
cached thread was able to generate enough requests to oc-
cupy the remaining 3 cores. This way, the core executing
the memcached core was predominantly filled with state
from the memcached process.

6.2 nginx
To evaluate the effect of exception-less execution of the
nginx web server, we used two workloads: ApacheBench
and a modified version of httperf. For both workloads,
we present results with nginx execution on 1 and 2 cores.
The results obtained with 4 cores were not meaningful
as the client machine could not keep up with the server,
making the client the bottleneck. For the baseline experi-
ments (Linux epoll), we configured nginx to spawn one
worker process per core, which nginx automatically as-
signs and pins to separate cores. With FlexSC, a single
nginx worker thread was sufficient to keep all cores busy.

6.2.1 ApacheBench

ApacheBench is a HTTP workload generator that is dis-
tributed with Apache. It is designed to stress-test the Web
server determining the number of requests per second that
can be serviced, with varying number of concurrent re-
quests.

Figure 7 shows the throughput numbers obtained on
1 and 2 cores when varying the number of concurrent
ApacheBench client connections issuing requests to the
nginx server. For this workload, system call batching on
one core provides significant performance improvements:
up to 70% with 256 concurrent requests. In the 2 core
execution, we see that FlexSC provides a consistent im-
provement with 16 or more concurrent clients, achieving
up to 120% higher throughput, showing the added benefit
of dynamic core specialization.

Besides aggregate throughput, latency of individual re-
quests is an important metric when evaluating perfor-
mance of web servers. Figure 8 reports the mean latency,
as reported by the client, with 256 concurrent connections.
FlexSC reduces latency by 42% in single core execution,
and 58% in duo core execution. It is also interesting to
note that adding a second core helps to reduce the average
latency of servicing requests with FlexSC, which is not
the case when using the epoll facility.

6.2.2 httperf

The httperf HTTP workload generator was built as a
more realistic measurement tool for web server per-
formance [19]. In particular, it supports session log
files, and models a partially open system (in contrast to
ApacheBench, which models a closed system) [27]. For
this reason, we do not control the number of concurrent
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Figure 6: Comparison of processor performance metrics of Memcached execution using Linux epoll and FlexSC on 1 and 4 cores,
while servicing 768 concurrent memslap connections. All values are normalized to baseline execution (epoll). The CPI columns
show the normalized cycles per instruction, while the other columns depict the normalized misses of each processor structure (lower
is better in all cases).
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Figure 7: Comparison of nginx performance with the ApacheBench when executing with Linux epoll and FlexSC on 1 and 2 cores.
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Figure 8: Comparison of nginx latency replying to 256 concur-
rent ApacheBench requests when executing with Linux epoll
and FlexSC on 1 and 2 cores.

connections to the server, but instead the request arrival
rate. The number of concurrent connections is determined
by how fast the server can satisfy incoming requests.

We modified httperf (we used the latest version, 0.9.0)
in order for it to properly handle large number of concur-
rent connections. In its original version, httperf uses the
select system call to manage multiple connections. On
Linux, this restricts the number of connections to 1024,
which we found insufficient to fully stress the server. We
modified httperf to use the epoll interface, allowing it
to handle several thousand concurrent connections. We

verified that the results of our modified httperf were sta-
tistically similar to the original httperf, when using less
than 1024 concurrent connections.

We configured httperf to connect using HTTP 1.1 pro-
tocol, and issue 20 requests per connection. The session
log contained requests to files ranging from 64 bytes to 8
kilobytes. We did not add larger files to the session as our
network infrastructure is modest, at 1Gpbs, and we did not
want the network to become a source of bottleneck.

Figure 9 shows the throughput of nginx executing on
1 and 2 cores, measured in megabits per second, ob-
tained when varying the request rate of httperf. Both
graphs show that the throughput of the server can sat-
isfy the request rate up to a certain value. After that the
throughput is relatively stable and constant. For the single
core case, the throughput of Linux epoll stabilizes after
20,000 requests per second, while with FlexSC, through-
put increases up to 40,000 requests. Furthermore, FlexSC
outperforms Linux epoll by as much as 120%, when
httperf issues 50,000 requests per second.

In the case of 2 core execution, nginx with Linux
epoll reaches peak throughput at 35,000 requests per
second, while FlexSC sustains improvements with up to
60,000 requests per second. In this case, the difference in
throughput, in megabits per second, is as much as 77%.
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Figure 9: Comparison of nginx performance with the httperf when executing with Linux epoll and FlexSC on 1 and 2 cores.
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Figure 10: Comparison of processor performance metrics of nginx execution using epoll and FlexSC on 1 and 2 cores, while
servicing 40,000 and 60,000 req/s, respectively. Values are normalized to baseline execution (epoll). The CPI columns show the
normalized cycles per instruction, while the other columns depict the normalized misses of each processor structure (lower is better
in all cases).

Similarly to the analysis of memcached, we collected
processor performance metrics using hardware perfor-
mance counters to analyze the execution of nginx with
httperf. Figure 10 shows the several metrics, normalized
to the baselinux (Linux epoll) execution. The results
show that the efficiency of user-mode execution doubles,
in the single core case, and improves by 83% on 2 cores.
Kernel-mode execution improves efficiency by 25% and
21%, respectively. For nginx, not only are the L1 instruc-
tion and data caches better utilized (we observe less than
half of the miss ratio in these structures), but the private
L2 cache also observes miss rate reduction of less than
half of the baseline.

Although we observe increase of some metrics, such as
the TLB and kernel-mode L3 misses, the absolute values
are small enough that it does not affect performance sig-
nificantly. For example, the increase in 80% of kernel-
mode L3 misses in the 1 core case corresponds to the
misses per kilo instructions increasing from 0.51 to 0.92
(that is, for about every 2,000 instructions, an extra L3
miss is observed). Similarly, the 73% increase in misses
of the user-mode TLB in the 2 core execution corresponds
to only 4 extra TLB misses for every 1,000 instructions.

The values for the hardware performance informa-
tion collected during execution driven by ApacheBench

showed similar trends (not shown in the interest of
space).

7 Discussion: Scaling the Number of Con-
current System Calls

One concern not addressed in this work is that of effi-
ciently handling applications that require a large number
of concurrent outstanding system calls. Specifically, there
are two issues that can hamper scaling with the number
of calls: (1) the exception-less system call interface, and
(2) the requirement of one syscall thread per outstanding
system call. We briefly discuss mechanisms to overcome
or alleviate these issues.

The exception-less system call interface, primarily
composed of syscall entries, requires user and kernel code
to perform linear scans of the entries to search for status
updates. If the rate of entry modifications does not grow in
same proportion as the total number of entries, the over-
head of scanning, normalized per modification, will in-
crease. A concrete example of this is a server servicing
a large number of slow or dormant clients, resulting in
a large number of connections that are infrequently up-
dated. In this case, requiring linear scans on syscall pages



is inefficient.
Instead of using syscall pages, the exception-less sys-

tem call interface could be modified to implement two
shared message queues: an incoming queue, with system
calls requests made by the application, and an outgoing
queue, composed of system call requests serviced by the
kernel. A queue based interface would potentially com-
plicate user-kernel communication, but would avoid the
overheads of linear scans across outstanding requests.

Another scalability factor to consider is the require-
ment of maintaining a syscall thread per outstanding sys-
tem call. Despite the modest memory footprint of kernel
threads and low overhead of switching threads that share
address spaces, these costs may become non-negligible
with hundreds of thousands or millions of outstanding
system calls.

To avoid these costs, applications may still utilize the
epoll facility, but through the exception-less interface.
This solution, however, would only work for resources
that are supported by epoll. A more comprehensive so-
lution would be to restructure the Linux kernel to support
completely non-blocking kernel code paths. Instead of re-
lying on the ability to block the current context of exe-
cution, the kernel could enqueue requests for contended
resources, while providing a mechanism to continue the
execution of enqueued requests when resources become
available. With a non-blocking kernel structure, a single
syscall thread would be sufficient to service any number
of syscall requests.

One last option to mitigate both the interface and
threading issues, that does not involve changes to FlexSC,
is to require user-space to throttle the number of outstand-
ing system calls. In our implementation, throttling can
be enforced within the libflexsc library by allocating a
fixed number of syscall pages, and delaying new system
calls whenever all entries are busy. The main drawback of
this solution is that, in certain cases, extra care would be
necessary to avoid a standstill situation (lack of forward
progress).

8 Related Work

8.1 Operating System Support for I/O Con-
currency

Over the years, there have been numerous proposals and
studies exploring operating system support for I/O concur-
rency. Due to space constraints, we will briefly describe
previous work that is directly related to this proposal.

Perhaps the most influential work in this area is Sched-
uler Activations that proposed addressing the issue of pre-
empting user-mode threads by returning control of execu-
tion to a user-mode scheduler, through a scheduler activa-
tion, upon experiencing a blocking event in the kernel [2].

Elmeleegy et al. proposed lazy asynchoronous I/O, a
user-level library that uses Scheduler Activations to sup-
port event-driven programming [11]. LAIO is the pro-
posal that most closely resembles ours. However, in
LAIO, system calls are still exception-based, and tenta-
tively execute synchronously. Since LAIO makes use of
scheduler activations, if a blocking condition is detected,
a continuation is created, allowing the user thread to con-
tinue execution. Recently, the Linux community has pro-
posed a mechanism similar to LAIO for implementing
non-blocking system calls [8].

Banga et al. are among the first to explore the con-
struction of generic event notification infrastructure un-
der UNIX [4]. Their work inspired the implementation
of the kqueue interface available on BSD and Linux ker-
nels [16]. While their proposal does encapsulate more re-
sources than descriptor based ones, explicit kernel support
is needed for each type of event. In contrast, exception-
less system calls supports all system calls without code
specific to each system call or resource.

The main difference between many of the proposals for
non-blocking or asynchronous execution and FlexSC is
that none of the non-blocking system call proposals com-
pletely decouple the invocation of the system call from its
execution. As we have discussed, the flexibility resulting
from this decoupling is crucial for efficiently exploring
optimizations such as system call batching and core spe-
cialization.

8.2 Locality of Execution and Multicores
Several researchers have studied the effects of operating
system execution on application performance [1, 3, 9, 15,
17]. Larus and Parkes also identified processor ineffi-
ciencies of server workloads, although not focusing on
the interaction with the operating system. They proposed
Cohort Scheduling to efficiently execute staged computa-
tions to improve locality of execution [15].

Techniques such as Soft Timers [3] and Lazy Receiver
Processing [10] also address the issue of locality of exe-
cution, from the other side of the compute stack: handling
device interrupts. Both techniques describe how to limit
processor interference associated with interrupt handling,
while not impacting the latency of servicing requests.

Computation Spreading, proposed by Chakraborty et
al., is similar to the multicore execution of FlexSC [9].
They introduced processor modifications to allow for
hardware migration of threads, and evaluated the effects
on migrating threads to specialize cores when they enter
the kernel. Their simulation-based results show an im-
provement of up to 20% on Apache; however, they explic-
itly do not model TLBs and provide for fast thread migra-
tion between cores. On current hardware, synchronous
thread migration between cores requires a costly inter-
processor interrupt.



Recently, both Corey and Factored Operating System
(fos) have proposed dedicating cores for specific operating
system functionality [31, 32]. There are two main differ-
ences between the core specialization possible with these
proposals and FlexSC. First, both Corey and fos require a
micro-kernel design of the operating system kernel in or-
der to execute specific kernel functionality on dedicated
cores. Second, FlexSC can dynamically adapt the propor-
tion of cores used by the kernel, or cores shared by user
and kernel execution, depending on the current workload
behavior.

Explicit off-loading of select OS functionality to cores
has also been studied for performance [20, 21] and power
reduction in the presence of single-ISA heterogeneous
multicores [18]. While these proposals rely on expensive
inter-processor interrupts to offload system calls, we hope
FlexSC can provide for a more efficient and flexible mech-
anism that can be used by such proposals.

Zeldovich et al. introduced libasync-smp, a library that
allows event-driven servers to execute on multiprocessors
by having programmers specify events that can be safely
handled concurrently [33]. Libasync-smp was designed to
use existing asynchronous I/O facilities of UNIX kernels,
but could be extended to rely on exception-less system
calls instead.

8.3 System Call Batching

The idea of batching calls in order to save crossings
has been extensively explored in the systems community.
Closely related to this work is the work by Bershad et
al. on user-level remote procedure calls (URPC) [6]. In
particular, the use of shared memory to communicate re-
quests, allied with the use of light-weight threads is com-
mon in both URPC and FlexSC. In this work, we explored
directly exposing the communication mechanism to the
application thereby removing the reliance on user-level
threads.

Also related to exception-less system calls are multi-
calls, which are used in both operating systems and par-
avirtualized hypervisors as a mechanism to address the
high overhead of mode switching. Cassyopia is a compiler
targeted at rewriting programs to collect many indepen-
dent system calls, and submitting them as a single multi-
call [25]. An interesting technique in Cassyopia, which
could be eventually explored in conjunction with FlexSC,
is the concept of a looped multi-call where the result of
one system call can be automatically fed as an argument to
another system call in the same multi-call. In the context
of hypervisors, both Xen and VMware currently support a
special multi-call hypercall feature [5][29].

9 Concluding Remarks

Event-driven architectures continue to be a popular de-
sign option for implementing high-performance and scal-
able server applications. This paper proposes the use
of exception-less system calls as the principal operat-
ing system primitive for efficiently supporting I/O con-
currency and event-driven execution. We describe sev-
eral advantages of exception-less system calls over tra-
ditional support for I/O concurrency and event notifica-
tion facilities, including: (1) any system call can be in-
voked asynchronously, even system calls that are not file
descriptor-based, (2) support in the operating system ker-
nel is non-intrusive as code changes are not required to
each system call, (3) processor efficiency is high since
mode switches are mostly avoided when issuing or exe-
cuting asynchronous operations, and (4) enabling multi-
core execution for event-driven programs is easier, given
that a single user-mode execution context can generate a
sufficient number of requests to keep multiple processors/-
cores busy with kernel execution.

We described the design and implementation of
libflexsc, an asynchronous system call and notification
library that makes use of our Linux exception-less sys-
tem call implementation, called FlexSC. We show how
libflexsc can be used to support current event-driven
servers by porting two popular server applications to the
exception-less execution model: memcached and nginx.

The experimental evaluation of libflexsc demonstrates
that the proposed exception-less execution model can
significantly improve the performance and efficiency of
event-driven servers. Specifically, we observed that
exception-less execution increases the throughput of
memcached by up to 35%, and that of nginx by up to
120%. We show that the improvements, in both cases, are
derived from more efficient execution through improved
use of processor resources.
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