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Abstract

Several cloud storage systems exist today, but none of
them provide security guarantees in their Service Level
Agreements (SLAs). This lack of security support has
been a major hurdle for the adoption of cloud services,
especially for enterprises and cautious consumers. To fix
this issue, we present CloudProof, a secure storage sys-
tem specifically designed for the cloud. In CloudProof,
customers can not only detect violations of integrity,
write-serializability, and freshness, they can also prove
the occurrence of these violations to a third party. This
proof-based system is critical to enabling security guar-
antees in SLAs, wherein clients pay for a desired level
of security and are assured they will receive a certain
compensation in the event of cloud misbehavior. Further-
more, since CloudProof aims to scale to the size of large
enterprises, we delegate as much work as possible to the
cloud and use cryptographic tools to allow customers to
detect and prove cloud misbehavior. Our evaluation of
CloudProof indicates that its security mechanisms have
a reasonable cost: they incur a latency overhead of only
~15% on reads and writes, and reduce throughput by
around 10%. We also achieve highly scalable access
control, with membership management (addition and re-
moval of members’ permissions) for a large proprietary
software with more than 5000 developers taking only a
few seconds per month.

1 Introduction

Storing important data with cloud storage providers
comes with serious security risks. The cloud can leak
confidential data, modify the data, or return inconsistent
data to different users. This may happen due to bugs,
crashes, operator errors, or misconfigurations. Further-
more, malicious security breaches can be much harder
to detect or more damaging than accidental ones: exter-
nal adversaries may penetrate the cloud storage provider,
or employees of the service provider may commit an in-
sider attack. These concerns have prevented security-
conscious enterprises and consumers from using the
cloud despite its benefits [16].

These concerns are not merely academic. In June
2008, Amazon started receiving public reports that data
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on its popular Simple Storage Service (S3) had been cor-
rupted due to an internal failure; files no longer matched
customers’ hashes [11]. One day later, Amazon con-
firmed the failure, and cited a faulty load balancer that
had corrupted single bytes in S3 responses “intermit-
tently, under load.” Another example of data security
violation in the cloud occurred when Google Docs had
an access-control bug that allowed inadvertent sharing of
documents with unauthorized readers [28]. Even worse,
LinkUp (MediaMax), a cloud storage provider, went out
of business after losing 45% of client data because of ad-
ministrator error.

None of today’s cloud storage services—Amazon’s
S3, Google’s BigTable, HP, Microsoft’s Azure, Nirvanix
CloudNAS, or others—provide security guarantees in
their Service Level Agreements (SLAs). For example,
S3’s SLA [1] and Azure’s SLA [23] only guarantee avail-
ability: if availability falls below 99.9%, clients are re-
imbursed a contractual sum of money. As cloud storage
moves towards a commodity business, security will be
a key way for providers to differentiate themselves. In
this paper, we tackle the problem of designing a cloud
storage system that makes it possible to detect violations
of security properties, which in turn enables meaningful
security SLAs.

The cloud security setting is different from the set-
ting of previous secure storage or file systems research.
The first difference is that there is a financial contract
between clients and the cloud provider: clients pay for
service in exchange for certain guarantees and the cloud
is a liable entity. In most previous work [3, 4, 10, 20],
the server was some group of untrusted remote machines
that could not guarantee any service. The second differ-
ence is that scalability is more important, as it is one of
the primary promises of the cloud. Enterprises are impor-
tant customers for the cloud; they have many employees
requiring highly scalable access control and have large
amounts of data.

We identify four desirable security properties of cloud
storage: confidentiality, integrity, write-serializability,
and read freshness (denoted by C, I, W, F). If a cus-
tomer has such security guarantees, his data is confiden-



tial, cannot be modified by any unauthorized party, is
consistent among updates made by authorized users, and
is fresh as of the last update.

We design, build, implement, and evaluate Cloud-
Proof, a secure and practical storage system specifically
designed for the cloud setting. Our first novelty is the
idea and the mechanism of enabling customers fo prove
to third parties when the cloud violates the IWF proper-
ties. (Confidentiality is not included because customers
can provide it to themselves by encrypting the data they
store on the cloud.) This enabling of proofs is in ad-
dition to detecting the violations and is not present in
previous work. It includes the fact that the cloud can dis-
prove false accusations made by clients; that is, in Cloud-
Proof, clients cannot frame the cloud. We believe that
such proofs are key to enabling security in SLAs with re-
spect to these three properties. Customers and cloud can
now establish a financial contract by which clients pay
a certain sum of money for the level of security desired;
customers have assurance that the cloud will pay back
an agreed-upon compensation in case their data security
is forfeited because they can prove this violation. With-
out such proofs, the cloud can claim a smaller amount of
damage to protect itself against significant financial loss
and clients can falsely accuse the cloud. These proofs
are based on atfestations, which are signed messages that
bind the clients to the requests they make and the cloud
to a certain state of the data. For every request, clients
and cloud exchange attestations. These attestations will
be used in a lightweight auditing protocol to verify the
cloud’s behavior.

The second novelty is CloudProof, the system as a
whole, in which we put engineering effort to maintain
cloud scalability while detecting and proving violations
to all three IWF properties and providing access control.
Previous work did not provide detection for both write-
serializability and freshness at the same time. In addi-
tion, most related work has not been designed with cloud
scalability in mind and we argue that they are not read-
ily extendable to provide it. Our design principle is to
offload as much of the work as possible to the cloud,
but verify it. Therefore, access control, key distribu-
tion, read, write, file creation, and ensuring the afore-
mentioned security properties are delegated to the cloud
to the extent possible. To enable this delegation, we em-
ploy cryptographic tools from the literature: to achieve
scalable access control, we use in a novel way key rolling
and broadcast encryption. We also have a novel way to
group data by access control list into “block families”
that allows us to easily handle changes in access control.

CloudProof targets most applications that could bene-
fit from the cloud: large departmental or enterprise file
systems, source code repositories, or even small, per-
sonal file systems. These tend to be applications that can

tolerate larger client-cloud latency (which is an inher-
ent result of the different geographic locations of various
clients/organizations with respect to the cloud). Yet, a
surprising number of applications benefit from the cloud.
For example, the Dropbox service uses S3 storage to
provide backup and shared folders to over three million
users. The SmugMug photo hosting service has used S3
since April 2006 to hold photos, adding ten terabytes of
data each month without needing to invest in dedicated
infrastructure. AF83 and Indy500.com use S3 to hold
static web page content.

Any security solution for cloud storage must have a
limited performance impact. We have prototyped Cloud-
Proof on Windows Azure [22]. In Section 9 we report ex-
periments that measure the latency and throughput added
by CloudProof compared to the storage system without
any security. In microbenchmarks, for providing all four
of our properties, we add ~0.07s of overhead (~15%)
to small block reads or writes, and achieve only ~10%
throughput reduction and 15% latency overhead for mac-
robenchmarks. One can audit the activity of a large com-
pany during a month in 4 min and perform membership
changes (adding and revoking member permissions) for
a source code repository of a very large proprietary soft-
ware that involved more than 5000 developers in a few
seconds per month. Overall, our evaluations show that
we achieve our security properties at a reasonable cost.

2 Setting

CloudProof can be built on top of conventional cloud
storage services like Amazon S3 or Azure Blob Storage.
The storage takes the form of key-value pairs accessed
through a get and put interface: the keys are block IDs
and the values are the contents of the blocks. Blocks can
have any size and can vary in size.

There are three parties involved in CloudProof:

1. (Data) owner: the entity who purchases the cloud
storage service. A data owner might be an enterprise
with business data or a home user with personal data.

2. Cloud: the cloud storage provider.

3. (Data) users: users who are given either read or write
access to data on the cloud. A user might be an em-
ployee of an enterprise or family members and friends
of a home user.

The data owner is the only one allowed to give ac-
cess permissions to users. The access types are read and
read/write. Each block has an access control list (ACL),
which is a list of users and their accesses to the block.
(One can easily implement a group interface by organiz-
ing users in groups and adding groups to ACLs.) When
talking about reading or modifying a block, a legitimate
user is a user who has the required access permissions to
the block. We assume that the data owner and the cloud
have well-known public keys, as is the case with existing



providers like Amazon S3.

2.1 Threat Model

The cloud is entirely untrusted. It may return arbitrary
data for any request from the owner or any user. Further-
more, the cloud may not honor the access control lists
created by the owner and send values to a user not on the
corresponding access control list. A user is trusted with
the data he is given access to. However, he may attempt
to subvert limits on his permission to access data, possi-
bly in collusion with the cloud. An owner is trusted with
accessing the data because it belongs to him. However,
the users and the owner may attempt to falsely accuse the
cloud of violating one of our security properties.

We make standard cryptographic assumptions for the
tools we use: existential unforgeability under cho-
sen message attack for public-key signature schemes,
collision-resistance and one-way function property for
hash functions, and semantic security for symmetric en-
cryption schemes.

2.2 Goals

Let us first define the security properties CloudProof
provides. Confidentiality (C) holds when the cloud or
any illegitimate user cannot identify the contents of any
blocks stored on the cloud. Integrity (I) holds when each
read returns the content put by a legitimate user. For
example, the cloud cannot replace some data with junk.
Write-serializability (W) holds when each user commit-
ting an update is aware of the latest committed update to
the same block. W implies that there is a total order on
the writes to the same block. Freshness (F) holds if reads
return the data from the latest committed write. Note that
we cannot guarantee that each block retrieved was the
most recently received by the cloud, because, upon two
parallel writes to the block, the cloud can pretend to have
received them in a different order or network delays can
arbitrarily reorder such requests. Instead, we aim to guar-
antee that the last committed write (for which the cloud
acknowledged receipt to the client, as we will see) will
be visible during read. A violation to the security of a
user is when the IWF properties do not hold.

CloudProof has the following four goals.

Goal 1: Users should detect the cloud’s violations
of integrity, freshness, and write-serializability. Users
should provide confidentiality to themselves by encrypt-
ing the data they store on the cloud.

Goal 2: Users should be able to prove cloud viola-
tions whenever they happen. Any proof system has two
requirements: (1) the user can convince a third party of
any true cloud violation; and (2) the user cannot convince
a third party when his accusation of violation is false.

Goal 3: CloudProof should provide read and write ac-
cess control in a scalable (available) way. Since we are
targeting enterprise sizes, there may be hundreds of thou-

sands of users, many groups, and terabytes of data. We
want to remove data owners from the data access path
as much as possible for performance reasons. Owners
should be able to rely (in a verifiable way) on the cloud
for key distribution and access control, which is a highly
challenging task.

Goal 4: CloudProof should maintain the performance,
scalability, and availability of cloud services despite
adding security. The overhead should be acceptable com-
pared to the cloud service without security, and concur-
rency should be maintained. The system should scale to
large amounts of data, many users per group, and many
groups, since this is demanded by large enterprise data
owners.

In the remainder of this paper, we show how Cloud-
Proof achieves these goals.

3 System Overview

In this section, we present an overview of our system;
we will elaborate on each component in later sections.

CloudProof’s interface consists of get(BlockID
blocklD) and put(BlocklD blockID, byte[] content).
BlocklD is a flat identifier that refers to a block on the
cloud. The get command reads content of a block,
while the put command writes in the block identified
by blockID. Creation of a block is performed using a
put with a new blocklD and deletion is performed by
sending a put for an empty file. CloudProof works with
any cloud storage that exports the following key/value
store interface and can sign messages verifiable by other
parties using some known public key.

The design principle of CloudProof is to offload as
much work as possible to the cloud, but be able to verify
it. The cloud processes reads and writes, maintains data
integrity, freshness, and write-serializability, performs
key distribution (protected by encryption), and controls
write accesses. Users and the owner verify the cloud per-
formed these operations correctly.

We put considerable engineering effort into keeping
the system scalable. The data owner only performs group
membership changes and audits the cloud. Both tasks
are offline actions and lightweight, as we will see in Sec-
tion 9. Thus, the data owner is not actively present in
any data access path (i.e. put or get), ensuring the ser-
vice is scalable and available even when the data owner
is not. Moreover, access control is delegated to the cloud
or distributed. As part of access control, key distribution
is delegated in a novel way using broadcast encryption
and key rolling to the cloud: the data owner only needs
to change one data block when a user is revoked rather
than all the blocks the user had access to. Most data reen-
cryption is distributed to the clients for scalability. Im-
portantly, we strived to keep accesses to different blocks
running in parallel and avoided the typical serialization
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Figure 1: Layout of block formats in a family and of the key block. K
is the read access key, Ky is the signing key, and Ky is the verification
key. Ep() means broadcast encryption to the authorized users in the
ACL of a certain block family. The block version is an integer for
each block that is incremented by one with every update to the block
committed on the cloud.

so often encountered in security protocols (e.g., compu-
tations of Merkle trees over multiple blocks upon data
write).

The key mechanism we use is the exchange of attes-
tations between the owner, users, and the cloud. When
users access cloud storage through the get or put inter-
face, each request and response is associated with an at-
testation. Attestations keep users and the cloud account-
able and allow for later proofs of misbehavior, as we dis-
cuss in Section 5.

We divide time into epochs, which are time periods
at the end of which data owners perform auditing. At
the end of each epoch, owners also perform membership
changes such as addition or removal of members. (Own-
ers can also change membership during an epoch and
clients will have to check if any keys have changed due
to revocations.) Each epoch has a corresponding epoch
number that increases with every epoch. If the system
uses fixed-length epochs, clients can easily derive the
current epoch identifier independently from the current
time.

Briefly, CloudProof detects and proves IWF violations
as follows. Clients check data integrity based on attesta-
tions they get from the cloud, as described in Section 6.
The owner checks W and F during the auditing process.
For auditing efficiency, each block has a certain proba-
bility of being audited in an epoch. During the epoch,
users send the attestations they receive from the cloud to
the owner. If they are disconnected from the owner, they
can send these attestations any time before the epoch’s
end; if they are malicious or fail to send them for any
reason, there is no guarantee that their gets returned cor-
rect data or their puts took effect. The owner uses these
attestations to detect any violations of WF and construct
a proof that convinces a third party whenever the cloud
misbehaved, as we will discuss in Section 7.

4 Access Control

In this section, we focus only on access control; as
such, we consider that the cloud does not modify the data
placed by authorized users and does not provide stale or
inconsistent views to users: we provide mechanisms to
enforce these properties separately in Sections 6 and 7.

If the owner adds or removes a user from the ACL of
a block, then that user gains or loses access to that block.

We introduce the term block family to describe the set

of all blocks that have the same ACL. If the owner of a
block changes its ACL, the block will switch to a differ-
ent family. Since all blocks in a family have identical
ACLs, when we need a key to enforce access control we
can use the same key for every block in a family.

As mentioned, the cloud is not trusted with access con-
trol. At the same time, having the owner perform ac-
cess control checks for every user get or put would be
costly and unscalable. We thus follow our design princi-
ple of verifiably offloading as much work as possible to
the cloud.

Read Access Control. To prevent unauthorized reads,
all the data stored on the cloud is encrypted with a secure
block or stream cipher, e.g., AES in counter mode. We
denote the secret key of the cipher as the read/get access
key. Clients with read access will have the key for de-
cryption as described in Section 4.1 and thus will be able
to access the data. Blocks in the same block family will
use the same read access key.

Write Access Control. We achieve write access con-
trol with a public key signature scheme, as follows. For
each block family, we have a public verification key and a
private signing key. The verification key is known to ev-
eryone, including the cloud, but the signing key is known
only to users granted write access by the ACL. Each time
a user modifies a block, he computes its integrity signa-
ture, a signature over the hash of the updated block us-
ing the signing key. He sends this signature along with
his write request, and the cloud stores it along with the
block. The cloud provides it to readers so they can verify
the integrity of the block.

Since the verification key is known to the cloud, it can
perform write access control, as follows. Whenever a
user attempts to update a block, the cloud verifies the sig-
nature and only allows the update if the signature is valid.
Note that, if the cloud mistakenly allows a write without
a valid signature, this failure will be detected by future
data users reading the block. The mechanism of attesta-
tions, described later, will allow those users to prove this
cloud misbehavior.

4.1 Key distribution

Our key distribution mechanism ensures that users can
acquire the keys they need to access the blocks they
are authorized to access. To offload as much work
as possible to the cloud, the cloud performs this key
distribution verifiably. We achieve this goal by em-
ploying in a novel way broadcast encryption and key
rolling. Broadcast encryption([5, 12]) allows a broad-
caster to encrypt a message to an arbitrary subset of a
group of users. Only the users in the subset can de-
crypt the message. Encrypting creates a ciphertext of size
O(+/total no. of users in the group). Key rotation [18]
is a scheme in which a sequence of keys can be produced




from an initial key and a secret master key. Only the
owner of the secret master key can produce the next key
in the sequence, but any user knowing a key in the se-
quence can produce all earlier versions of the key (for-
ward secrecy).

For each block family, the owner places one block on
the cloud containing the key information for that family.
This block is called the family key block. Only the data
owner is allowed to modify the family key block. Re-
call that all blocks in a family share the same ACL, so
each key block corresponds to a particular ACL that all
blocks in its family share. Figure 1 illustrates the layout
of blocks in a family and of the key block. The purposes
of the various terms in the figure are explained in the rest
of this section.

Using broadcast encryption, the data owner encrypts
the read access key so that only users and groups in the
ACL’s read set can decrypt the key. This way, only those
users and groups are able to decrypt the blocks in the
corresponding family. The data owner also uses broad-
cast encryption to encrypt the signing key so that only
users and groups in the ACL’s write set can decrypt the
key. This way, only those users and groups can generate
update signatures for blocks in the corresponding family.

We do not try to prevent a data user giving his read
access key for a block family to a data user who is not
authorized for that block family. The reason is that au-
thorized data users can simply read the information di-
rectly and give it to others. Solving this problem, e.g.,
with digital rights management, is beyond the scope of
this paper.

4.2 Granting/revoking access

The owner may want to revoke the access of some
users by removing them from certain groups or from in-
dividual block ACLs. When the owner revokes access
of a user, he should make sure that the data user cannot
access his data any more. For this goal, there are two op-
tions, each appropriate for different circumstances. Im-
mediate revocation that the revoked user should not have
access to any piece of data from the moment of the re-
vocation. Lazy revocation means that the revoked user
will not have access to any data blocks that have been
updated after his revocation. The concept of lazy revoca-
tion is in [13] and is not new to us.

When a block’s ACL changes, that block must un-
dergo immediate revocation. That is, the block must
switch to a new family’s key block, the one correspond-
ing to its new ACL, and the block needs to be immedi-
ately re-encrypted with that new key block.

In contrast, when a group’s membership changes, then
all blocks with ACLs that include that group must un-
dergo revocation. Using immediate revocation in this
case would be too expensive, as it would involve imme-

diately re-encrypting all the blocks in one or more block
families, a potentially immense amount of data. Further-
more, such an approach may be futile because a mali-
cious revoked data user could have copied all the blocks
for which he had access. Instead, we use lazy revocation,
as follows.

Using key rotation, the owner rolls the keys forward
to a new version for each of the families corresponding
to the affected ACLs. However, the blocks with those
ACLs do not need to be re-encrypted right away; they
can be lazily re-encrypted. The owner only needs to up-
date the family key blocks with the new key informa-
tion. This means the work the owner has to do upon a
membership change is independent of the number of files
in the block family. Broadcast encryption has complex-
ity O(v/no. of members in ACL), which we expect to be
manageable in practice, as we will show in Section 9.

When a user accesses a block, he checks whether the
version of the read access key in the family key block is
larger than the version of the key with which the current
block was encrypted. If so, the data user re-encrypts the
block with the new key. Re-encrypting with a different
key does not incur any overhead since all writes require
a re-encryption. Therefore, the burden of the revocation
is pushed to users, but without them incurring any addi-
tional re-encryption overhead.

We can see that our division of storage into block fam-
ilies makes revocation easier. If, in contrast, there were
multiple Unix-like groups for a block, one would need to
store encryptions of the signature and block encryption
key for every group with each block. Besides the storage
overhead, this would require many public key operations
whenever a member left a group because the key would
need to be changed for every regular group. This process
would be slower and more complex.

5 Attestations

In this section, we describe the structure and exchange
of the attestations'. The attestations are key components
that allow the clients to prove cloud misbehavior and the
cloud to defend himself against false accusations.

Every time the client performs a get, the cloud will
give the client a cloud get attestation. Every time a client
performs a put, the client will give the cloud a client put
attestation and the cloud will return a cloud put attesta-
tion. Intuitively, the role of the attestations is to atfest to
the behavior of each party. When the client performs a
get, the cloud attaches to the response an attestation; the
attestation is similar to the cloud saying “I certify that I
am giving you the right data”. When the client performs
a put, he must provide a client put attestation which in-
tuitively says “I am asking you to overwrite the existing

ICloudProof’s attestations should not be confused with attestations
from trusted computing, which are different mechanisms.
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Figure 2: The structure of the attestations. The elements listed
in each attestation are concatenated, a hash is computed over
the concatenation and the result is signed as shown in the figure.
The first field indicates the type of the attestation. The hash in
client attestations is a hash over the block content and metadata,
while the hash in the cloud attestation includes the integrity
signature as well; the new hash is the value of this hash after an
update. The nonce is a random value given by the client.

data with this content”. The cloud must answer with a
cloud put attestation saying “The new content is com-
mitted on the cloud”.

5.1 Attestation Structure

Each attestation consists of concatenating some data
fields, and a signed hash of these data fields. Since we
are using signatures as proofs, it is important that they
be non-repudiable (e.g. unique signatures [21]). Figure
2 illustrates the structure of the attestations. The block
version number and current hash are used for write-
serializability and the chain hash is used for freshness.
The chained hash of an attestation is a hash over the data
in the current attestation and the chain hash of the previ-
ous attestation.

chain hash = hash(data, previous chain hash) (1)

It applies to both put and get attestations. The chain hash
thus depends not only on the current attestation but also
on the history of all the attestations for that block so far
(because it includes the previous chain hash).

We say that that two attestations A and B chain cor-
rectly if the chain hash in B is equal to the hash of B’s
data and A’s chain hash. The chain hash creates a cryp-
tographic chain between attestations: it is computation-
ally infeasible to insert an attestation between two attes-
tations in a way that the three attestations will chain cor-
rectly. We can see that the client put attestation is the
same with the integrity signature described in Section 4
and provided with every write.

The purpose of the nonces is to prevent the cloud from
constructing cloud attestations ahead of time before a
certain write happens. Then the cloud could provide
those stale attestations to readers and thus cause them
to read stale data. Because of the cryptographic chain
induced in the attestations by the chain hash, the cloud
cannot insert an attestation C between two other attesta-
tions A and B; thus, the cloud can give stale data to a
client and pass the attestation audit test only if he pro-

duced and saved attestation C before he gave out B. A
client gives a nonce to the cloud only upon making a re-
quest; the cloud cannot know this nonce before request
C is made (the nonce is randomly chosen from a large
field) so the cloud will not have been able to construct an
attestation for this nonce ahead of time.

The structure of the attestation depends on the se-
curity level desired. If the user does not want write-
serializability and freshness, the attestations are not
needed at all. If the user does not want freshness, the
chain hash can be removed.

The attestation data is the data in the put client attes-
tation before the hash and signature are computed. Note
that the integrity signature discussed in write access con-
trol (Sec. 4) and stored with each block in Figure 1 is the
last client put attestation to that block.

5.2 Protocols for Exchange of Attestations

Get:

1. Client: Send the get request, block ID and a random
nonce to the cloud.

2. Cloud: Prepare and send back the entire block (in-
cluding metadata and the attached integrity signa-
ture) from Fig. 1, the new chain hash, and the cloud
get attestation.

3. Client: Verify the integrity signature and the cloud
attestation (it was computed over the data in the
block, chain hash, and nonce). Do not consider the
get finished until all these checks succeed.

Put:

1. Client: Send the entire new block (content and
metadata) and the client put attestation.

2. Cloud: If the client’s attestation is correct (new hash
is a hash of block content, datagroup verification
key verifies the signature), send back the chained
hash and put attestation. Store the new block (to-
gether with the client attestation).

3. Client: Verify the attestation. Consider a write com-
mitted only when this check succeeds.

6 Confidentiality and Integrity

In this section, we describe the techniques we use to
ensure confidentiality and integrity. These techniques
have been extensively used in previous work so we will
not linger on them; rather, we explain how to integrate
them in our proof mechanism and formalize the guaran-
tees they provide.

Confidentiality (C). As mentioned earlier, we achieve
confidentiality by having the clients encrypt the content
placed on the cloud. Note that even though the cloud can-
not gain information from the encrypted data, the cloud
can deduce some information from the access patterns of
the users to the data (e.g., frequency of reading a certain
block). There has been significant theoretical work on
masking access patterns [15, 27], but efficient such pro-



tocols are yet to be found so we do not make an attempt
to mask them.

Integrity (I). As mentioned in write access control (Sec-
tion 4), each time a user puts a block on the cloud, he
must provide a signed hash of the block. Similarly, each
time a user reads a block, he checks the signed hash us-
ing the public verification key available in the key block.
Note that the special blocks used to store keys are also
signed in this way, so their integrity is assured in the
same way that all blocks are.

Detection of I Violation: the integrity signature on a
block does not match the block’s contents.

Proof of Violation of I: the block with violated integrity
and the attestation from the cloud.

Recall that the get attestation from the cloud contains
a hash of the block content with the integrity signature
and is authenticated with the cloud’s signature. If this
hash of the block content does not verify with the hash
from the integrity signature, it means that the cloud al-
lowed/performed an invalid write, and the attestation it-
self attests to the cloud’s misbehavior.

A client cannot frame an honest cloud. When the
cloud returns an attestation, it is signed by the cloud so
the client cannot change the contents of the attestation
and claim the cloud stored a tampered block. Also, if
a client falsely claims that a different verification key
should be used, the cloud can exhibit the owner’s signed
attestation for the key block. This suffices because the
data block and the key block include the version of the
verification key.

7 Write serializability and Freshness

To detect deviations from W and F, the data owner pe-
riodically audits the cloud. The owner performs the au-
diting procedure at the end of each epoch.

A successful audit for a certain block in an epoch
guarantees that the cloud maintained freshness and write-
serializability of that block during the particular epoch.

The data owner assigns to each block some probability
of being audited, so an audit need not check every block
in every epoch. If a block is very sensitive, the owner
can assign it a probability of one, meaning that the block
will be audited in every epoch. If a block is not very
important, the owner can assign it a smaller probability.

We cannot hide the rate at which a block is audited,
since the cloud can simply observe this. However, the
cloud cannot be allowed to know exactly which epochs
will feature a block’s audit, since if it did, it could unde-
tectably misbehave with regard to that block during other
epochs. Users, in contrast, need to be able to figure out
these epochs because they need to send cloud attestations
to the data owner in exactly these epochs. Thus, we use
a technique that ensures that only users who know the
read access key for a block can determine the epochs in

which it will be audited. Specifically, we audit a block
whenever:

Prfread key(epoch number, blocklD) mod N =0,
where prf is a pseudorandom function [14], N is an in-
teger included in plain text in the block metadata by the
owner. If a probability of audit p is desired, the data
owner can achieve this by setting N = |1/p|. Note that
while hashes are used in practice for the same purpose
as we use a prf, hashes are not secure for such usage be-
cause their cryptographic specification only guarantees
collision-resistance and not necessarily pseudorandom-
ness, as needed here.

We do not try to prevent against users informing the
cloud of when a block should be audited (and thus, the
cloud misbehaves only when a block is not to be audited).
Auditing is to make sure that the users get correct data
and their puts are successful. If they want to change the
data, they can do so using their access permissions and
do not have to collude with the cloud for this. As men-
tioned before, the owner should ensure (via other means)
that users do not use their access permissions on behalf
of unauthorized people.

When a block is meant to be audited, clients send
the owner the attestations they receive from the cloud.
Clients do not need to store attestations. The owner sep-
arates these attestations by block and sorts them by ver-
sion number. This generally requires little processing
since the attestations will arrive in approximately this or-
der. The attestations for the same version number are
sorted such that each two consecutive attestations sat-
isfy Equation (1); we envision that the cloud could at-
tach a sequence number to the attestations to facilitate
this sorting. If some clients do not send attestations be-
cause they fail or are malicious, they have no guarantees
on whether they read correct data or their put got com-
mitted. All clients sending attestations will have such
guarantees. The clients cannot frame the cloud by not
sending attestations. The owner will ask the cloud to pro-
vide cloud attestations for any missing attestations in the
sequence and an honest cloud will keep copies for the
duration of an epoch. Alternatively, the cloud can only
keep copies of the attestations’ data without signatures,
which it can reconstruct on-demand, thus storing less. If
the cloud cannot provide these, the cloud is penalized for
non-compliance with the auditing procedure.

Once the owner has the complete sequence of attes-
tations, it performs checks for write-serializability and
freshness, as we describe in the subsections below. After
auditing, the owner and the cloud create a Merkle hash
tree of the entire storage, exchange attestations that they
agree on the same Merkle value, and discard all attesta-
tions or attestation data from the epoch that just ended.
The Merkle hash can be computed efficiently using the
hashes of the blocks that were modified and the hashes



of the tree roots of the blocks that were not modified in
this epoch. The owner updates the family key block if
there were any membership changes.

Interestingly, we will see that auditing only makes use
of public keys. As such the owner can outsource the au-
diting tasks (e.g. to a cloud competitor).

Due to space constraints, the presentation of the theo-
rems and proofs below is in high-level terms, leaving a
rigorous mathematical exposition for a longer paper.

7.1 Write-serializability (W)

Requirement on the cloud. During the epoch, the cloud
is responsible for maintaining the write-serializability of
the data. That is, the cloud must make sure that every put
advances the version number of the most recently stored
block by exactly one. If a client provides a put for an
old version number, the cloud must inform the client of
such conflict. It is now the client’s choice to decide what
action to take: give up on his own change, discard the
changes the cloud informs him of, merge the files, etc.

One attack on write-serializability is a fork attack
(introduced in [20]). The cloud provides inconsistent
views to different clients, for example, by copying the
data and placing certain writes on the original data and
other writes on the copy. If two clients are forked, they
will commit two different updates with the same version
number on the cloud.

A correct write chain of attestations is a chain of put
cloud attestations where there is exactly one put for ev-
ery version number between the smallest and the largest
in the sequence. Moreover, the smallest version number
must be one increment larger than the version number of
the block at the beginning of the epoch.

Detection of W Violation: The sequence of put attesta-
tions do not form one correct write chain.

The following theorem clarifies why this statement
holds. It assumes that users send all the write attestations
they get from the cloud to the owner. If they do not send
all these attestations, the theorem holds for every com-
plete interval of version numbers for which attestations
were sent.

Theorem 1. The cloud respected the write-
serializability requirement for a block in an epoch
iff the cloud’s put attestations form one correct write
chain.

Proof. First, let us argue that write-serializability im-
plies one chain. If the cloud respects write-serializability,
it will make sure that there are no multiple writes for the
same version number and no version number is skipped;
therefore, the attestations form a correct chain.

Now, let us prove that one chain implies write-
serializability. A violation of this property occurs when
a client performs an update to an old version of the data.
Suppose the current version of the data on the cloud is n

and the client is aware of m < n. When the client places
a put, the version number he uses is m+ 1 < n. Sup-
pose the cloud accepts this version and provides a cloud
attestation for m+ 1. Since m+ 1 < n, another put with
version m + 1 committed. If that put changed the block
in a different way (thus inducing a different new hash in
the attestation), the owner will notice that the attestations
splitat m+1. (]

Note that for W, the auditor does not check chain
hashes and thus it does not need get attestations.

Proof of Violation of W: The broken sequence of write
attestations as well as the cloud attestation for the cur-
rent family key block.

This constitutes a proof because cloud attestations are
unforgeable. A client cannot frame an honest cloud. A
proof of violation consists of attestations signed by the
cloud; thus the client cannot change the contents of the
attestations and create a broken sequence.

7.2 Freshness (F)

Requirement on the cloud. During the epoch, the cloud
must respond to each get request with the latest com-
mitted put content and compute chain hashes correctly
(based on the latest chain hash given) for every cloud at-
testation.

A correct chain of attestations is a correct write chain
with two additional conditions. First, the hash in each
read attestation equals the new hash in the write attesta-
tion with the same version number. Second, the chain
hash for an attestation and the chain hash of the previous
attestation in the sequence satisfy Eq. (1).

Detection of F Violation: The attestations do not form
one correct chain.

Theorem 2. The cloud respected the freshness require-
ment iff the attestations form one correct chain.

Proof. Tt is easy to see that if the cloud respected the
freshness requirement, the attestations will form one
chain. Each attestation will be computed based on the
latest request.

Let us show that if the freshness requirement is vio-
lated, we do not have a correct chain. We proceed by con-
tradiction assuming that we have a correct chain. There
are two key points we will use. The first is that each
chain hash the cloud gives to a client is dependent on
some randomness the client provides. This is the random
nonce for get or the new hash for put. The cloud cannot
compute the chain hash before it has this randomness.
The second point is that the value of a chain hash recur-
sively depends on all the history of chain hashes before
it.

Let A be an attestation, and B the attestation preceding
it in the chain. Assume the cloud violated the freshness
requirement when answering the request corresponding



to A, but the attestations form a correct chain for con-
tradiction purposes. Thus, B was not the latest request
performed before A; instead, let C be this request. Thus,
the cloud gave out attestations B, C, and A in this or-
der. C must come somewhere in the correct attestation
chain. It cannot come after A because the chained hash
of C will have to depend on the chain hash of A. Due
to the client-supplied randomness and hardness assump-
tions on the hash function (random oracle), the cloud can
compute the chain hash for A only when he gets the A
request which happens after the C chain hash was given
out. If C comes before A in the sequence, it must come
before B because we assumed that the freshness require-
ment was violated at the time of this request. This means
that B’s chain hash depends on C’s chained hash, which
is not possible because the cloud would not know C’s
client-provided randomness when he has to answer to B.
Therefore, we see that the chain cannot be correct when
freshness is violated. U

Proof of Violation of F: The broken sequence of attesta-
tions as well as the cloud attestation for the current fam-
ily key block.

A client cannot frame an honest cloud. A proof of vi-
olation consists of attestations signed by the cloud; thus,
the client cannot change the contents of the attestations
and create a broken sequence.

7.3 Discussion

For efficiency, many storage servers allow gets to pro-
ceed in parallel, while serializing puts. CloudProof also
allows the bulk of the get operations to happen concur-
rently, and serializes only the computation of the chain
hash for gets to the same block. For example, consider
multiple concurrent gets for the same block. These gets
can proceed in parallel (e.g., contacting nodes in the data
center, performing disk accesses, preparing result); the
cloud only needs to make sure that updates to the chain
hash for the same block do not happen concurrently. Up-
dating a hash takes very little time, so the loss in concur-
rency is small.

CloudProof protects W, F, and I with respect to each
block in part. In some cases, one might want these prop-
erties to be satisfied with respect to a collection of blocks,
for example, so that different blocks are updated consis-
tently. CloudProof can satisfy this requirement by view-
ing the block collection of interest as one block and hav-
ing one attestation for this collection of blocks. Cloud-
Proof will serialize accesses to this collection of blocks
in the same way as for one block.

The protocol for freshness requires the cloud to up-
date a chain hash and store some metadata upon any get
operation, so a malicious client unauthorized to read the
data can DoS a server computationally and storage-wise.
A solution to this attack is to require each client to pro-

vide a correct “client get attestation” signed with the read
access key to the cloud when performing a get. An eval-
uation of this scenario is future work.

8 Implementation

We implemented CloudProof on top of Microsoft’s
Windows Azure [22] cloud platform. Our implemen-
tation consists of about 4000 lines of C#. CloudProof
only relies on a get/put and sign/verify interface from the
cloud, which makes it easy to adapt to other cloud sys-
tems.

Background on Azure. First, we give the needed
background on Azure [32]. Azure contains both a stor-
age component and a computing component. Cloud-
Proof uses the blobs and queues storage services. Blobs
are key/value stores mapping a blob identifier to a value.
Queues are used for reliable messaging within and be-
tween services.

The compute component consists of web and worker
roles, which run on virtual machines with different im-
ages of Windows Server 2008. The web roles are in-
stances that can communicate with the outside world and
receive HTTP requests. The worker roles are internal
running instances which can communicate with the web
roles (via storage nodes) and access storage. There is no
guarantee whether the worker, web or storage nodes are
collocated on the same machine. Furthermore, the stor-
age and compute components are provided as different
services so they may be located in different data centers,
although Azure allows us to specify an affinity group for
our storage and compute nodes.

CloudProof consists of four modules. The data
user/client is a client-side library that exports get and put
interface. A data user uses this library to perform get and
put calls to the cloud. It exchanges blocks and attesta-
tions with the cloud. The cloud runs on top of Azure and
responds to get and put requests and exchanges attesta-
tions with the client. The data owner/enterprise runs on
a data owner’s premise. This is a library to be used by
the data owner. It serves to add or remove permissions
to users or groups and for auditing. It interacts with the
cloud component to update family key blocks. If the data
owner wants to get or put data blocks, it needs to create
a client instance for itself. As mentioned, the owner can
outsource the auditing task to another party, the auditor.
It collects attestations and audits them according to the
algorithms in Section 7.

Let us explain how a request processing proceeds. The
clients and the owner send HTTP requests to the web
roles, which then place the requests in a queue, together
with a blobID. The workers poll the queue for requests
to process. The worker roles place the response into the
blob with the given blob ID. Web roles poll response
blobs periodically to get the reply for the request they
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Figure 3: End-to-end and effective read and write latency.
Each bar indicates the end-to-end latency incurred, with the
lower section showing the effective latency.

made.

The cryptographic algorithms used are the .NET im-
plementations of SHA-1 for hashing, AES for symmetric
encryption and 1024 bit RSA for signing. Any of these
schemes can be easily substituted with more secure or
faster ones.

9 Evaluation

In this section, we evaluate the performance of Cloud-
Proof. We investigate the overhead CloudProof brings to
the underlying cloud storage system without security to
establish whether the security benefits come at a reason-
able cost. We are not interested in examining or optimiz-
ing the performance of Azure itself because CloudProof
should be applicable to most cloud storage systems.

CloudProof targets large enterprise storage systems,
source code repositories, and even small, personal file
systems. These tend to be applications that can tol-
erate larger client-cloud latency (which is an inherent
result of the different geographic locations of various
clients/organizations with respect to the cloud).

The design of CloudProof allows separability to five

security modes, each corresponding to the addition of
a new security property: no security, just confidential-
ity (C), confidentiality and integrity (CI), the previous
two with write-serializability (CIW), and full security
(CIWF). We will see how performance is impacted by
adding each security property. For these experiments,
the client-side machine is an Intel Duo CPU, 3.0 GHz,
and 4.0 GB RAM.
Microbenchmarks. We observed that a large factor
of performance is given by the latency and bandwidth
between the client and the cloud’s data center (which
seems to be on the other coast from the data we get),
which do not depend on our system. Therefore, we will
also include “effective” measurement results which are
computed by subtracting the client-cloud round-trip time
from the end-to-end latency.

To evaluate latency, we perform 50 reads and 50 writes
to different blocks (4 KB) and compute the average time
per operation. Figure 3 shows our latency results. We
can see that the overhead increases with every addition
of a security requirement. The overhead added by W is
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Figure 4: Effective read and write throughput.

caused by the creation, verification and handling the at-
testations; adding a chain hash for F causes a small over-
head increase. The overhead of our scheme (CIWF) as
compared to the no security case is ~ 0.07s which cor-
responds to 17%. With respect to confidentiality only
(minimal security), CIWF is ~ 14%.

Let us understand which components take time. Each
request consists of client preprocessing (0.5%), network
round trip time between server and client (36%), cloud
processing (62%), and client postprocessing (1.5%). We
can see that most time is spent at the server. This is
because the web and worker roles communicate with
each other using the storage nodes, and all these nodes
are likely on different computers. We specified affinity
groups to colocate nodes close to each other, but we do
not have control over where they are actually placed.

Figure 4 shows the effective throughput incurred in
our system. The graphs are generated by reading and
writing a large file (sent to one cloud worker), 50 MB,
and dividing its size by the effective duration of the re-
quest. We generated effective measurements because the
throughput between the client and the cloud was a bottle-
neck and the results were similar for and without secu-
rity (almost no overall overhead). We can see that the
throughput overhead (due to cryptographic operations
mostly) for write is 11% and for read is 12%, which we
find reasonable.

An important measure of scalability is how the system
scales when workers are added. We obtained a VIP token
for Azure that allows creation of 25 workers (given the
early stage of Azure deployment, it is hard to get more
workers for free). We spawn 25 clients that can run in
parallel and each such client sends two requests to the
cloud (a request is sent only after the previous request
finished); this experiment is repeated many times. We
measure how many pairs of requests are satisfied per sec-
ond as we increase the number of worker roles. Figure 5
shows our results. We can see that each pair of requests is
satisfied in about 1s which makes sense given the latency
results presented above. We can see that the scaling is
indeed approximately linear. This makes sense because
we designed our security protocols to allow all requests
to proceed in parallel if they touch different blocks.

Moreover, for scalability, our access control scheme
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owner node.

should be able to support efficiently many members and
blocks. Our scheme has the benefit that revocation and
addition do not depend on the number of blocks in a fam-
ily. It only depends on the square root of the number of
members with access to the block family. As we can see
in Figure 7, the square root factor is almost irrelevant; the
reason is that the constants multiplying the square root
are much smaller than the constant latency of read and
write. We can see that for large enterprises with 100,000
employees, group addition and revocation remain afford-
able even if every single employee is present on an access
control list.

A block family is created when a block’s ACL is
changed to an ACL that no other block has. The owner
must put a new family key block on the cloud. If the
membership change from the previous ACL (if one ex-
isted) to the current one is not large, the owner can just
copy the family key block for the previous ACL and per-
form the appropriate revocations and additions. Other-
wise, the owner should choose new keys, compute broad-
cast encryptions to the new members, and put the result-
ing data on the cloud. For an ACL of 1000 new mem-
bers, these operations sum up to ~ 20s. Any blocks
added to the block family will not require key block fam-
ily changes. The block just needs to be encrypted with
the proper key.

Figure 6 shows the performance of auditing. For ex-
ample, it takes about 4 minutes to verify 108 attestations.
This number corresponds to a large company of 10° em-
ployees each making about 1000 changes in an epoch
of a month. Furthermore, auditing can be easily paral-
lelized because it just involves checking each consecu-
tive pairs of attestations in a chain so the chain can be
split in continuous sections, each being distributed to a
different core. In fact, auditing can be performed on an
alternate cloud, which, due to market competition, will
have incentive to run the audit correctly. The duties of
the owner are just auditing and membership changes, so
we can see that, even for enterprise storage, a lightly used
commodity computer would be enough to handle all of
the owner’s duties.

Storage Overhead. The total overhead per block in

No. of attestations (log)
Figure 6: Auditing performance for one

X' 1000 users
Figure 7: The duration of a membership
update as depending on the number of mem-
bers with access to a block family. R denotes
read and W denotes write.

CloudProof is 1120 bits if we use RSA signatures
or 256 bits if we use short signatures (Boneh-Lynn-
Shacham). A block in Azure may be arbitrarily large, so
this overhead may be a small percentage of large blocks.
The family key block consists of 1120 4 1024 * /n +
1024 * n bits, where n is the number of users in a fam-
ily. Had we used a more efficient broadcast encryption
scheme, the linear factor would be removed. In a com-
mercial source repository trace (presented below), we
found that the maximum value of /n was 14 and that
there were 30 total groups. Therefore, the storage over-
head for family key blocks is less than 26.4 KB for the
lifetime of the trace. All attestations are about 1300 bits
(or about 400 bits with a short signature). The cloud only
needs to keep the latest put client attestation for each
block and the unsigned attestation data (=~ 258 bits) for
all attestations in an epoch for auditing purposes.

Macrobenchmarks. To determine how many users are
in real enterprise groups and to understand the frequency
of access control changes, we obtained traces of group
membership changes in a version control repository for
a very large widely used commercial software (whose
name we cannot disclose) that has more than 5000 devel-
opers. From these traces, we computed the dates of all re-
vocation events: changes to group membership where at
least one member was deleted from the group. For each
event, we computed the size of the group after deletions
of members. As described, the square root of this group
size controls the time required to compute new keys for
the block family. As we showed in Figure 7, our system
can compute new keys for groups of 100,000 users in
less than 4 seconds. In particular, we found that comput-
ing keys for all revocation events in a month, assuming
all groups in our trace have 250 members, took an aver-
age time of less than 1.6 seconds. This shows that our
system is capable of easily handling the group sizes and
frequency of revocations in this real application.

We looked at the commit histories for two large open
source projects hosted on Github: Ruby on Rails and
Scriptaculous. Both projects are widely used and un-
der active development. Source code repositories require
integrity guarantees: adversaries have broken into such



week max | week avg | month max | month avg
RoR 55.7 9 93 38
ST 4.2 0.91 8.2 24

Table 1: Maximum and average storage requirements in KB
per epoch for all epochs with at least one client put request.
RoR stands for “Ruby on Rails,” while ST stands for “Scrip-
taculous.”

repositories in the past to corrupt software which is then
widely distributed. Distributed development also bene-
fits from F and W.

To create benchmarks, we looked at the history of all
commits to all files in Ruby on Rails for six months from
July 2009 to November 2009, and all files in Scriptac-
ulous for one year from November 2008 to November
2009. Reads are unfortunately not logged in the traces;
however, from microbenchmarks, we can see they have a
similar overhead to writes. We used the history provided
in each repository to identify the size of each file after
each commit and the identity of the committer. We then
replayed this history, treating each commit as a separate
put whose key is equal to the file name and with a value
of the appropriate size. Figure 8 shows the results for the
both traces. The overall overhead for Ruby on Rails is
14% and for Scriptaculous is 13% for providing all secu-
rity properties. These results show that we can achieve
our properties with modest overhead, and that our mi-
crobenchmarks are a good predictor of our overhead for
these applications.

For storage overhead, we first computed the number
of distinct files in each repository in the state it was at
the end of the trace. For Ruby on Rails we find 5898 dis-
tinct files, totaling 74.7 megabytes. At 1120 bits of over-
head per file, CloudProof requires 806 KBs of storage for
metadata, an overhead of roughly 1.1%. For Scriptacu-
lous we find 153 distinct files, totaling 1.57 MB, yielding
a storage overhead for CloudProof of 1.3%.

We then evaluated the cloud storage required to hold
attestations from clients at different epoch lengths for
both traces. We considered the extreme case where the
epoch is equal to the duration of the trace: i.e., the cloud
keeps all attestations from all clients. For the Ruby on
Rails trace we have 71241 total client puts, which re-
quires 2.2MB of storage on the cloud for 258 bits per
attestation. For the Scriptaculous trace, we have 2345 to-
tal client puts, which requires 73KB of storage. We then
looked at two cases: the epoch is one week and 30 days.
Table 1 shows the results. We see that the amount of stor-
age required for attestations in both traces is low, under
100KB, even for a long epoch time of 30 days.

The choice of epoch is a tradeoff between cloud stor-
age overhead and audit time. Our trace results show that
for the source repositories we considered, even an epoch
length of six months to a year requires modest overhead.
Shorter epochs require less than 100 kilobytes of stor-
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Figure 8: Runtime for macrobenchmarks.

age. This appears reasonable, especially given that the
storage for attestations may be append-only and need not
be highly available. Other applications, of course, may
require more puts during an epoch and therefore incur
more overhead for storage. With our current implemen-
tation, however, one gigabyte of storage is sufficient to
hold attestations for over 33 million puts; we believe this
should be sufficient to allow a reasonable epoch for most
applications. As we showed, the time to audit is not a
gating factor for the length of an epoch, because audits
can be carried out in a short amount of time.

From the results above, we conclude that CloudProof
has a reasonable overhead and is practical for real storage
applications with security needs.

10 Related Work

The related work can be divided in four parts.
Existing Cloud Systems. Today, there exist a plethora
of cloud storage systems (Amazon S3, Google BigTable,
Microsoft Azure, Nirvanix CloudNAS, etc.); however,
these systems do not guarantee security. The cloud sys-
tem that provides most security, to the best of our knowl-
edge, is Tahoe [31]. It is a peer-to-peer file system that
allows users to check data integrity and provides access
control. However, Tahoe does not detect violations to W
and F, nor does it provide proofs of violation.

Secure File and Data Storage Systems include related
systems [4], [3], [10], [18], [20]. In comparison to these
systems, CloudProof brings the three main contributions
listed below. These systems do not provide these prop-
erties, not because of shortcomings in their design, but
because they were designed for a different setting than
the cloud: mostly for personal storage hosted on some
remote untrusted and not liable servers. We also argue
that they are not easily extendable to achieve our desired
properties, which illustrates that there was a need for a
new design for the cloud setting.

(1) They detect, but do not prove server misbehavior and
do not keep the client accountable to the server. Cloud-
Proof provides such guarantees to enable a financial con-
tract between the client and the cloud regarding security.
(2) CloudProof maintains the high scalability of the
cloud because it is a crucial aspect of the cloud promise
and large enterprises are important customers of the
cloud. Our access control scheme is especially scalable.



(3) CloudProof provides detection (and proofs) to both
write-serializability and freshness. This is because an
enterprise affords to dedicate a compute node for audit-
ing and membership changes. Most previous work can-
not detect violations to both properties.

SiRiUS [10] is perhaps the most related previous work
to CloudProof. In SiRiUS, each user stores his file sys-
tem on a remote untrusted server and can detect integrity
violations to his data. SiRiUS does not guarantee write
serializability: two users can read a file at the same time,
place updates subsequently with the second user igno-
rantly overwriting the first user’s update. SiRiUS does
not offer freshness as we define it in Section 2. It offers
a weaker type of F: fetched data can be stale if it is not
older than a certain time interval. Furthermore, SiRiUS
does not scale to enterprise sizes. Each user has a sepa-
rate file system that also contains files from other user’s
file systems for which the user has write access. When
checking the freshness of a file upon read, users need
to check the file system of each user with write access,
verify a Merkle tree for that access, and decide who has
the newest version. In an enterprise setting, some files
can be accessed by thousands of users so this approach
would not scale. Moreover, to ensure freshness, SiRiUS
requires each user to re-sign the top of his Merkle hash
every few minutes or seconds. This is not a reasonable
assumption we believe, because the users are not neces-
sarily online all the time. Moreover, in SiRiUS, users
can defeat their access permissions. Unauthorized users
can delete data or seize unattained permissions by over-
writing the metadata of some files with their own. These
attacks occur because Sirius’s premise is not to change
the server software and allow it to run on any remote file
system implementation such as NFS. In contrast, cloud
providers can always install software of their choice on
their nodes if they want to provide security. Finally, SiR-
iUS does not provide proofs needed in our cloud setting.

Plutus [18] uses key rolling, but every time a user re-
alizes that the key has changed, he contacts the owner
to ask the key. This approach would demand more re-
sources from an enterprise to satisfy the requests of all
their employees. We combine key rolling with broadcast
encryption and the notion of block families to achieve
key distribution without involving the owner/enterprise.

SUNDR [20] is a secure file system that offers fork
consistency by having clients check histories of snap-
shots of file versions (VSLs). First, SUNDR does not
provide read access control and it is not clear how to
enhance it with scalable read access control. Our key
distribution protocol uses broadcast encryption and key
rolling to support fast and scalable read access, and han-
dles user read access revocation efficiently. Second, a
straightforward addition of W to SUNDR, would be un-
scalable. If SUNDR sends all VSLs to the owner for au-

diting, SUNDR could achieve write-serializability easily
because the owner would notice a fork attack. However,
each VSL entry includes version numbers for all files in
the file system, and there can be many such files. In con-
trast, CloudProof’s attestations only contain information
about the block accessed. On the other hand, one posi-
tive aspect of SUNDR in this regard is that it can order
updates across files, whereas CloudProof can only order
updates within a file. We made this tradeoff for scalabil-
ity. Third, CloudProof provides improvements regarding
freshness over SUNDR. Even with auditing at the owner,
SUNDR would not achieve freshness for clients that are
only readers. The server can give a client a prefix of the
current history, thus not informing him of the latest write.
Since the reader will not perform a write, a fork will not
occur. SUNDR can be easily extended to provide proofs
of integrity violation, but providing freshness violation
proofs seems harder. Finally, SUNDR does not scale
to enterprise-sizes because of the long history chain of
signatures that clients must check for every fetch. For
highly-accessed files or many users and files, version
snapshots can grow large and many.
Cryptographic Approaches. Kamara and Lauter [19]
investigate cryptographic techniques useful in the cloud
setting. They mention proofs of data possession or re-
trievability (POR) [17], [2], [25], [9], which allow a
server to prove to the owner of a file (using sublinear or
even constant space usage) that the server stores the file
intact (the file has integrity) and can retrieve it. HAIL [6]
allows a distributed set of servers to prove file integrity
and retrievability. [29] allows updates and enables public
verifiability of the integrity of the data at the cloud.
Such work is very useful for proving integrity of
archived data; however, it is not sufficient as a holistic
cloud systems solution. The fact that the file is correct
and retrievable on the cloud does not mean that the cloud
will respond with correct data upon a request. For ex-
ample, suppose that the user requests the cloud to prove
that the file is intact and the cloud successfully does so.
Then, a few users request various blocks of the file; the
cloud can return incorrect data (junk or stale) and there
is no mechanism in place for checking this. Having each
client ask the cloud for a POR before a get is too expen-
sive. Also, most of these schemes deal with archived data
and are not efficient on updates. They either require some
non-negligible overhead of preprocessing when placing a
file on the server [17] or that all updates be serialized [29]
and thus have poor scalability. Moreover, they do not
provide write-serializability or freshness (and thus, no
proofs of violations for these properties). For instance,
the cloud can overwrite updates and retrieve stale data
because the integrity checks will not fail. Lastly, these
schemes do not provide access control and are not de-
signed for many concurrent accesses by different users.



Byzantine Fault Tolerance (e.g., [7]) proves correctness
of query execution at remote server replicas given that
the number of Byzantine (faulty, malicious) replicas is
at most a certain fraction. However, this approach is not
applicable to the cloud setting because all the nodes in a
data center belong to the same provider. If the provider
is malicious, all the nodes are malicious. Furthermore,
most nodes are likely to be collocated geographically
and run the same distribution of software and likely crash
from similar factors. One idea is to use BFT with multi-
ple cloud providers. This approach will indeed decrease
the chance of security problems; however, clients will
have to pay all the cloud providers, and, if the data gets
lost at all parties, the client has no remuneration assur-
ance. Chun et al. [8] also uses the concept of chained
attestations, which they store in a trusted-hardware log;
their goal is to prevent equivocation by Byzantine clients
and ultimately improve performance of commit.

Secure Audit Trails and Logs. Research in secure dig-
ital audits aims to verify the contents of a file system at
a specific time in the past. For example, in [24], a file
system commits to the current version of its contents by
providing a MAC on its contents to a third-party. At a
later time, an auditor can check that the file system still
contains the old version using the MAC token.

There has also been work on secure logging [30], [26].
In this work, a trusted machine writes encrypted logs that
cannot be read or modified undetectably by an outsider.
This work does not consider a large number of users con-
currently accessing the data, there is no read and write
access control (one key allows both read and write), the
log is typically just appendable and it is not optimized for
writing in the middle, and a malicious outsider manipu-
lating the order in which updates and reads are performed
on the logging machine can compromise W and F.

Moreover, in all this work, the owner cannot convince
a third party of some security violation.

11 Conclusions

We propose proofs of security violations for integrity,
write-serializability and freshness as a tool for guaran-
teeing security in SLAs. We build a secure cloud storage
system that detects and proves violations to these prop-
erties by combining cryptographic tools in a novel way
to obtain an efficient and scalable system. We demon-
strate that CloudProof adds reasonable overhead to the
base cloud service.
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