
Internet-scale Visualization and Detection of Performance Events

Jeffrey Pang, Subhabrata Sen, Oliver Spatscheck, Shobha Venkataraman
AT&T Labs - Research, Florham Park, NJ, USA

1 Introduction
Network server farms host a wide range of important ap-
plications, such as e-commerce, content distribution, and
cloud services. Because server farms serve customers
spread across the Internet, the key to effective server farm
management is the ability to detect and resolve problems
between a farm and its clients. Operators typically moni-
tor performance using rule-based scripts to automatically
flag “events of interest” in an array of active and passive
measurement feeds. While effective, these rule-based ap-
proaches are usually limited to events with known prop-
erties. Equally important to operators is finding the “un-
known unknowns” — novel events of interest with prop-
erties that have not been observed before. Effective visu-
alization greatly aids in the discovery of such events, as
operators with domain expertise can quickly notice unex-
pected performance patterns when represented visually.
This paper presents BirdsEye, a tool that visualizes per-
formance at Internet scale.

Designing such a tool is non-trivial because operators
have to diagnose performance problems that may man-
ifest themselves anywhere on the Internet. Visualizing
all the possible ways these problems may manifest them-
selves poses three challenges: First, the vastness of the
Internet and the sheer volume of raw performance data
make it impossible for a human operator to comprehend
every piece of information about every part of the In-
ternet. An effective visualization needs to be sparse in
representation, yet discriminating of good and poor per-
formance. Second, problems can manifest themselves
at multiple scales – e.g., a degraded peering link might
impact entire swaths of the IP address space while a mis-
directed client might only affect a single ISP. Thus, there
is not a single “level” of monitoring that can capture all
problems that operators care about. Finally, performance
problems not only correlate across space, but also across
time – e.g., a problem may occur periodically during a
certain time of the day. Thus, an effective visualization
must present both the spatial view of performance and

show how it changes over time.
To meet these challenges, we first observe that a tree is

a natural way to visualize the Internet performance from
the perspective of a server farm. That is, the IP address
hierarchy can be interpreted as a tree with each node cor-
responding to an IP prefix, and its children corresponding
to sub-prefixes. If we color a node (e.g., progressively
from green to red) based on the likelihood that an IP ad-
dress in that node’s prefix is experiencing a performance
problem, we will likely be able to differentiate “good”
portions of the address space vs. “bad” portions. This is
because IP addresses in the same prefix are more likely
to be geographically close, under the same administra-
tive control, and/or share the same routing paths. Thus,
their performance is likely to be correlated. The focus of
this paper is how to visualize this tree effectively.

A straight-forward approach would be to visualize the
entire tree up to a predetermined aggregation-level, such
as BGP prefixes. But this approach either would not
sparse enough for human comprehension, or would not
represent problems at granularities other than the pre-
defined one. Instead, BirdsEye builds adaptive deci-
sion trees over the IP address space using recent perfor-
mance measurements. These decision trees group IP ad-
dresses with similar performance characteristics and sep-
arate those with significantly different performance char-
acteristics. Moreover, these trees are learned online, and
adapt to changes in the underlying network. Therefore,
changes in performance are reflected in the decision tree
over time. By visualizing these adaptive decision trees,
BirdsEye shows the performance to the entire Internet,
but only highlights the parts that have bad performance
at any given point in time.

We present an evaluation of our tool using more then
50 million Round Trip Time (RTT) measurements col-
lected from a distributed server farm in a tier-1 ISP.
While RTTs are not the only performance measurements
we can visualize, they are one important metric of inter-
est tracked by many operators. Through this case study,

we discover several RTT anomalies, such as diurnal pat-
terns of poor performance in particular access ISPs and
an ISP that was likely misdirected by the server farm.
This was unknown to operators, suggesting that Birds-
Eye is indeed useful in finding novel performance prob-
lems. We envision that BirdsEye will supplement exist-
ing rule based systems — once an operator has verified
that a hitherto unknown pattern deserves more attention,
they can create new rule-based scripts to flag the patterns.

2 Design Overview
2.1 Design Requirements
The challenges described in Sec. 1 dictate four require-
ments for visualizing the Internet tree:

Sparse Network-wide Representation. The visual-
ization of the tree needs to encompass the entire Internet
in order to able to pinpoint any region with performance
problems. However, in order to be usable by human oper-
ators, the tree also needs to be sparse, highlighting only
the regions needed to differentiate performance experi-
enced by clients. We ensure a sparse representation by
enforcing a limit on the maximum number of leaves the
Internet tree can have.

Multi-Level Drill-Down. While being sparse, the tree
should not overly focus on a single level of the address
space such as /24s or /8s since problems may manifest
themselves at multiple levels in the hierarchy. For exam-
ple, our case studies show that there are scenarios where
large prefix ranges (e.g., /10 blocks) can be combined
because they all experience the same performance. How-
ever, there are other scenarios where small ranges (e.g.,
belonging to management systems) must be identified in-
dividually to ensure that their performance is monitored.
Since the depth of each branch in the tree represents how
far operators can visually drill-down into a given prefix,
our tool automatically infers the depth needed to differ-
entiate performance among IPs in each prefix.

Capture Temporal Dynamics. The tree also needs
to reflect changes in the performance of clients across
the Internet. For example, by looking at a time series
of trees, an operator should be able to quickly see pre-
fixes that deviate from normal performance, e.g., due to
a degraded peering link. We address this requirement by
computing an adaptive tree. That is, it can modify its
structure and performance indicators over time as more
measurements are received.

Real-time Rendering. Finally, the tree needs to
be constructed efficiently over large volumes of perfor-
mance measurements, and updated periodically (e.g. ev-
ery 5 minutes) to allow operators view the performance
measurements in a timely fashion. We address this re-
quirement by ensuring that the tree can be constructed in
an online fashion over a stream of performance data.

0-20ms

> 200ms 0-20ms

0-20ms

Figure 1: An example IPTree with 4 leaves.

2.2 Tool Overview
BirdsEye has two main components: (1) the tree-
constructor, which generates Internet trees that meet the
aforementioned design requirements, and (2) the visu-
alizer which generates visualizations of the tree, in a
manner that highlights anomalies and changes in perfor-
mance. The tree-constructor takes as input a stream of
performance data (e.g., RTT measurements). Each time
interval, it sends an updated tree to the visualizer. The
visualizer then generates and displays a graphic for the
updated tree, using each node’s performance indicators
to colour it. We describe the construction of the tree in
detail in Section 3, and visualization in Section 4. In Sec-
tion 5, we show, using real-world examples, that the time
series of Internet trees visually highlights both regular
and irregular performance patterns.

3 Generating Internet Trees
In this section, we describe our algorithm for gener-
ating accurate Internet trees, focusing on latency mea-
surements as a concrete example of performance data.
Since the Internet tree needs to differentiate between
client IP addresses based on their performance, it effec-
tively builds a decision tree over the IP address hierarchy.
Automatically inferring such an Internet tree from per-
formance data is thus a decision-tree learning problem,
quite different from hierarchical heavy-hitter problems
(see Sec. 6). Note, however, that this decision tree is
quite different from decision trees typically built in di-
agnosis applications – our tree is based purely on the
structure of the IP address hierarchy. This, along with
our requirements, make it infeasible to apply standard
decision-tree learning algorithms. Instead, we extend the
algorithmic framework proposed in [8] for latency pre-
diction at server farms, since this framework incorpo-
rates our design requirements (i.e., learning over stream-
ing data, sparse representation, fundamentally adaptive
tree, noise tolerance) with theoretical guarantees.

Modeling Design Requirements. We first formally
model the design requirements of the Internet tree into
its definition (termed IPTree to avoid confusion): An IP-
Tree TP over the IP address hierarchy is a tree whose
nodes are prefixes P ∈ P , and whose leaves are each
associated with a label for prediction (e.g., a label may
be “0-20ms”). An IPtree is thus a decision tree for IP ad-

2

dresses I: an IP address i gets the label associated with
its longest matching prefix in P . We define the size of an
IPtree to be the number of leaves needed when it is rep-
resented as a binary tree. We define an adaptive k-IPtree
to be an IPtree that can (a) contain at most k leaves, (b)
grow nodes over time, and (c) change the labels of its
leaf nodes, and (d) reconfigure itself occasionally. Fig. 1
shows an example IPTree with 4 leaves; each leaf is la-
beled with the latency range associated with its subtree.
Our case studies in Sec. 5 show how all of these opera-
tions are useful to maintain an accurate Internet tree.

We need to learn an IPtree with high predictive ac-
curacy, as the accuracy reflects how well it models the
data. However, standard decision tree algorithms do not
meet many of our design requirements; e.g. most learn-
ing algorithms assume that data originates from a fixed
distribution; however, we cannot make such an assump-
tion as our tree needs to be able adapt its predictions
quickly when there are changes in the input data stream.
Most decision tree learning algorithms also do not oper-
ate on a data stream – they require multiple passes over
the data. The properties required of our IPtree learning
algorithm from Section 2 are instead naturally captured
in the mistake-bound model of learning [5, 6, 8] and so
we build on this model for BirdsEye. For visualization
purposes, it is sufficient for the tree to predict the latency
within an appropriate range, so we split latency into a
number of pre-defined categories and require the tree to
predict the right category. 1

Algorithm Sketch. In the learning model of [8], the
algorithm is given an IP address to predict on, makes
a prediction, and then is given the correct label to up-
date its internal k-IPtree. At a high-level, the algorithm
involves all parent prefixes of an IP i in current IPtree
in both steps, i.e., making a prediction for i, as well as
in updating itself (i.e., learning). The key aspect of the
algorithm is to decompose the main prediction problem
into 3 subproblems, which can be treated independently:
(a) deciding the prediction of each individual parent pre-
fix, (b) combining the parent prefix predictions by de-
ciding their relative importance, and (c) maintaining the
tree structure so that the appropriate subtrees are grown
and the unwanted subtrees are discarded. The algorithm
casts these subproblems as instances of experts’ prob-
lems [4, 6], a well-explored area in online learning.

We make 2 major changes to extend this binary classi-
fication algorithm to operate on a continuous (but catego-
rized) range of latency values. First, each parent prefix
now predicts from m categories instead of 2 using the
weighted majority algorithm with shifting targets [6] (in-

1In this paper, we restrict our problem to predicting latency from a
set of pre-defined categories. It is possible also to infer the categories
automatically by making multiple passes on the data, but we do not
consider this extension in this paper.

stead of shifting experts’ algorithm in [8]) – this is an-
other experts’ algorithm that allows nodes to shift their
predictions between categories over time. Second, we
penalize incorrect predictions as a function of how far
away they are from their respective true latency values;
this way, subtrees with latency categories that are farther
apart are grown preferentially, all else being equal.

4 Visualization
Our visualization makes it easy for operators to detect
performance changes and determine where in the Inter-
net they occurred. Figure 2 shows an example of an
IPtree displayed in BirdsEye. Each dot is a tree node,
which represents a specific IP prefix. There are four rel-
evant properties of each node:
• Node size is proportional to the log of the number of

RTT measurements that it represents. For example,
A has 14,000 measurements whereas B has 112.

• Node color corresponds to its predicted RTT; green
represents low RTT while red represents high RTT.
For example, A has a predicted RTT of 0-20ms
whereas B has a predicted RTT of 100-200ms.

• Distance from center corresponds to prefix length;
shorter prefixes are closer to the center of the circle,
while longer prefixes are closer to the edge. For
example A is a /6 whereas B is a /24.

• Angular location is chosen with the IP interpreted
as an integer i, i.e, 360i

232 . For example, A is a prefix
of 128.0.0.0 whereas B is a prefix of 142.0.0.0.

The first two properties make it easy to detect changes
by giving obvious ques to the size and severity of anoma-
lies. The second two properties make it easy to determine
where changes occur by ensuring that the same IP prefix
will always appear in the same place in the visualization
and that related prefixes are close to each other.

!"

#"

$%$%$%$"

&'%$%$%$"

()*%$%$%$"

(+)%$%$%$"
(+
)%$
%$%
$,
*"

(+
)%$
%$%
$,
(&
"

(+
)%$
%$%
$,
)'
"

(+
)%$
%$%
$,
-)
"

Figure 2: Example of an IPtree displayed in BirdsEye.
Each dot is a tree node, which represents a specific IP
prefix. Sec. 4 describes how nodes are laid out.

3

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 20 40 60 80 100

of

 M
ea

su
re

m
en

ts

Error in Estimated RTT (in ms)

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 100 200 300 400 500 600

E
rr

or

Time in hours

200k
20k
10k

5k
2k
1k

Figure 3: (a) CDF of Error and (b) Misclassified cate-
gories as a function of tree size k.

Finally, we must select the parameter k of the IP-
tree, which determines the number of nodes. Displaying
more nodes gives operators more detailed information
about network state but may overwhelm them. Display-
ing fewer nodes presents a more comprehensible picture,
but potentially loses important information. Thankfully,
the algorithm in Sec. 3 gives us a mechanism to choose
the smallest k that doesn’t lose much information: We
simply choose the smallest k such that the prediction ac-
curacy of the IPtree does not increase significantly with
larger k, or drop substantially over time. Sec. 5.1 de-
scribes the k selected based on empirical RTT data.

5 Experiments
To demonstrate BirdsEye’s utility, we evaluate the accu-
racy of its IPtree and present simulations and case studies
on RTT measurements collected from one node of a large
distributed server farm. The node is located near a ma-
jor metropolitan area in the north-eastern United States.
We collected RTT data based on TCP handshake delays
using a network monitor on one of the nodes from April
1 to April 20, 2010. 2-3 million measurements are col-
lected each day across all servers at that node.

We implemented BirdsEye with about 3000 lines of
C++. Our current unoptimized implementation takes less
than 1 minute to generate the IPtree and corresponding
visualization for each node in the server farm. Thus,
when integrated with an ongoing feed of RTT measure-
ments, BirdsEye can generate near real-time visualiza-
tions of network-wide RTT performance.

As discussed in Sec. 3, we split the latencies into cat-
egories: <20ms, [20ms-40ms), [40ms-60ms), [60ms-
80ms), [80ms-100ms), [100ms-200ms), and ≥200ms.
The categories reflect user perceived performance differ-
ences — e.g., an RTT increase from 10ms to 40ms is
more noticeable than one from 110ms to 140ms. Nodes
change from green to yellow to red as RTT increases.

5.1 Accuracy Evaluation
We now describe our algorithm’s accuracy in predicting
RTT categories. We note that our goal is not as much
to demonstrate a highly-accurate RTT estimation tech-
nique, but rather, to show that the tree computed by our
algorithm is accurate enough to use for inferring perfor-
mance via the visualization.

Fig. 3(a) shows the error in estimating the latency cat-
egory (this is computed as the difference between the ac-
tual RTT and the category) for k = 20, 000, over the
entire data set. We note that 83% of RTTs are esti-
mated within 5ms of their category, and 90% are esti-
mated within 20ms, (i.e., to a neighbouring category, at
most). Thus, the IPtree’s prediction of the latency cate-
gory is accurate enough for visualizing performance the
vast majority of the time.

In order to choose an appropriate k for the visualiza-
tion, we now examine the algorithm’s accuracy over time
for different k. Fig. 3(b) shows the fraction of misclas-
sified categories over time for k ranging from 1000 to
200,000. Using a tree with k = 1000 or k = 2000 al-
ways produces notably more error than using k = 5000
leaves. Increasing k beyond 5000 reduces the error by
only by 1% compared to k = 200, 000. Since visualiza-
tion is most effective with smaller k, we use k = 5000
for the visualization without significant loss in accuracy.

5.2 Injected Anomalies
Next, we use injected anomalies to illustrate Birdseye’s
ability to visually highlight anomalies. We consider two
different anomaly scenarios: one with local performance
impact, and another with network-wide impact.

We first consider a class of anomalies that is difficult
to detect with traditional methods. Consider a small pre-
fix (e.g., a /24) that is not advertised by itself in BGP
(because it is always a part of a larger advertised pre-
fix), and thus would not likely be discovered by examin-
ing only advertised BGP prefixes. How well does Bird-
sEye handle such a scenario? We select a /24 prefix of
a highly active /13 belonging to a major tier-1 ISP, and
add randomly generated IP addresses in this /24 with
high RTTs (e.g., 100-200ms) into the stream, such that
the injected data is no more than 1% of the parent /13’s
data. Fig. 4(b) shows BirdsEye IPtree for the hour after
this injected anomaly – we see a new red spike (high-
lighted) corresponding to the anomalous /24, which is
not present earlier, i.e., Fig. 4(a). Note that finding such
an anomaly even if all /24 prefixes are tracked is not triv-
ial: Figs. 4(c) & (d) show the same anomaly inserted into
a strawman tree that consists only of /24 prefixes (but is
otherwise grown identically as our tree); the anomaly is
lost in Fig. 4(d).

We now illustrate how BirdsEye captures a large-scale
performance event. We collect the set of all prefixes ad-
vertised by a major tier-1 ISP to the server farm node,
and add a delay to each IP address in that set during a
time interval. This simulates a scenario where a ISP-
wide disruption cause traffic flowing to different destina-
tions through that ISP to be rerouted over much longer
paths (e.g., cuts in critical bottleneck links as happened
in the Mediterranean Sea in 2008) . Fig. 5(a) & (b) shows

4

(a) Birdseye: Before anomaly (b) Birdseye: After anomaly (c) Strawman: Before (d) Strawman: After
Figure 4: Injected anomaly: high latency in a /24 prefix block. (a)-(b) show BirdsEye before & after the anomaly,
which clearly reveals the /24 block. (c)-(d) show a strawman tree of /24 prefixes, but here the anomaly is lost.

(a) Birdseye: Before (b) Birdseye: After (c) Strawman: Before (d) Strawman: After
Figure 5: Injected ISP-wide performance event: (a)-(b) show BirdsEye before & after the anomaly, which dominates
the tree. (c)-(d) show a strawman tree of /24 prefixes, where the anomaly is somewhat less visible.

how this anomaly creates a big visual impact – nearly the
entire tree changes in color between the two trees. The
strawman tree also changes its color between Fig. 5(c)
& (d), but it is less noticeable. Thus, Birdseye is able to
visually highlight the impact of a large anomaly as well.

5.3 Real Case Studies
We now present examples of real RTT anomalies discov-
ered using BirdsEye. To illustrate these, we use snap-
shots of the BirdsEye IPtree at different hours of the day
as well as the high-RTT subtrees in Fig. 6.

Case Study 1: Consistently Poor Performance. Our
first example focuses on parts of the IPtree that always
have high RTT (i.e., always appear red). Each snapshot
shows 3 consistent long spikes of high RTT in the IPtree
(highlighted in Fig 6(a)). On examining these prefixes,
we found that they correspond to the management nodes
of the distributed server farm located on the West Coast,
so their high RTT is not particularly of concern to the
server farm’s operation. We validated that the IPs do in-
deed have high RTT by examining the data — 73− 81%
of the RTTs exceed 90ms, thus justifying their presence.

In addition, there are permanent red areas in all snap-
shots that are larger prefixes which range from /12 to /18
blocks (highlighted in Fig 6(e)). Recall that larger pre-
fixes are closer to the IPtree’s center. Inspection reveals
that those prefixes belong to a cellular carrier,2 and shows
that 56 − 72% of the corresponding RTTs in these pre-
fix blocks are over 80ms. While high RTTs on wireless
carriers are expected, this highlights that those wireless
users may have issues accessing latency-sensitive con-
tent stored on the server farm.

2This carrier is not affiliated with the authors.

Case Study 2: Occasionally Poor Performance. Our
second example explores a part of the IPtree that also
regularly appears, but experiences high RTTs only oc-
casionally, highlighted in Fig. 6(g). Note that this region
shifts from green in the early hours (e.g., Fig. 6(a)) to yel-
low/red during the busier hours. This is also especially
visible from the high-RTT subtrees – these prefixes do
not appear in Fig. 6(e), but appear in Fig. 6(g). Closer
investigation revealed that most of these prefixes were
access ISPs that seem to show signs of congestion during
the evening hours, even while there are other ISPs do not
(i.e., stay green). Detailed analysis of the measurement
data showed that in these access networks, around 40%
of the RTTs increased by over 40ms! Finding the set of
all these ISPs using traditional tools, which plot perfor-
mance per ISP, would have been extremely tedious.

Case Study 3: Anomalous IP block. Our last exam-
ple shows how BirdsEye may aid in finding an anomaly
that may otherwise be lost in noise. We focus on the pre-
fixes highlighted in Fig. 6(c). Note that this spike is not
present in the other 3 hours. When we manually exam-
ined the prefixes, we discovered that these prefixes be-
long to a small ISP in the western US, and the IPs appear
for 2-3 hours on 3 different days in our data set. They
account for less than 0.02− 0.05% of the RTTs in those
hours, however, 95% of them exceed 80ms, and about
41% exceed 200ms. Even though the IP block comprises
a tiny volume of data, BirdsEye differentiates it from
a parent prefix with over 100 times more data, 95% of
whose RTTs are under 80ms. The geographical location
of the IP block suggests that these clients were misdi-
rected at the time, as the server farm has nodes that are
geographically closer to this ISP. Before BirdsEye, our

5

(a) Day 8: 1am (b) Day 8: 12 noon (c) Day 8: 5pm (d) Day 8: 11pm

(e) High RTT Subtree: 1am (f) High RTT: 12 noon (g) High RTT: 5pm (h) High RTT: 11pm
Figure 6: Real Case Studies. Figs. (a)-(d) show an IPtree time series through Day 8, and (e)-(h) show the corresponding
high-RTT subtrees. Figs. (a) & (e) highlight regions with consistently high RTTs, (g) highlights a region with diurnal
pattern and (b)-(d) highlight a one-time misdirected client at the server farm.

operators did not know that this ISP had been directed to
this particular node, nor of its extremely high RTT.

6 Related Work
Visualization has been acknowledged as an important
way to understand Internet characteristics [2] but an ef-
fective visualization requires a compact representation of
the data. We focus here on work related to our represen-
tation, the Internet tree. Algorithms for building hier-
archical heavy-hitter clusters [3, 9] also summarize traf-
fic characteristics into a small number of prefix clusters;
however, our problem differs from these as their goal is
typically to identify prefixes with substantial traffic, not
differentiate performance characteristics. More closely
related are approaches that build optimal aggregates [1,7]
over the address space to classify traffic with different
characteristics; we build on [8] as it is designed for au-
tomatically adapting over changing data streams. Our
problem also differs from the classic latency estimation
problem in networking research: our goal is not to esti-
mate end-to-end latency between arbitrary hosts, but to
differentiate latency performance by prefix.

7 Conclusion
We presented BirdsEye, a visualization tool that enables
operators to track network-wide performance between a
server farm and its customers. It builds adaptive decision
trees over the IP address space using recent performance
measurements, which group IP addresses with similar
performance characteristics and separate those with sig-
nificantly different performance characteristics. By visu-
alizing these decision trees, BirdsEye shows the perfor-
mance to the entire Internet, but only highlights the parts

that have bad performance at any given point in time. As
a case study, we used BirdsEye to visualize RTT mea-
surements for a commercial server farm, and discovered
several RTT patterns that operators were unaware of but
were keenly interested to know, such as diurnal patterns
of poor performance in particular access ISPs and an ISP
likely misdirected by the server farm. Our approach is
likely to be useful in any application where differences
in behaviour depend upon the IP address structure.

References
[1] BEVERLY, R., AND SOLLINS, K. An internet protocol address

clustering algorithm. In SysML (2008).

[2] BURCH, H., AND CHESWICK, B. Internet watch: Mapping the
Internet. Computer 32, 4 (Apr. 1999), 97–98.

[3] ESTAN, C., SAVAGE, S., AND VARGHESE, G. Automatically
inferring patterns of resource consumption in network traffic. In
SIGCOMM (2003).

[4] FREUND, Y., SCHAPIRE, R. E., SINGER, Y., AND WARMUTH,
M. K. Using and combining predictors that specialize. In STOC
(1997).

[5] LITTLESTONE, N. Learning quickly when irrelevant attributes
abound: A new linear threshold algorithm. Machine Learning 2,
285-318 (1988).

[6] LITTLESTONE, N., AND WARMUTH, M. The weighted majority
algorithm. Information and Computation 108 (1994), 212–251.

[7] SOLDO, F., MARKOPOULO, A., AND ARGYRAKI, K. Optimal
filtering of source address prefixes: Models and algorithms. In
INFOCOM (2009).

[8] VENKATARAMAN, S., BLUM, A., SONG, D., SEN, S., AND
SPATSCHECK, O. Tracking dynamic sources of malicious activity
at internet-scale. In NIPS (2009).

[9] ZHANG, Y., SINGH, S., SEN, S., DUFFIELD, N., AND LUND,
C. Online identification of hierarchical heavy hitters: algorithms,
evaluation, and applications. In IMC (2004).

6

