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Abstract
Accurate power characterization is important in com-

puting platforms for several reasons ranging from power-
aware adaptation to power provisioning. Power charac-
terization is typically obtained through either direct mea-
surements enabled by physical instrumentation or model-
ing based on hardware performance counters. We show,
however, that linear-regression based modeling tech-
niques commonly used in the literature work well only
in restricted settings. These techniques frequently exhibit
high prediction error in modern computing platforms due
to inherent complexities such as multiple cores, hidden
device states, and large dynamic power components.

Using a comprehensive measurement framework and
an extensive set of benchmarks, we consider several
more advanced modeling techniques and observe limited
improvement. Our quantitative demonstration of the lim-
itations of a variety of modeling techniques highlights
the challenges posed by rising hardware complexity and
variability and, thus, motivates the need for increased di-
rect measurement of power consumption.

1 Introduction

Electrical power is a precious resource and its consump-
tion is important to all forms of computing platforms
from handheld devices to data centers. Numerous re-
search efforts seek to optimize and carefully manage en-
ergy consumption at multiple levels—starting from indi-
vidual components and subsystems such as wireless ra-
dios [27], storage devices [23], and processors [15, 28],
to entire platforms [16, 39].

An important goal of these optimizations has been to
achieve power proportionality, that is, power consump-
tion that is proportional to the computational work done.
As a result, a modern system’s instantaneous power draw
can vary dramatically. Moreover, the exact relationship
between power draw and activity level is becoming in-

creasingly complex due to the advent of microproces-
sors with multiple cores and built-in fine-grained thermal
control, as well as hidden device states that are not nec-
essarily exposed to the operating system.

While increasingly energy efficient components are a
key enabler, achieving the goal of platform-wide power
proportionality requires an intelligent dynamic power
management (DPM) scheme. A critical first step towards
that goal is to characterize how much power is being con-
sumed, both by the platform as a whole and also by indi-
vidual subsystems. Armed with a reasonable characteri-
zation of power consumption, a DPM system then needs
to accurately predict how changes in utilization will im-
pact future power consumption. For example, a DPM
system can guide resource allocation decisions between
heterogeneous but functionally similar resources such as
multiple radios on the same platform [27].

Current approaches to prediction rely on assumptions
of power proportionality to make architectural or system-
level tradeoffs. These tradeoffs are evaluated by building
a model of the system that describes power consump-
tion in terms of power states and attributing the model
to one or more observable hardware and software coun-
ters, correlating these with changes in measured power
draw. Previous work on power modeling has focused on
modeling total system power consumption using several
learning techniques such as linear regression [21, 31],
recursive learning automata [25], and stochastic power
models [29]. The effectiveness of each of these tech-
niques has been evaluated independently across various
benchmarks (see [19] for a review).

However, we are unaware of any definitive compari-
son of these models for a diverse set of benchmarks on
a given platform. Further, the increasingly nuanced rela-
tionship between a component’s activity level and power
consumption limits the utility of published models in
modern systems. In particular, as we shall show, these
models are effective only in a restricted set of cases, e.g.,
when system utilization is constant and very high, for
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relatively straightforward executions in single cores, or
when the system’s static power consumption is dominant
and the dynamic component is within the margin of er-
ror. Consequently, even well-designed DPM algorithms
employing these models will make suboptimal decisions
(to shutdown and/or slowdown components) if the actual
utilization dynamically changes the significance of vari-
ous components to overall power consumption.

To overcome the limited ability of models to predict
power consumption, manufacturers often build reference
systems complete with a large number of sense resistors
and use precision analog-to-digital converters (ADC) to
create a measurement instrument that accurately captures
power consumption at fine time granularities. Research
efforts have mimicked this approach by developing cus-
tom designs that can breakdown power consumption
within sensor platforms [35] or monitor whole-system
power for general purpose computers at the power sup-
ply [10]. While such extensive direct instrumentation can
provide accurate power measurements, it requires sig-
nificant design effort and increases costs due to board
space constraints and the need for additional compo-
nents. Hence, we are not aware of any production sys-
tems so instrumented. Moreover, significant increases in
cross-part variability [13, 38] limit the applicability of
predictions based upon even the measured behavior of a
single or small number of reference systems.

We evaluate the need for pervasive power instrumen-
tation by exploring the effectiveness of power modeling
on modern hardware. Mindful of the fact that the re-
quired level of accuracy varies based upon the specific
DPM goal, we consider how well increasingly sophisti-
cated models can predict the power consumption of real-
istic workloads. We make the following contributions:

• We show empirically that while total system power
can be modeled with 1–3% mean relative error
across workloads when restricted to a single core,
it rises to 2-6% for multi-core benchmarks.

• We find that linear models have significantly higher
mean relative error for individual subsystems such
as the CPU: 10–14% error on average, but as high as
150% for some workloads. We employ more com-
plex techniques to improve predictive performance,
but only by a few percent.

• We present an in-depth analysis of why modeling
fails for modern platforms, especially under multi-
core workloads. We posit that this poor predic-
tive performance is due to effects such as cache
contention, processor performance optimizations,
and hidden device states not exposed to the OS. In

addition, we present quantitative evidence of sig-
nificant variability between identical components,
which fundamentally bounds the potential accuracy
of any modeling based approach.

Taken together these results make a strong case for
pervasive instrumentation and dynamic collection of
power usage data. While traditionally eschewed due to
significant increases in design and manufacturing costs,
the advent of relatively inexpensive ADCs and associated
circuits makes such an approach increasingly feasible.

2 Related work

Researchers have long been interested in optimizing the
energy efficiency of computing devices. In the context
of mobile platforms, researchers have considered opti-
mizing individual subsystems such as the CPU [15, 28],
disk [23] and wireless radios [27]. While much of the
early work focused on battery powered devices for us-
ability reasons [16, 27, 39], economic motivations have
dramatically increased interest in general purpose com-
puting such as PCs and servers [1, 3, 26].

There have been a number of efforts to predict en-
ergy consumption through in-situ power measurements
by adding different levels of hardware instrumentation.
The Openmoko Freerunner mobile phone platform was
designed to support developer access. Carroll and Heiser
leveraged its sense-resistor support to characterize power
consumption at a component level, deriving simple,
time-based linear models for each component [7]. The
LEAP platform [35] proposes adding fine-grained in-
strumentation to all power rails in embedded sensor
nodes, and develops the required software instrumenta-
tion within the OS kernel to attribute energy to running
tasks. In contrast, Quanto [17] proposes a single point
of measurement by observing the switching regulator on
sensor platforms to increase the practicality of energy at-
tribution. Quanto requires changes to TinyOS and in-
dividual applications to track individual state transitions
and offline analysis for energy attribution.

These measurement efforts, however, are restricted
to special-purpose platforms with limited availability.
Moreover, while such detailed, instrumentation-based
approaches provide accurate power characterization,
they are frequently regarded as too costly to implement
at scale. Hence, efforts focused on more general purpose
platforms have typically relied upon modeling, mostly
for predicting total system power.

Recent activity in server environments is driven by
the observation that most computer systems are largely
idle [1] or exhibit low utilization except during peak traf-
fic [3]. Hence, Barroso and Hölze argue for more energy-
proportional designs so that the energy used is propor-
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tional to the utilization [3]. This quest for energy pro-
portionality has led to a variety of low-power server de-
signs [2]. Some applications, however, have been shown
to perform poorly on these low-power platforms [30].

Predicting the energy use of a particular application on
a general-purpose platform is challenging, however. Pre-
vious studies have shown that CPU utilization is not use-
ful by itself and that performance counters used to build
models only help if they are correlated with dynamic
power [24, 31]. Economou et al. explored the use of
component-level measurements including CPU, memory
and hard disk but were unable to significantly decrease
prediction error [14]. Conversely, Bircher and John ex-
plored using performance counters to model not only to-
tal system power, but component-level power (e.g., CPU,
memory, disk, and I/O) as well in a Pentium IV-class sys-
tem [5]. They find that linear models are a poor fit for all
but the CPU, and instead resort to multiple-input quadrat-
ics to provide an average of 9% absolute error.

In the hosted setting, Koller et al. turn to application-
level throughput—as opposed to hardware performance
counters—to improve power prediction for virtual clus-
ters using linear combinations [22]. The Jouleme-
ter project [21] proposes combining total-system power
measurements from server power supplies with power
modeling to attribute power consumption at the coarse
level of individual virtual machines (VM) running on a
physical server. Their model is generated by exercising
specific VMs by running particular applications and us-
ing the CPU utilization metric to attribute energy.

Despite prediction errors, a number of researchers
have demonstrated the utility of power modeling. For
example, Bircher and John combine CPU metrics with
instantaneous voltage demand information to ensure that
the processor uses the correct DVFS setting and achieve
an average speedup of 7.3% over Windows Vista’s de-
fault DVFS algorithm [6]. Wang and Wang utilize feed-
back control theory to jointly optimize application-level
performance and power consumption [37], while Tolia
et al. improve power proportionality by leveraging vir-
tual machines, DVFS, and fan control [36].

3 Power characterization

Characterizing the power consumption of a computing
platform need not be difficult in principle. Ideally, orig-
inal equipment manufacturers (OEMs) are well posi-
tioned to add extensive power instrumentation to their
platforms, which would enable accurate and fine grained
power measurements. Combined with such instrumen-
tation, OEMs could further expose interfaces to an op-
erating system to query detailed power information in a
low-overhead manner. This information can then be used
by the OS as well as individual applications to manage

their energy consumption dynamically. Unfortunately,
this ideal scenario is not realized in practice due to man-
ufacturing constraints such as increased board area, cost
of components and design costs. Modern platforms are
already extremely complex and OEMs are reluctant to
add functionality without clear and quantifiable benefits.
Hence, while OEMs may have extensive power instru-
mentation on their development platforms during design
and testing, we are unaware of any commodity platform
that provides fine-grained power measurement capabili-
ties in hardware.

Instead, in the absence of direct power measurement,
the commonly used alternative is to make power models.
The basic idea behind power modeling is to take as input
various software and hardware counters and use those
to predict power consumption after suitable training on
an appropriately instrumented platform. Regardless, any
power characterization approach, whether based upon
modeling or direct instrumentation, must trade off be-
tween several design alternatives as discussed below.

3.1 Measurement granularity

One of the dimensions that affects both forms of
power characterization—power measurement and power
modeling—is the granularity of measurement. Power
can be characterized at the level of an entire system (a
single power value) or can be done at a logical subsys-
tem granularity, such as the display, CPU, memory and
storage subsystems. The appropriate measurement gran-
ularity depends on the application. For example, in data
centers an application for macro-scale workload consol-
idation on servers will likely only require total system
power measurements at an individual server level. On
the other hand, fine-grained scheduling decisions on in-
dividual heterogeneous processor cores requires power
consumption data for individual cores.

While total system power can be measured at the wall
socket directly using myriad commercial devices (e.g.
WattsUP meters) the applicability is limited in the case
of any fine grained adaptation. Furthermore, power mea-
surements at the system level cannot distinguish between
the actual power used and the power wasted due to the in-
efficiencies in the power supply. On the other hand, fine-
grained subsystem level power characterization is more
useful since the total system power can still be estimated
accurately by adding the power consumption of individ-
ual components. Most of the research to date has fo-
cused on total system power modeling [14, 31]. In this
paper we explore the design space of power characteriza-
tion and especially investigate the feasibility of accurate
power modeling at subsystem granularity.
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3.2 Accuracy

In the case of power instrumentation, it is possible to
get very high levels of accuracy with precision analog-
to-digital converters (ADCs), albeit at higher costs. The
accuracy of power modeling with respect to the ground-
truth measurements is important since the accuracy de-
pends on how well the model fits. Similar to the measure-
ment granularity dimension, the accuracy requirements
of power modeling are also somewhat dependent on
the application. When consolidating workload to fewer
servers in a data center, modeling total power within 5–
10% error is sufficient to guide policy decisions since
the base power of servers is high [14, 31]. On the other
hand, for an application of fine grained scheduling on
different heterogeneous processor cores, the accuracy of
power characterization needs to be at least as good as
the differences in power consumption between the cores,
otherwise scheduling decisions may be incorrect.

Furthermore, the required accuracy is likely to vary
with particular subsystems based on factors such as their
dynamic range, and their contribution to the total sys-
tem power. Subsystems that are dominant in particular
platforms need to be measured more accurately since the
penalty of mis-predicting the power is higher. Further-
more, subsystems that are more complex and dynamic,
such as processors, need higher accuracy measurements.
On our test systems, the CPU consumes between 0.5W
and 27W (constituting up to 40% of the total system
power), and prediction errors translate to high absolute
error. In contrast, an SSD disk drive on the SATA in-
terface, or the network interface, consumes lower power
(fewer than 2–3W) and is less dynamic; therefore, higher
modeling errors can be tolerated. However, in cases of
platforms with a larger number of disks this modeling
error will have a more significant impact.

3.3 Overhead and complexity

Both power modeling and power instrumentation have
associated overheads and complexity. In the case of
power instrumentation, OEMs have to integrate the
power measurement functionality into their platforms,
usually in the form of a shunt resistor connected to
ADCs. The ADCs measure the voltage drop across the
shunts, which is converted into current and power con-
sumption. Since modern platforms have multiple voltage
domains, and subsystems can be powered using +3.3V,
+5V, and +12V power supplies, a large number of ADC
inputs are required. Furthermore, in case the voltage
to the subsystem is not constant, such as with proces-
sors that employ dynamic voltage scaling, we need ad-
ditional ADC inputs to measure voltage as well. Some
subsystems, such as processors, can also have multiple

power lines powering different functional units within
them which each need to be measured separately. The
shunt resistors themselves need to be chosen while keep-
ing in mind the dynamic range of the power consumed by
individual subsystems, possibly from several milliwatts
to tens of watts, to give high precision and low power
loss in the sense resistor itself. All of these factors con-
tribute to higher costs—of components, board area and
design, test and validation time.

Complexity in power modeling arises in part from the
need to capture all the relevant features expressed by
software and hardware counters to serve as inputs to
build the models. Often platforms and components, such
as the CPU, either support tracking a limited set of plat-
form counters simultaneously, or have-non trivial over-
head in collecting a large set of counters at fine granular-
ities. Therefore, it is important that the model be sparse
and use as few counters and states are possible, while
still providing reasonable modeling accuracy. Addition-
ally, the models themselves can be arbitrarily complex
and can require non-trivial amounts of computation. In
this paper, we explore a series of increasingly complex
models to understand the accuracy/complexity tradeoffs.

Finally, in the case of power modeling, transferability
or robustness of the power modeling is key: The model
should be generated once and should be applicable over
time and to other instances of the same platform. While
we believe that this is intuitively the case, recent work
has highlighted a significant amount of platform hetero-
geneity, where process and manufacturing variations and
aging effects lead to identical hardware exhibiting sig-
nificant variation in power consumption [8, 13, 38]. We
show some preliminary results relating to this aspect and
highlight the associated challenges with power modeling
in the face of increasing variability in hardware.

4 Power modeling

While there has been a considerable volume of work in
the area of power modeling, notably for system power
and CPU power, a common toeu hread joining most of
the previous work is the assumption that system power
can be well predicted by simple linear regression mod-
els [14, 21, 31]. Our goal in this paper is to under-
stand whether (i) these simple models are compatible
with more contemporary platforms (CPU and platform
complexity has increased significantly since many of the
previous modeling approaches were proposed), and (ii)
whether these models can be applied to individual sub-
systems within platforms. The latter is important to un-
derstand because, with the increasing emphasis on power
proportionality and energy awareness, there are several
adaptations that can be done at the platform level as well
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as the subsystem level, provided fine-grained power con-
sumption information is available.

Our initial attempts to use simple linear regression
models—including replicating specific ones previously
proposed—were disappointing: The models perform
poorly on non-trivial workloads. This result could be
explained by one of the following reasons:

• The features being fed into the model contain a cer-
tain level of cross-dependency, whereas linear mod-
els assume feature independence.

• The features used by previously published models
are no longer appropriate for contemporary plat-
forms. There may, however, exist a different set of
counters that can still lead to a good model.

• Modern hardware components, such as processors,
abstract away hardware complexity and do not nec-
essarily expose all the power states to the OS and are
thus fundamentally hard to model since changes in
power consumption are not necessarily associated
with changes in exposed states.

In this section, we describe a number of increasingly
complex regression models that we use to fit the power
data. Unfortunately, we found that increasing the com-
plexity of the model does not always improve the accu-
racy of power prediction across the different subsystems
that we are trying to model. We begin by describing how
linear regression models are constructed and enumerat-
ing the specific models we use.

4.1 Linear regression models
Let y = [y1, y2, . . . , yk] be the vector of power measure-
ments and let xi = [xi,1, xi,2, . . . , xi,n] be the normal-
ized vector of measurements on the n variables (hard-
ware counters and OS variables) collected at time ti. The
linear regression model is expressed as:

yi = β0 + β1xi,1 + β2xi,2 + . . .+ βnxi,n + εi,

where εi is a noise term that can account for measure-
ment error. Thus, the linear regression models are solved
by estimating the model parameters β, and this is typi-
cally done by finding the least squares solution to β̂ =
y.X−1, which can be computed as

β̂ = argmin
β

k∑
i=1

yi − β0 − n∑
j=1

βjxi,j

2

,

or simply β̂ = argminβ

(
||y − βX||22

)
.

The challenge in building a good power model is to
correctly identify the set of n most relevant features. On

the platforms we considered, there are in excess of 800
different hardware counters that can be tracked (even
though only a few can be tracked simultaneously). Pre-
vious work has overcome this problem by using domain
knowledge about the platform architecture to hand pick
counters that are believed to be relevant [14, 31]. We
believe that increasing complexity in modern processors
and platforms makes this task harder with each genera-
tion. To understand whether such domain knowledge is
critical to power modeling, we also use modeling tech-
niques that perform automatic feature selection in the
process of constructing a model. We observe that the
features selected by the more complex techniques corre-
spond to the features with the highest mutual informa-
tion [11] for a given power rail. This makes us confident
that these state-of-the-art modeling techniques are lever-
aging all relevant features and are not missing anything
that is relevant but not linearly correlated.

We now briefly describe the regression techniques that
we explore, listed in order of increasing complexity.

MANTIS: Ecomomou et al. developed a server power
model by fitting a linear regression of four distinct uti-
lization counters obtained from different platform sub-
systems to the power measurements taken at a wall
socket [14]. The input utilization metrics are obtained
by running a number of systematic workloads that stress
the platform subsystems in sequence.

In particular, they consider counters corresponding to
CPU utilization, off-chip memory accesses, and hard
drive and network I/O rates. We extend the basic MAN-
TIS linear model to also consider instructions per cycle
as a representative baseline obtained from a best-in-class
full-system power model [31]. While there have been
a large number of efforts focused on identifying a suit-
able set of performance counters, we choose the MAN-
TIS model as a starting point because it has been shown
to have very good predictive properties on previous-
generation hardware [14]. Since a few of the counters
used by the original MANTIS model are no longer avail-
able on modern platforms, we communicated with the
authors themselves to find appropriate substitutes.

Lasso regression: There are two drawbacks to build-
ing a (linear) regression model. First, it requires domain
knowledge to identify the correct set of features (possi-
bly from a large space)—in this case, we seek features
possibly related to power consumption. Second, when
the features are correlated to each other, the regression
simply distributes the coefficient weights across the cor-
related features, and all correlated features are included
in the final model, rather than identifying a smaller sub-
set of somewhat independent features. In current com-
plex platforms, there is a very large space of features
that can be measured and it is a non-trivial task—even
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for an expert—to correctly identify the smallest possible
subset of power relevant features [33]. Lasso regression,
which is a specific instance of l1-regularized regression,
overcomes this challenge by penalizing the use of too
many features. Thus, it tends to favor the construction
of sparse models which incorporate just enough features
as are necessary. This is done by incorporating a penalty
factor into the least-squares solution for the regression,
which is expressed as:

β̂ = argmin
β

 k∑
i=1

yi − β0 − n∑
j=1

βjxi,j

2

+λ

d∑
j=1

|βj |


or, simply β̂ = argminβ

(
||y − βX||22 + λ ||β||2

)
.

Here, λ is a penalty function that encourages the solu-
tion to aggressively set β values to zero (and exclude the
associated features from the model). Compared to regu-
lar methods, Lasso regression is advantageous since it re-
lies less on strong domain knowledge to pick out the right
features; in addition, it is computationally simple, and
automatically picks models with a small number of fea-
tures, which are critical requirements for a usable power
model. The optimal value for the λ parameter is selected
by cross validation on the training data. We used the
glmnet package to perform the Lasso regression [18].

4.2 Non-linear regression models

Linear regression models work well when the features
being modeled are independent of each other and tend to
predict poorly when there are interdependencies between
the modeled features; non-linear models can often cap-
ture these feature dependencies. (Indeed, previous work
has shown that quadratic models can be more effective at
modeling subsystem power [5].) The non-linear form of
the model can be expressed as:

yi = β0 +

m∑
`=1

β`φ`(xi) + εi,

where φ` are non-linear basis functions over the feature
vectors xi. We use the Lasso least-squares formulation
as before to solve the regression and construct a model.

In general, the set of possible φj is arbitrarily large and
solutions exist for only a few families. We experiment
with three well known functions:

Polynomial with Lasso: Here, the basis functions are
defined as exponentiated forms of the original variables.
So, φ = {xai : 1 ≤ a ≤ d} where d = 3. Again, with
Lasso, only the relevant features—now including the
polynomial terms which may have cross dependencies—
are inserted into the model.

Polynomial + exponential with Lasso: In this slight
variation of the previous model, φ also includes the func-
tions exi . As before, we run the full set of terms through
the Lasso (linear) regression package which picks out a
sparse subset of the terms. In the previous case as well
as this one, the optimal λ is selected by cross validation.

Support vector regression (SVR): We also experi-
ment with support vector machine (SVM)-based regres-
sion. At a high level, SVMs operate by fitting a hyper-
plane decision boundary to a set of labeled data instances
taken from different classes. The hyperplane boundary
is constructed so as to maximize the separation between
the two classes of data, and can be used to perform clas-
sification, regression, and function estimation tasks on
the data. SVMs employ a trick to handle non-linearity,
the data is run through a non-linear kernel that maps the
data to a higher dimensional space where greater sep-
aration may be achieved. An important difference be-
tween SVR and Lasso-based methods is that SVR does
not force the regression to be sparse. When features are
correlated, weights are distributed across them. We use
the libsvm [9] and, in particular, the radial basis kernel.
The parameters required for the RBF kernel were opti-
mally selected by cross validation on the training data.

5 Evaluation setup

We collect platform subsystem power using an instru-
mented Intel Calpella platform. The platform is a cus-
tomer reference board that corresponds to the commer-
cially available mobile Calpella platform. This particular
board, which is based on the Nehalem processor archi-
tecture, was outfitted with an Intel quad-core i7-820QM
processor, 2x2GB of DDR3-1033 memory and a SATA
SSD drive, running the 2.6.37 Linux kernel. Importantly,
we turned off HyperThreading and TurboBoost on the
platform to avoid hidden states (these states change op-
erating points but are controlled in hardware and the OS
has little visibility into them). A salient feature of this
particular board is that it has been extensively instru-
mented with a very large number of low-tolerance power
sense resistors that support direct and accurate power
measurements of various subsystems (by connecting to a
data acquisition system). The platform contains over one
hundred sense resistors and it is a non-trivial task to col-
lect readings from all of them. Instead, we first identified
the platform subsystems that were of interest to us and
simply instrumented the resistors for those subsystems
and connected them to two 32-input National Instrument
USB6218 DAQs. Finally to measure the total power con-
sumption at the wall we use a commercial WattsUp me-
ter. The Calpella platform is powered soley by a 12-V
input from the ATX power connector and we consider
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Subsystem # resistors min–max
CPU core 3 0.5–27W

CPU uncore (L3,
mem. controller) 1 1–9W

integrated graphics 2 n.a.
discrete graphics 2 ≈15.3W

memory 2 1–5W
CPU fan 1 ≈0.7W

SATA 3 1.3–3.6W
LAN 1 ≈ 0.95W

Chipset + other 0 0.5–5W
12V ATX in 1 23–67W

Table 1: Power characterization for the calpella platform.
The 500-W ATX PSU that we use dissipates 20–26W
due to conversion inefficiency and is not shown.
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Figure 1: Power breakdown for sample workloads.

the 12-V rail to represent the total system power in or-
der to eliminate the influence of variable power-supply
inefficiencies. The power breakdown of the various sub-
systems is shown in Table 1.

The 16-bit NI-DAQs have a worst case error of 0.02%,
but to scale the measured voltages to the range of the NI-
DAQ we use precision voltage dividers, which in turn in-
troduce a 0.035% measurement error, leading to an over-
all error of 0.04%. To minimize measurement overhead,
the data from the NI-DAQs and the WattsUp meter is col-
lected on a separate computer.

Along with the (externally) collected power readings,
we collect OS-level statistics, hardware states and per-
formance counters from the platform itself (for simplic-
ity we will use the terms counter and state interchange-
ably). We extract OS-level statistics from /proc and
/sys in Linux; these include processor utilization, disk
usage, and processor C-state residency statistics. We
collect hardware performance counters using the Linux
perf event framework.

By default the perf event framework provides ac-
cess to the four programmable and the six fixed hard-

ware counters available per core. As a departure from
previous processor models, Nehalem processors intro-
duce “uncore” counters, which measure the performance
of the L3 cache, QPI bus, and the memory controller.
To replicate the MANTIS model, we need to measure
last-level cache misses in the L3 cache. Fortunately,
we have a kernel patch that provides access to the eight
programmable per-socket performance counters. The
measurement framework reports a total of 884 counters.
While it would be ideal to measure them all concurrently
and allow the models to pick out the most relevant fea-
tures, the small number of programmable counters that
can be read concurrently makes this task impossible.

Instead, we use a simple heuristic to reduce this num-
ber to a more manageable size: we sweep through the
entire set of possible counters, making sure to get at least
one run for each counter; then we compute the correla-
tion of each counter with the total system power and dis-
card all the counters that show no variation (with power),
or that have very poor correlation. This brings down the
set of potential counters to about 200, which is still large.
To bridge the gap, we select all of the OS counters (these
can be measured concurrently), and we greedily add as
many hardware counters, in order of their correlation co-
efficients, as we can measure concurrently.

Note that due to issues with the aging OS required
for NI-DAQ driver support, our test harness is initiated
from an external machine. A high-level diagram of the
measurement setup is shown in Figure 2. We have set
up the NI-DAQ to sample each ADC channel at 10Khz
and output average power consumption for each subsys-
tem once per second for accurate power measurements.
In our setup, we thus collect power readings as well as
the on-platform measurements at a one-second granular-
ity. Adjusting the collection granularity does not appre-
ciably impact the prediction accuracy, and we feel that
one second is a reasonable compromise: sampling the
OS level counters at a faster rate would incur a higher
overhead and introduce stronger measurement artifacts
(where the act of measuring itself takes a non-trivial
amount of power), while sampling it any slower might
limit how quickly applications can react to changes in
power consumption.

5.1 Benchmarks

To systematically exercise all possible states of the plat-
form, particularly the subsystems that we are measur-
ing, we selected an array of benchmarks from two well
known benchmarking suites, as well as a few additional
benchmarks to extend the subsystem coverage. We in-
clude the majority of the benchmarks in the SpecCPU
benchmark suite [34]. We include 22 of the 32 bench-
marks, excluding ten because they would either not com-
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pile with a modern compiler or tended to exhaust mem-
ory. While the SpecCPU suite is a well established
benchmark, it only contains single-threaded benchmarks.
To get a more representative set of benchmarks that
would better exercise our multi-core system, we included
the PARSEC [4] benchmark suite; this consists of a range
of multi threaded “emerging workloads”, including file
de-duplication and x264 compression. We also include
the Bonnie I/O benchmark, a parallel LinuxBuild
kernel compile, StressAppTest [32], a memcached
workload, as well as a synthetic cpuload benchmark.
The StressAppTest program is a burn-in program de-
signed to place a realistic high load on a system to test
the hardware devices. We observe that while most of
these benchmarks use the hardware as quickly as pos-
sible, evidence suggests that systems are not always
fully loaded [3]. To capture this behavior, we supply
memcached with a variety of different request rates to
target different utilizations, and we duty cycle our syn-
thetic floating point cpuload benchmark. Finally, we
include Sleep to represent the system at idle.

5.2 Modeling evaluation
The effectiveness of a model is often decided by learning
the model from a training set of data, and then assess-
ing its predictive performance on a (different) testing set.
Selecting the training set is often a non-trivial task and
must ensure that the training set includes enough samples
from various operating points. When this is not done ju-
diciously the testing error can be large, even though the
training error is small. The ideal scenario is to identify
a set of “basis” benchmarks that are known to provide
the sufficient coverage and to generate the training data
from these benchmarks (a form of this was done in [31]).
However, this is hard to achieve when systems are com-
plex and have a large operating space. When we tried
such an approach, the results were disappointing and led
us to ask a more basic question: how well does the model
work when the testing and training data are similar? This

puts the focus on whether good models can be gener-
ated at all, rather than picking the smallest set of work-
loads needed to construct a good model. We employ a
well known validation technique known as k × 2 cross-
validation. For this technique, we randomize the order-
ing of the data (collected from all the benchmarks), par-
tition into two halves, use the first half as training data
and learn the model, and then compute the prediction er-
ror on the latter half. The process is repeated multiple
times (we repeat 10 times) and the errors from each run
are aggregated.

We note that in our experimental evaluation, the er-
ror observed on the testing data set is approximately the
same as that on the training data set, not only when the er-
ror is low, but also when the error is high. This raises our
confidence that the models obtained each time are suf-
ficiently general. In the next section, we present results
from building models on specific platform subsystems.

6 Results

In this section we present results from evaluating the
various models on several different operating configura-
tions. The metric we use to test the efficacy of a model
is mean relative error, which we shorten to error in the
discussion, defined as follows:

error =
1

n

n∑
i=1

∣∣∣∣ p̂i − pipi

∣∣∣∣
where p̂i is the model predicted power, and pi is the ac-
tual power measurement. For the results shown in this
section, we execute each benchmark and configuration
five times (n = 20). We note that the metric used is con-
sistent with previous work [31]. One point of departure
with previous work is that we measure “system power”
after the PSU, and hence we capture a more accurate re-
flection of the actual power being consumed.

After running a large number of experiments across a
variety of configurations, we can reduce the findings into
three takeaways, which we discuss next.

6.1 Single core
To reduce number of variables we first limit the system
to use one processor core only and run all the bench-
marks on that single core. HyperThreading and Turbo-
Boost were also turned off, and the processor P-state (fre-
quency) was fixed. This is a reasonable approximation
to the systems that were used to develop the MANTIS
model. For this configuration, we note the following: the
mean prediction error (averaged over all the benchmarks
to obtain a single number) for total system power is be-
tween 1–3%. The errors are also low for platform sub-
systems: for example the average error in CPU power
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Figure 3: Modeling acuracy for total system power (Single-Core). Mean relative error is 1–3% across workloads.
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Figure 4: Modeling acuracy for CPU power (Single-Core). Mean relative error is 2-6% across workloads.

prediction is 2–6%, and the average error in predicting
memory power is about 4–8% across the different mod-
els. Due to space constraints we do not show the results
for the other subsystems, however the prediction errors
is similar to that of the CPU.

In this context, mean prediction error can be mis-
leading because the mean is computed over all time
samples and is weighted towards longer-running bench-
marks. Thus, the error will be worse if the system is
executing a specific workload that is poorly predicted.

Figure 3 compares the prediction error in total sys-
tem power over all the benchmarks used. The models
do rather well, the majority of benchmarks show an error
of less than 5%. The MANTIS model does well (which
we expected), but the linear-Lasso model does slightly
better than do the non-linear Lasso models. Upon closer
inspection we observe that this ordering of results is tied
to how well the models predict the CPU power, which
along with a considerable base power factor, is a large
contributor to the total system power.

Figure 4 compares the prediction errors across differ-
ent models for the CPU subsystem power. Here, the dif-
ferences between the models are more pronounced. We
see that the MANTIS model is off by at most a few per-
cent for most of the benchmarks, except for canneal,
StressApp, and bonnie, which have high utilization,
low IPC, and consequently lower power than the model
attributes to utilization alone. It is important to note that
the linear-Lasso model, which picks out the set of fea-

tures automatically, consistently outperforms the MAN-
TIS model, which uses domain knowledge to select the
features. Not surprisingly, the set of counters picked out
by linear-Lasso is a superset of the counters used by the
MANTIS model; the C-state counters included in the
linear-Lasso model, but not the MANTIS model seem
to improve predictive power. Thus, this goes to estab-
lish that as systems become increasingly complex, the
task of applying domain knowledge to pick out the most
accurate set of counters becomes progressively harder
and techniques that do automatic feature selection will
be very useful in building effective models.

Finally, Figure 5 compares the error in prediction in
the memory subsystem for different models and across
various benchmarks. Similar to the CPU, all models save
for SVM-rbf, do quite well and have comparable errors.
Also, when compared to CPU power, the prediction er-
ror for different models are similar. This hints at the
fact that all models use the same set of relevant features,
which for the memory subsystem (which is simple) is
quite predictable—L3-cache-misses being the most rele-
vant and dominant feature.

Most of the results discussed so far were as expected—
linear models have been shown to work well to predict
full system power [14, 31]. Promisingly, even with an in-
crease in subsystem power management complexity over
prior work [5], the same linear models also do well in
predicting platform subsystems.

9



Sleep

str
eamclu

ste
r

canneal

memcach
e.10

bodytra
ck

fre
qmine

x264

blacksch
oles

Stre
ssA

pp.cp
u

LinuxBuild
namd

dedup

Stre
ssA

pp.disk

zeusm
p

Bonnie

memcach
e.1k

mcf

Stre
ssA

pp.all

sphinx3

Stre
ssA

pp.m
em
povray

soplex

cp
uload.10

memcach
e.5k

cp
uload.30

cp
uload.90

cp
uload.100

cp
uload.50

cp
uload.70

0
2
4
6
8

10
12
14
16
18

M
e
a
n
 R

e
l 
E
rr

 (
%

) linear-lasso mantis nl-poly-lasso nl-poly-exp-lasso svm_rbf

Figure 5: Modeling acuracy for memory power (Single-Core). Mean relative error is 4–8% across workloads.

fre
qmine

povray

str
eamclu

ste
r

LinuxBuild
soplex

canneal

Stre
ssA

pp.m
em

blacksch
oles

namd

bodytra
ck

cp
uload.30

zeusm
p

cp
uload.50

Stre
ssA

pp.all

dedup

cp
uload.70

memcach
e.5k

cp
uload.10

mcf
x264

sphinx3
Bonnie

Stre
ssA

pp.disk

cp
uload.100

cp
uload.90

memcach
e.1k

Stre
ssA

pp.cp
u

memcach
e.10

Sleep
0
5

10
15
20
25
30

M
e
a
n
 R

e
l 
E
rr

 (
%

) linear-lasso mantis nl-poly-lasso nl-poly-exp-lasso svm_rbf

Figure 6: Modeling acuracy for total system power (Multi-core). Mean relative error is 2–6% across workloads.

6.2 Multicore

Next, we move to a more complex, yet more represen-
tative system configuration that utilizes all four available
cores (HyperThreading and TurboBoost are still disabled
and the P-state is still fixed). While more realistic, it
still insulates the system from the extra hidden states of
DVFS and functional contention, making power as easy
to predict as possible. Figure 6 shows that across all the
benchmarks, total system power is predicted to within
2-6%, which is respectable. This is well within the accu-
racy range required for tasks like data center server con-
solidation. However, as shown in Figure 7, the prediction
error for CPU power is significantly higher, compared to
that of the single core configuration, at 10-14%.

If we look more closely at the individual benchmarks
for system power (Figure 6), we see that the error varies
drastically by particular benchmark. Some benchmarks
are predicted quite well (those near the left of the bar
graph) and others do rather poorly (those to the right).
Interestingly, the ordering of models changes with each
benchmark, i.e., a particular model does not consistently
do better than another over the entire set of benchmarks.
In every benchmark there is at least one model that has an
error less than 6%, but it is not always the same model.
Our intuition for this behavior is that the model finds
a roughly linear/polynomial/exponential space that fits
some of the benchmarks, but then fails to capture the
complex nature of contention on system resources to ac-
curately model all workloads.

Figure 7 shows the prediction error across models for
the CPU power. These results are even more striking. For
workloads that lightly load the system (Sleep, low-rate
memcached, etc.) and workloads that stress very spe-
cific components (StressAppTest, cpuload, etc.),
the prediction is poor. This is particularly concerning be-
cause previous work shows that most production systems
are run at low utilization levels [3]. Hence, one might
hope that prediction is much better at idle or low load
(which is a more realistic scenario in production sys-
tems). Unfortunately, the error climbs above 80% for
most of the models. Thus, we find that all the models we
evaluate are limited in their ability to predict the power
consumption of workloads on multicore systems.

The metric of mean absolute error indicates instanta-
neous prediction error. An astute reader might observe
that some prediction applications might be concerned
with long term averages and that the instantaneous er-
rors might balance out. While time averaging can reduce
the overall impact, many of the benchmarks experience
one-sided errors and the models systematically overpre-
dict for some and underpredict for others. Furthermore,
even though the percentage error is influenced by the ac-
tual power magnitude, we find that most benchmarks are
systematically mispredicted by 1–6W on average.

We posit that one of the factors that contributes in
a significant way to the poor prediction performance is
the increasing presence of hidden power states. In the
present case, there are several resources shared across
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Figure 7: Modeling accuracy for CPU power (Multi-core). Mean relative error is 10–14% across workloads, but as
high as 150% for some workloads on the right.
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Figure 8: Prediction error with hard disk (left) and newer technology SSD (right).

the cores (L2 caches, for one), which lead to resource
contention between the cores causing bottlenecks in pro-
cessing. However, this very low level behavior is not cap-
tured in any of the exported features, and consequently
does not make its way into the model. Since we can-
not observe the unexposed CPU state to understand what
is really happening, in the following section we use the
increased internal complexity of SSDs vs. hard drives,
instead, to demonstrate degradation in modeling due to
hidden power states.

6.3 Hidden states
An important concern when modeling individual hard-
ware components is whether the model, or the inputs
to the model, capture all relevant aspects of the compo-
nent’s operation. This derives from the tension between
the increasing complexity of the component, and hiding
state to present a simple and consistent interface to the
OS. If the component incorporates optimizations and cir-
cuitry that affect its power draw without varying any of
the counters and states that it is exporting externally, then
the model, which relies completely on the externally vis-
ible features, is likely to fail. As a case in point, there is
anecdotal evidence to suggest that newer processors ag-
gressively optimize for power by turning off functional
blocks inside the CPU that are not being used, or doing
clock gating at a finer granularity than what is exposed
on the C-states (neither of which can be easily observed

or inferred by software). Another example of this phe-
nomenon can be seen in modern SSD drives: these in-
clude a number of performance and robustness optimiza-
tions (e.g. wear leveling, page re-writing, etc.). While
these complexities are well known [8], they are not ex-
posed via the SATA statistics, as evidenced by low mu-
tual information with the power values. Thus, the power
consumed by a given write may have more to do with the
hidden state of the device than with the write itself.

To explore this systematically, we ran the same bench-
marks on the same platform but with two different hard
disks. The first was a conventional 2.5” WD Caviar
Black 10K-RPM HDD, and the second was a newer Intel
X-25M SSD. Power measurements on the drives show
similar power ranges: 0.9–3.6W for the traditional plat-
ter based HDD, and 1.2–3.6W for the newer technol-
ogy SSD. Note that for both disks the features that are
recorded are identical, and attempt to capture the amount
of work done by the OS in writing/reading from the disk.

Figure 8 shows the prediction errors for both the
drives. The high level takeaway is that the error is con-
sistently larger for the SSD than it is for the traditional
drive. Specifically, we see that across the set of bench-
marks, the model predictions are off by around 7% in
the case of the conventional HDD, while they are off by
approximately 15% for the SSD drive. Since the fea-
tures collected and examined in each case are the same,
the prediction errors are clearly caused by internal state
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changes in the SSD that are reflected in the power draw,
but not exposed in the features being tracked. This au-
gurs poorly for power prediction models, given that hard-
ware complexity continues to grow by leaps and bounds.

7 Discussion

While our results indicate that the modeling techniques
we study suffer from significant prediction error, it is nat-
ural to ask 1) whether this error is in any way fundamen-
tal, or could be overcome with more sophisticated tech-
niques, and 2) how useful the resulting predictions might
be for particular dynamic power management (DPM) ap-
plications. We discuss both issues in this section. First,
we present anecdotal evidence that the inherent variabil-
ity between identical hardware components is likely to
introduce a basic error term to any modeling based ap-
proach that cannot be solved by adding complexity into
the model. Second, we discuss how useful currently
achievable levels of accuracy can be to DPM systems.

7.1 Variability
Power modeling is based upon an underlying presump-
tion that the error characteristics of the model do not
change over time or over instances of the platform. That
is, the model can be generated as a one-time operation by
training on a specific platform instance, and the model
can be used to predict the power consumption for any
other instance of platform with the same specifications.
While minor variations in manufacturing parts is a given,
historically it has not significantly affected the operating
characteristics of the platform and processors.

However, the increasing complexity of modern hard-
ware, with staggering amounts of circuitry being stuffed
into ever smaller packages exaggerates the variations sig-
nificantly. These variations lead to variability in power
consumption both in the active and standby modes. Fur-
thermore, the variability is only exacerbated by aging
and differences in operating environment. Recent work
shows that in an 80-core general purpose chip designed
by Intel, the frequency, which is directly co-related with
the power consumption, of individual cores varied by as
much as 25–50% for different operating voltages [13].
Research in embedded systems has shown that multiple
instances of a Cortex M3 micro-controller can vary in
sleep power consumption by as much as 5× [38]. Re-
cent work has also demonstrated that the performance
and power consumption of flash memory chips varies
widely based on age, wear and write location [8].

This level of variability raises questions about the abil-
ity of power models to generalize over identical systems
because they do not actually perform identically. Errors
in the power model are amplified by variations across
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Figure 9: Variability in power consumption measured
across two CPUs of the exact same type: Intel Core i5-
540M. Core 1 shows a 11% variability between the two
processors, while Core 2 shows 11.2% variability. Mea-
surements are averaged across ten runs for each case,
with standard deviation marked.

different instances. Using our measurement platform we
see significant differences between two identical Core
i5-540M processors. Figure 9 illustrates the measured
power consumption of the two processors (540M-1 and
540M-2) running our cpuload benchmark pinned to ei-
ther Core 1 or Core 2 using Linux cpu sets. We report
CPU power on a single platform so that everything—the
mainboard, memory, benchmark, measurement infras-
tructure, and the operating environment(temperature)—
but the processor is constant.

As can be observed from Figure 9, the CPU power
consumption when executing on Core 1 for 540M-2 is
11% higher than when using 540M-1, and is similarly
11.2% higher when executing on Core 2. Note that the
power consumption is averaged across ten runs on the in-
dividual cores (Core 1 or Core 2) for the two processors
(540M-1 or 540M-2). We also report the standard devia-
tion in Figure 9 which is measured to be less than 3.1%
in all cases. Thus, if one of the models from Section 5
were trained on 540M-1 and applied to workloads exe-
cuting on 540M-2, then a mean prediction error of 10%
could translate into a 23% error and 20% prediction error
translates into a 34% prediction error. Given the unde-
niable trend toward more complex—and therefore inher-
ently variable—components such as processors, this fun-
damental accuracy gap seems likely to continue to grow.
Hence, power instrumentation may be the only choice for
accurate power characterization.

7.2 Implications for DPM
As discussed previously, the level of accuracy and the
granularity (i.e., which subsystems are characterized) re-
quired for dynamic power management is strongly tied to
the particular application domain. In some cases, reduc-
ing energy might be possible with only a coarse grained
and approximate power consumption estimate. In other
cases, the application is likely to need a higher degree of
accuracy than modeling can currently provide.
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A promising way to save energy on a computing plat-
form is by scheduling computation more optimally. This
could be done by migrating threads to different cores on
the same socket or on different sockets (power gating is
often done at the socket level, so using additional cores
on the same socket has a very small cost). The process-
ing cores available on a platform may be homogeneous
(all derived from identical parts) or heterogeneous (from
disparate parts and even architectures).

When there are a multiplicity of processing cores
available, we expect the power cost to be quite different,
and characterizing the power for each of these cores is
critical when deciding to migrate computation. As seen
in Section 5, the power models for subsystems like the
CPU can have errors of up to 40%. When the errors
dwarf the actual power variations across the cores (and
this is a likely scenario when the cores are not architec-
turally different) it is likely that the mispredictions have
an adverse effect. However, when the choice is between
heterogeneous components such as between a CPU or a
GPU, with significantly different power characteristics,
i.e., where the variation might be larger than the model
errors, it might still be acceptable to rely on modeling.

In another domain, prior work on mobile devices
has shown that dynamically switching between multi-
ple heterogeneous radios, such as WiFi and Bluetooth,
can in some cases double battery lifetime [27]. Choos-
ing between different radio alternatives like these with
vastly different power characteristics seems straightfor-
ward even with very poor accuracy. However, recent
work has shown that modern WiFi radios, such as those
based on the 802.11n MIMO standard, have many more
complex states, each with different power consumption
tradeoffs [20]. Accurate component-level power charac-
terization will therefore be essential to make optimal de-
cisions on which radio interface or computational unit—
and in which mode—to use.

Finally, we note that power-aware resource schedul-
ing is not limited to resources within the same plat-
form. In fact the advent of abundant cloud computing
resources has accelerated research into systems, such as
MAUI [12], that can use both local computation (on mo-
bile devices) and also execute code remotely in the cloud
whenever needed. Currently these systems operate un-
der the assumption that servers in the cloud are always-
powered and, hence, their energy costs are not as impor-
tant as those of battery-powered mobile devices. These
systems would benefit significantly from detailed power
characterization on the local mobile device as well as the
servers in the cloud. Using this information, the policy
decisions on when to execute code locally or remotely
can be more informed and therefore more optimal. The
absolute amounts of energy being considered (i.e., the
execution of a single function call) in code offload sce-

narios, however, are fairly small, so high degrees of ac-
curacy seem essential.

8 Conclusion

The models we consider are able to predict total system
power reasonably well for both single core (1–3% mean
relative error) and multi-core scenarios (2–6% mean rel-
ative error), particularly when the base power of the sys-
tem is high. However for predicting subsystem power,
we show that linear regression based models often per-
form poorly (10–14% mean relative error, 150% worse
case error for the CPU) and more complex non-linear
models and SVMs do only marginally better. The poor
subsystem power modeling is due to increased system
and device complexity and hidden power states that are
not exposed to the OS. Furthermore, our measurements
show surprisingly high variability in processor power
consumption, for the same configuration across multi-
ple identical dies, highlighting the fundamental chal-
lenges with subsystem power modeling. Looking for-
ward, while modeling techniques may suffice for some
DPM applications, our results motivate the need for per-
vasive, low-cost ways of measuring instantaneous sub-
system power in commodity hardware.
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