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Abstract ity. For instance, E-commerce and credit card compa-
. . _nies analyze point-of-sales transactions for fraud detec-
Log analytics are a bedrock component of running,. e .
; . L . tion, while infrastructure providers use log data to detect
many of today’s Internet sites. Application and click logs : ! .
hardware misconfigurations and load-balance across data

form the basis for tracking and analyzing customer be-Centers [6,30].

haviors and preferences, and they form the basic inputs __ . .
P y P This semi-structured log data is produced across one

to ad-targeting algorithms. Logs are also critical for per- dat ters that contain th d4s of hi
formance and security monitoring, debugging, and op-Or more data centers that contain thousands ot machines.

timizing the large compute infrastructures that make upIt is not uncommon for such machines to produce data at
the compute “cloud”, thousands of machines spannin ates of 1--10 MB/s [4]. Even at the low end (1 MB/s), a
multiple data centers. With current log generation rate odgst 1QOO-node cluster could generate 86 TB of raw
on the order of 1-10 MB/s per machine, a single dat qgsmasmgle day. To handle these large datgsets, many
sites use data parallel processing systems like MapRe-

center can create tens of TBs of log data a day. .
While bulk data processing has proven to be an esSjuce [12] or Dryad [20]. Such frameworks allow busi-

. . . nesses to capitalize on cheap hardware, harnessing thou-
sential tool for log processing, current practice trarsfer . .
. . sands of commodity machines to process enormous data
all logs to a centralized compute cluster. This not only

consumes large amounts of network and disk bandwidths,ets'

but also delays the completion of time-sensitive analyt- The dom!nant approach is to move the data to a single
ics. We present an in-situ MapReduce architecture thafluster de_dlsated t‘? running such ,‘,’“ bulk pracessing sys-
mines data “on location”, bypassing the cost and waitt€M: In this “store-first-query-later” approach [13] users

time of this store-first-query-later approach. Unlike cur- load _data into a distributed file system and then execute
rent approaches, our architecture explicitly supports reguerlesl. For example, companies like Facebook and

duced data fidelity, allowing users to annotate querieé?""c_kSpaCe analyze tens of terabytes of log data a dgy by
with latency and fidelity requirements. This approachpu"'ngthe data from hundreds to thousands of machines,

fills an important gap in current bulk processing systems/0ading it into HDFS (the Hadoop Distributed File Sys-
5%em), and then running a variety of MapReduce jobs on a

allowing users to trade potential decreases in data fidelit o
for improved response times or reduced load on end syd@rge Hadoop cluster [17]. Many of the processing jobs

tems. We report on the design and implementation ofire time sensitive, With_sites needing to process logs in
our in-situ MapReduce architecture, and illustrate how jt24 hours or less, enabling accurate user activity models

improves our ability to accommodate increasing log gen_for re-targeting adverUsements, fast social netw_orll< site
eration rates. updates, or up-to-date mail spam and usage statistics.

However, this centralized approach to log processing
has two drawbacks. First, it fundamentally limits its
1 Introduction scale and timeliness. For example, to sink 86 TB of log
data in less than an hour (48 minutes) would require 300
Scalable log processing is a crucial facility for running Gb/s of dedicated network and disk bandwidth. This lim-
large-scale Internet sites and services. Internet firméts processing on the MapReduce cluster as the transfer
process click logs to provide high-fidelity ad targeting, occupies disk arms, and places a large burden on the data
system and network logs to determine system health,
and application logs to ascertain delivered service qual- !Here we consider queries as single or related MapReduce jobs




center network, even if well provisioned. Second, theture with a prototype system based on a best-effort dis-
approach must sacrifice availability or blindly return in- tributed stream processor, Mortar [22]. We develop ef-
complete results in the presence of heavy server load dicient strategies for internally grouping key-value pairs
failures. Current bulk processing systems provide stricin the network using sub-windows panes and explore
consistency, failing if not all data is processed. Thisthe impact of failures on result fidelity and latency. We
implies that either users delay processing until logs arelso develop load cancellation and shedding policies that
completely delivered or that their analytics run on incom-allow iIMR to maximize result quality when there are in-
plete data. sufficient server resources to provide perfect results.

In fact, though, one does not have to make this either- ) ) ) ) )
or choice. It is often possible to accurately summarize or S€Ction 2 gives an overview of the system design, dis-
extract useful information from a subset of log data, ascUSSes related work, and describes how iMR performs
long as we have a systematic method for characterizin%om'”l{Ous MapReduce processing using windows. Sec-
data fidelity. For example, if a user can ascertain whethe}on 3 introduces our notion of result quahty?,- use-

a particular subset of log data is a uniform sampling, ondul ways to expresS_?Q, and how the system efficiently
can capture the relative frequency of events (e.g., falureMaintains that metric. Sec_t|on 4 discusses our modifica-
or user clicks) across server logs. fuons tq Mortar to_ support iMR. We e\_/f_;\Iuate the syst_em

To meet these goals we present an “in-situ” MapRe-N Section 5, looking at system scalability, load shedding,

duce (iMR) architecture for moving analytics on to the ar12d data fidelity control. In particular we explore how
log servers themselves. By transforming the data i affects results when extracting simple count statis-
place, we can reduce the volume of data crossing thdics, performing click-stream analysis, and building an
network and the time to transform and load the data intd1DFS anomaly detector.

stable distributed storage. However, this processing en-

vironment differs significantly from a dedicatgd Hadoopz Design overview

cluster. Nodes are not assumed to share a distributed file

system, implying that data is not replicated nor avail-jmR is designed to complement, not replace traditional
able at other nodes. And the servers are not dedicategluster-based architectures. It is meant for jobs that fil-
to log processing; they must also support client-facingter or transform log data either for immediate use or be-
requests (web front ends, application servers, databasggre |oading it into a distributed storage system (e.g.,
etc.). Thus unlike traditional MapReduce architecturesHDFS) for follow-on analysis. Moreover, today’s batch
our in-situ approach accepts that data may naturally b@rocessing queries exhibit characteristics that make them
unavailable either because of failures or because thergn']enatﬂe to Continuousy in-network processing. For in-
are insufficient resources to meet latency requirements.stance, many analytics are highly selective. A 3-month
This work makes the following contributions: trace from a Microsoft large-scale data processing sys-
. , tem showed that filters were often highly selective (17 -
° _Contmuous MapReduce quel: Unhkg batch- 26%) [16], and the first step for many Facebook log ana-
oriented workloads, log analytics take as input essen[ytics is to reduce the log data by 80% [4]. Additionally,

:\I/Ia”yRmfclimte Input streams. ||\/(|1R|stl11ppo|:ts an eXtenOIildmany of these queries are update-driven, integrate the
MapReduce programming mode t ﬁ!tha e u/sersgcl)_ €most recent data arrivals, and recur on an hourly, daily,
ine continuous MapReduce jobs with sliding/tumbling ;.\ ey basis.

windows [7]. This allows incremental updates, re-using Below we summarize how in-situ MapReduce ensures
prior computation when data arrives/departs. BecauSﬁqat log processing is:

IMR directly supports stream processing, it can run stan- Scalable: The target operating environment consists

dard MR jobs continuously without modification. of thousands of servers in one or more data centers, each
e Lossy MapReduce processingiMR supports l0Ssy  producing KBs to MBs of log data per second. In iMR,
MapReduce processing to increase result availabilitmapReduce jobs run continuously on the servers them-
when sourcing logs from thousands of servers. To inselves (shown on the right in Figure 1). This provides
terpret partial results, we presefit, a metric of result  horizontal scaling by simply running in-place, i.e, the
quality that takes into account the spatial and temporaprocessing node count is proportional to the number of
nature of log processing. In iMR users may set a targefjata sources. This design also lowers the cost and latency
C? for acceptable result fidelity, allowing the system 10 of |oading data into a storage cluster by filtering data on
process a subset of the data to decrease |atency, avoid %ﬁte and using in-network aggregation, if the user’s re-
cessive load on the log servers, or accommodate node fce implements an aggregate function [14].

network failures. Responsive: Today the latency of log analytics dic-

e Architectural lessons: We explore the iIMR architec- tates various aspects of a site’s performance, such as the



Store First / Query Later Continuous In-situ Analytics each input record, and the reduce processes each group
of valuesp|], that share the same kéyiMR is designed
for queries that are either highly selective or employ re-

log server cloud
(1000's servers)

(Map) (Map)

log server cloud

(10008 servers duce functions that are distributive or algebraic aggre-
; 1.) In-network data gates [14]. Thus we expect that users will also specify the
1.) Load log data * f 4 . . .
\ processing MapReducecombiner allowing the underlying system
2.) Store resuits \ to merge values of a single key to reduce data movement
(EbFS) (HDFS) (HDES) |(HDFS) (@GDED) (HDFS)| and distribute processing overhead. The use of a com-
2.) Process in dedicated cluster biner allows iIMR to process windows incrementally and

further reduce data volumes through in-network aggrega-
tion. The only non-standard (but optional) function iIMR
Figure 1: The in-situ MapReduce architecture avoids thEMapReduce jobs may implement isicombine which
cost and latency of the store-first-query-later design byye describe in Section 2.3.2.
moving processing onto the data sources. However, the primary way in which iMR jobs differ is
that they emit a stream of results computed over contin-

speed of social network updates or accuracy of ad targeHOus input, €9, st()erve:jlog files. Li.ke data str:eam pro-
ing. The in-situ MapReduce (iMR) architecture builds cessors [7], iMR bounds computation over these (per-

on previous work in stream processing [5, 7, 9] to Sup_haps infinite) data streams by processing oveiradow

port low-latency continuous log processing. Like streamOf data. The vc\;w_ldow sr?ngell% de::_rreshthe ?‘rg(‘;;".’g of
processors, IMR MapReduce jobs can process over slioqata processed in each result, while the win ©

ing windows, updating and delivering results as new dat defines its update frequency. For example, a user
armives. could count error events over the last 24 hours of log

Available: iMR'’s lossy data model allows the system €cords & = 24 hours), and update the count every

to return results that may be incomplete. This allows"0Ur & = 1hour). This sliding window, one whose
the system to improve result availability in the event ofSI'deS_IS less tha?” |ts_ ranga, may be in terms of wall-
failures or processing and network delays. Additionally,CIOCk time or '°9'Ca' index, such as record count, byf[es,
iIMR may pro-actively reduce processing fidelity throughOr any L.Jserjdeflned sequence number. Users SPR:'W
load shedding, reducing the impact on existing serve ndS_W|th smple annotatlons_to the reduce fungnon.
tasks. iMR attaches a metric of result quality to each While sufficient for real-time log processing, a
output, allowing users to judge the relative accuracy of!@PReduce jobiniMR may reference historical log data
processing. Users may also explicitly trade fidelity for @5 well. Doing so requires a job-level annotation that

improved result latency by specifying latency and fidelity SPecifies the pointin the local log tiegin 5 and the to-
bounds on their queries. tal data to consume, thextentFE. If unspecified, the job

Efficient: A log processing architecture should make €ONtinues to process, possibly catching up to real-time

parsimonious use of computational and network re-PrOC€SSING.

sources. iMR explores the use of sub-windows or

panesfor efficient continuous processing. Instead of re-2 2 Job execution

computing each window from scratch, iMR allows incre-

mental processing, merging recent data with previouslyn general, MapReduce architectures have three primary

computed panes to create the next result. And adaptiviasks: the parallel execution of the map phase, grouping

load-shedding policies ensure that nodes use compuigput records by key, and the parallel execution of the re-

cycles for results that meet latency requirements. duce phase. In cluster-based MapReduce systems, like
Compatible: iIMR supports the traditional MapRe- Hadoop, each map task produces key-value pfirs,},

duce API, making it trivial to “port” existing MapReduce from raw input records at individual nodes in the clus-

jobs to run in-situ. It provides a single extensiam-  ter. The map tasks then group values by their kegnd

combine to allow users to further optimize incremental split the set of keys into partitions. After the map tasks

processing in some contexts (Section 2.3.2). finish, the system starts a reduce task for each partition

r. These tasks first download their partition’s key-value

pairs from each mapper (tlstufflg, finish grouping val-

ues, and then call reduce once for evékyv||} pair.

A MapReduce job in iIMR is nearly identical to that in  iIMR distributes the work of a MapReduce job across

traditional MapReduce architectures [12]. Programmersnultiple trees, one for each reducer partition. Figure 2

specify two data processing functions: map and reducdllustrates one such tree; iIMR co-locates map processing

The map function outputs key-value paifs;, v}, for  on the server nodes themselves, sourcing input records

2.1 In-situ MapReduce jobs
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reduce function. This tree uses the combine API to ag-
gregate intermediate data at every mapper in a manner

similar to traditional MapReduce architectures. How—Figure 4: iMR aggregates individual pangsin the net-

ever, like Dryad [32], IMR can use multi-level aggrega- work. To produce a result, the root may either combine

tion trees to further reduce the data crossing the networl&he constituent panes or undate the prior window by re-
In general, this requires aggregatedacomposable movin 'pd pd ddi b y
g an expired pane and adding the most recent.

functions that can be computed incrementally [15, 23,
32]. Here we are interested in two broad categories of
aggregate functions [21].Holistic aggregates require
partial values whose size is in proportion to their input
data, e.g.uni on, medi an or gr oupby. In contrast, Panes break a window into multiple equal-sized sub-
boundedaggregates have constant-sized partial valuesyindows, allowing the system to group and combine
e.g.,sumor max, and present the greatest opportunitieskey-value records once per sub-window. Nodes in the
for data reduction. system generate panes and send them to their parents in
the aggregation tree. Thus in IMR, interior nodes in a
tree aggregate panes and the root node combines them
into each window result. This supports the fundamen-
iIMR supports sliding processing windows not just be-tal grouping operation underlying reduce, a holistic ag-
cause they bound computation on infinite streams, bugregate. By sending panes, rather than sending the en-
because they also enable incremental computationgire window up the tree, the system sends a single copy
However, they do not immediately lend themselves toof a key’s value, reducing network traffic. Additionally,
efficient in-network processing. Consider a simple ag-issuing values at the granularity of panes gives the sys-
gregation strategy where each log server accumulates dkm fine-grain control on fidelity and load shedding (Sec-
key-value pairs for each logical window and nodes in thetion 3.4). It is also the granularity at which failed nodes
aggregation tree combine these entire windows. restart processing, minimizing the gap of dropped data
We can see that this strategy isn't efficient for our ex-(Section 4.4.2).
ample sliding window query. In this case, every event Figure 3 illustrates how a single node creates panes
record would be included in 24 successive results. Thusrom a stream of local log records. Typically, we set
every input key-value pair in a sliding window would the pane size equal to the slidg though it may be
be grouped, combined, and transmitted for each updatany common divisor of? and S, and each node main-
(slide) of the window orR/S times. To reduce these tains a sequence of pane partial valiesThis example
overheads, iIMR adapts the use of sub-windowgares uses a processing window with a slide of 60 minutes.
to efficiently compute aggregates over sliding windows.When log records first enter the system, iMR tags each
While the concept of panes was introduced in prior workone with a non-decreasing user-defined timestamp. The
for single-node stream processors [21]; here we adapmystem then feeds these records to the user’s map func-
them to distributed in-situ MapReduce processing. tion. After mapping, the system assigns key-value pairs

2.3.1 Pane management

2.3 Window processing with panes



to each pane, where they are grouped/combined. Note 50% C* Completeness
that a pane is complete when a log entry arrives for theg o
following pane (log entries are assumed to be in order). 2 g
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2.3.2 Window creation

In iIMR, the root of each reducer partition must Figure 5: C? completeness describes the set of panes
group/combine all keys in the window before executingeaCh log server contributes to the window. Here we show
the user’s reduce function and computing the result. Figiwo different ways in whichC? represents 50% of the
ure 4 illustrates two strategies the root may employ to dglata area: all the nodes process half the data or half the
so. Here two log servers andB create pane® and  Nnodes process all the data.
P, and send them to the root. The root first groups (and
possmly combines) panes with the same |ndex.. 3.1 Measuring data fidelity

The first strategy leverages panes to allow incremen-
tal processing with the traditional MapReduce API. TheA good measure of data fidelity should inform users not
strategy simply uses the existing combine API to mergeonly that data is missing, but allows users to ascertain the
adjoining panes. In this example each window consistémpact of data loss on query accuracy. One measure of
of two panes and¥; may be constructed by merging resultquality used for in-network aggregatesasnplete-
Pett with PET. This improves efficiency by having nessthe number or fraction of nodes whose data is repre-
each overlapping window re-use a pane’s partial valuesented in the final answer [22, 25]. Alternatively, systems
merging window panes is cheaper than repeatedly corlike Hadoop Online (HOP) output partial answers as data
bining the raw mapped values for each window. Thisarrives, and annotate them wigiogress the percent of
benefit increases with the number of values per key.  total data processed. Unfortunately, neither metric is suf

However, for sliding windows it is sometimes more ef- ficiently descriptive for window-based processing. Com-
ficient to removeexpired data and then add new data toPleteness cannot differentiate between a single node that
the prior . For instance, consider our 24 hour query Produces log records that span the entire window and a
that updates every hour. In this case the root must com?0de that does not. Similarly, a simple progress metric
bine 24 panes to produce each window. In contrast, th&ls to account for the source of processed data.
root could remove and add a pane’s worth of keys to Here we presenta completeness metft, that lever-
the prior window W, greatly reducing the volume of 2ades the natural dlstrlbu_non of log (_1ata across both space
keys touched. Assuming that the cost of removing and!0g server nodes) and time (the window rangej.rep-
adding keys tdV is equivalent, this strategy is always "€sents the d_atarealncluded in the final result as the
more efficient than merging all constituent panes wher?Umber of unique data panes that have been successfully
the slide is less than half the range. This requires “differ-ntégrated into the window. Logically, the root maintains
ential” [21] functions, i.e. aggregates that are commutaC” like a scoreboard, with a mark for every successfully
tive/associative under removals as well as additions. iMReceived pane in the window (Figure 5). Thus tracks

only uses an uncombine strategy when the slide is les§® set of nodes whose log data contributed to the win-
than half the range and a user supplies an uncombiner, 40w, as well as how that log data was distributed across

the result window. iIMR can summarize this raw infor-
mation as independent percentages of temporal (x-axis)
) and spatial (y-axis) completeness or simply as an area,
3 Lossy MapReduce processing the total result coverage.
Figure 5 illustrates howw? may reflect two different
This section describes the features of iIMR that allow itscenarios that process the same data area (in thi€ase
to accommodate data loss. As described earlier, data50%). In the first case, all the nodes process half the
loss may occur because of node or network failures, odata and in the second, half the nodes process all the data.
as a consequence of result latency requirements. In suckhere are, of course, other scenarios where the product
cases, an iIMR job may need to report a result before thef the percentage of nodes and percentage of the window
system has had time to process all the data in the winprocessed will be 50%, and? allows users to differ-
dow. The key challenges we address here are a.) hoentiate between them. Note th@t explains what was
to represent and calculate result quality to allow users toncluded in the result, not what wasissing which is a
interpret partial results, and b.) how to use this metric tomuch harder (and often query specific) metric to provide.
trade result fidelity for improved result latency. To measure fidelity, interior nodes aggregété for



individual panes as they make their way up each reducwith a probability in proportion toA. This takes longer
tree. Since each pane is by definition temporally com-o reach the fidelity bound than the first strategy, but will
plete, representing data for that portion of the window,correctly sample the log data. Note applications must
this per-pan€'? simply maintains a count and the IDs of check theC? score to verify a sufficient sample in the
data sources summarized in a particular pane. As paneent of pane loss due to node or network failures.
are merged in the aggregation tree, so too is théiin- Spatial completenesg X, 100%): This specification
formation. The root represents® as a histogram with  ensures that each pane in the result window contains data
a bin per pane that counts the nodes that responded fdrom 100% of the nodes in the system. It is useful for
that pane. This allows the root to summarzé as the  applications that must correlate log events on different
percent of nodes reporting (unique nodes responding diservers that occur close in time. For example, consider a
vided by total nodes) and the percent window computedasic click-stream analysis that allows web sites to char-
(non-empty panes divided by total panes per window). acterize user behavior. With load-balanced web and ap-
plication serving architectures, a user’s click events may

. . D arrive at any log server. Intuitively thi€? specifica-

3.2 UsmgCQ. applications tion captures a spatial “slice” of the log data, collecting a

This section examines how applications G&eto bound snapshot of user activity across the servers during a pane.
result quality and to understand imperfect results. Users Temporal completenesg(100%, Y): This specifica-
specify minimum fidelity requirements by annotating tion ensures thal” percent of the nodes in the sys-
queries with a target fidelity that constrains results alongem respond with 100% of the panes in the result win-
particular spatial and temporal dimensions. For examdow. It is useful for applications that must correlate log
ple, applications may specif§y? as a minimum area, events on the same server across time. For example, if in
giving the system a large degree of freedom to meet fithe click-stream analysis, individual users had been as-
delity requirements, as any set of panes will do. Or appli-Signed/pinned to particular servers, this would be(iRe
cations may specify’2 as percentages of temporal and to employ.
spatial completenesg%time, %space). For example,
one could require panes in _the window to be 1QO% spag 3 Result eviction: trading fidelity for
tially complete (as they are in the left-hand of Figure 5), Salhili
: ) availability

but relax the requirement for the other axis.

The goal for an application is to set a fidelity bound iMR allows users to specify latency and fidelity bounds
that allows users to determine result quality frafh. In on continuous MapReduce queries. Here we describe the
particular, they should fix the axes along which resultpolicies that determine when the root evicts results. The
quality is unpredictable. Thus two results may both meetoot has final authority to evict a window and it uses the
the fidelity bound, but users can ascertain relative resulivindow’s completeness;?, and latency to determine
quality by comparing how they did so. To illustrate theseeviction. Thus a latency-only eviction policy may return
concepts, we now describe four generalspecifications  incomplete results to meet the deadline, while a fidelity-
and their fidelity/latency tradeoffs. only policy will evict when the results meet the quality

Area (A) with earliest results: This C? specification  requirement.
gives the system the most freedom to decrease result la- Latency eviction: A query’s latency bound deter-
tency (or shed load). Without failure or load shedding,mines the maximum amount of time the system spends
iMR will return the first A% panes from each log server computing each successive window. If the timeout pe-
for the result window. These results will correctly sum- riod expires, the operator evicts the window regardless
marize event frequencies only if events were uniformlyof C2. Before the timeout, the root may evict early un-
distributed across the log servers. This is the case witller three conditions: if the window is complete before
simple applications, such as Word Count, where an apthe timeout, if it meets the optional fidelity boure?,
proximate answer could be used to estimate the relativer if the system can deduce that further delays will not
frequency of words. However, if some words (events) aramprove fidelity. Like the root, interior nodes also evict
associated with some servers more than other words, theased on the user’s latency deadline, but may do so be-
data will be biased. fore the deadline to ensure adequate time to travel to the

Area (A) with random sampling: This C? specifi-  root [23].
cation gives the system less freedom to decrease result Fidelity eviction: The fidelity eviction policy deliv-
latency, but tries to ensure that a partial result correctlyers results based on a minimum window fidelity at the
reproduces the relative occurrence of events in the resufbot. As panes arrive from nodes in the network, the root
window, no matter how events are distributed across theipdatesC? for the current window. When the fidelity
log servers. Here each iMR node randomly creates panaggaches the bound the root merges the existing panes in



the window and outputs the answer. will no longer be used. This section discusses mecha-
Failure eviction: Just as the system evicts results thatnisms that cancel or shed the work of creating and merg-
are 100% complete, the system may also evict results iing panes in the aggregation tree. Note that iIMR as-
additional wait time can not improve fidelity. This oc- sumes that mechanisms already exist to apportion server
curs when nodes are heavily loaded or become discorresources between the server’s normal duties and iIMR
nected or fail. IMR employdoundarypanes (where jobs. For instance, IMR may run in a separate virtual
traditional stream processors use boundary tuples [26]nachine, letting the VM scheduler allocate resources
to distinguish between failed nodes and stalled or emptypetween log processing and VMs running site services.
data streants Nodes periodically issue boundary panesHere our goal is to ensure that iMR nodes use the re-
to their parents when panes have been skipped becauseurces they are given effectively.
of a lack of data or load shedding (Section 3.4). iMR’s load cancellation policies try to ensure that in-
Boundary panes allow the root to distinguish betweenternal nodes do not waste cycles creating or merging
missing data that may arrive later and missing data thapanes that will never be used. When the root evicts a
will never arrive. iIMR maintains boundary information window because it has met the minimu@4 fidelity re-
on a per-pane basis using two counters. The first countejuirement, there is almost surely outstanding work in the
is the C* completeness count; the number of successnetwork. Thus, once the root determines that it will no
ful pane merges. Even if a child has no local data forlonger use a pane, it relays that pane’s index down the
a pane, its parent in the aggregation tree may increasgggregation tree. This informs the other nodes that they
the completeness count for this pane. However, childrermay safely stop processing (creating/merging) the pane.
may skip panes either because they re-started later in the |n contrast, iMR’s load shedding strategy works to
stream (Section 4.4.2) or because they canceled processrevent wasted effort when individual nodes are heavily
ing to shed load (Section 3.4). In these cases, the paref§aded. Here nodes observe their local processing rates
node increases @ncompletenessounter indicating the  for creating a pane from local log records. If the expected
number of nodes that will never contribute to this pane. time to completion exceeds the user’s latency bound, it
Both interior nodes and the root use these countsyill cancel processing for that pane. It will then estimate
to evict panes or entire windows respectively. Interiorthe next processing deadline that it can meet and skip

nodes evict early if the panes are complete or the sunte intervening panes (and send boundary panes in their
of these two counters is equal to the sum of the childrerp|ace).

in this sub tree. The root determines whether or notthe | tarnal nodes also spend cycles (and memory) merg-
user's fidelity bound can ever be met. By simply sub-jn4 hanes from children in the aggregation tree. Here in-
tracting incompleteness from the total node count (Perygrior nodes either choose to proceed with pane merging
fe;:t completeness), the root can set an upper bound og) i, the event that it violates the user's latency bound,
C* for any particular window. If this est|mate of? ever  ufast forward” the pane to its immediate parent. As we

falls below the user’s target, the root evicts the window. ¢p 411 see in Section 5, these policies can improve result

Note that the use of fidelity and latency bounds Pre-idelity in the presence of straggler nodes.
sumes that the user either received a usable result or can-

not wait longer for it to improve. Thus, unlike other ap-
proaches, such as tentative tuples [8] or re-running thezL
reduction phase [10], iIMR does not, by default, update

evicted results. iIMR only supports this mode for debug- . . o .
ging or determining a proper latency bound, as it can b Our implementation of in-situ MapReduce builds upon

expensive, forcing the system to repeatedly re-proces _ort.?r, aﬁstn?utzd jt'(/leartn ?rocessfmg ?ystelr.‘? [t22]. we
(re-reduce) a window on late updates. significantly extended Mortar’s core functionality to sup-

port the semantics of iIMR and the MapReduce program-
ming model along four axes:

Prototype

3.4 Load cancellation and shedding

When the root evicts incomplete windows, nodes in the e Implement the iMR MapReduce API using generic
aggregation tree may still be processing panes for that ~map and reduce Mortar operators.
window. This may be due to panes with inordinate e Pane-based continuous processing with flow con-
amounts of data or servers that are heavily loaded (have trol.
little time for log processing). Thus they are comput- e Load shedding/cancellation and pane/window evic-
ing and merging panes that, once they arrive at the root, tion policies.

2In reality, all panes contain boundary meta data, but nodag m » Fault-tolerance mechanisms, InCIUdmg operator re-

issue panes that are otherwise empty except for this meda dat start and adaptive tuple routing schemes.
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4.1 Building an in-situ MapReduce query

Mortar computes continuous in-network aggregates
across federated systems with thousands of nodes. This
is a natural fit for the map, combine, and reduce functions
since they are either local per-tuple transforms (map) or
often in-network aggregates. A Mortar query consists
of a single operator, or aggregate function, which Mortar
replicates across nodes that produce the raw data streams.
These in-situ operators give iMR the opportunity to ac-
tively filter and reduce intermediate data before it is sent <the, 4> <for2>
across the network. Each query is defined by its opera-

tor type and produces a single, continuous output dat?f'gure 6: Each iMR job consists of a Mortar query for

stream. Opergtors push, as opposed to the puII-basq e map and a query for the reduce. Here there are two
method used in Hadoop, tuples across the network t(R/IapReduce partitions-(= 2), which result in two ag-

other operators of the same type. _ . gregation trees. A word count example illustrates parti-
Mortar supports two query types: local and in-network o ning map output across multiple reduce operators.
gueries. A local query processes data streams indepen-

dently at each node. In contrast, in-network queries use

a tree of operators to aggregate data across nodes. Eithgfegation tree. Pane creation operates on a record-by-
query type may subscribe to a local, raw data source sucfecord basis, adding new records into the current pane. In
as a log file, or to the output of an existing query. Userscontrast, pane merging combines locally produced panes
compose these query types to accomplish more sophistigith those arriving from the network. Because of dif-
cated tasks, such as MapReduce jobs. ferences in processing time and network congestion, op-
Figure 6 illustrates an iMR job that consists of a lo- erators maintain a sequence of panes that the system is
cal query for map operators and an in-network query foractively merging (they have not yet been evicted). We
reduce operators. Map operators run on the log servergall this the active pane list or APL.
and partition their output among co-located reduce op- Tq adapt Mortar for MapReduce processing, we in-
erators (here there are two partitions, hence two reducgoduce immutable timestamps into the system. Mortar
trees). The reduce operator does most of the heavy liftassumes logically independent operators that timestamp
ing, grouping key-value pairs issued by the map operapytput tuples at the moment of creation. In contrast, iIMR
tors before calling the user's combine, uncombine, anjefines processing windows with respect to the original
reduce functions. Unlike traditional MapReduce archi'timestamps onthe input |ogsy not with respect to the time
tectures, where the number of reducers is fixed duringyt which an operator was able to evict a pane. iMR as-
execution, iIMR may dynamically add (or subtract) re- signs a timestamp to each data record when it first enters
ducers during processing. the system (using a pre-existing timestamp from the log
entry, or the current real time). This timestamp remains
with the data as it travels through successive queries.
Thus networking or processing delays do not alter the

Like other stream processors, Mortar uses processingindow in which the data belongs.
windows to bound computation and provides a simple

API to facilitate programming continuous operators. V\/.e4_2_1 The map operator
implemented generic map and reduce operators using

this API to call user-defined MapReduce functions atThe S|mp||c|ty of mappn‘]g allows a streamlined map op-
the appropriate time and properly group the key-valuesrator. The operator calls the user's map function for
pairs. We modified operator internals so that they op-each arriving tuple, which may contain one or more log
erate on panes as described in Section 2.3. OperatoghtrieS. For each tuple, the map operator emits zero
take as input either raw records from a local |Og or theyor more key_va|ue pairs_ We Optimized the map oper-
receive panes from upstream operators in the aggregator by permanently assigning it a tuple window with a
tion tree. Internally, IMR represents panes as (possiblyange and slide equal to one. This allowed us to remove
sorted) hash maps to facilitate key-value grouping. window-related buffering and directly issue tuples con-

In iIMR operators have two main tasks: pane creationtaining key-value pairs to subscribed operators. Finally,
creating an initial pane from a local data source, and

pane merging, combining panes from children in an ag- 3Like Hadoop, iMR includes handlers that interpret log reor

Partition 1

Partition 2
Final Output

Final Output

4.2 Map and reduce operators




the map operator partitions key-value pairs across sub4.3 Pane flow control

scribed reduce operators. L .
! ! P Recall that the goal of load shedding in IMR isn't to use

less resources, but to use the given resources effectively.
Given a large log file, load shedding changes the work
done, not its processing rate. Thus it is still possible

The reduce operator handles the in-network functionalfor some nodes to produce panes faster than others, ei-
ity of iMR including the grouping, combining, sorting ther because they have less data per pane or more cycles
and reducing of key-value pairs. The operators maintairffvailable. In these cases, the local active pane list (APL)
a hash map for each pane in the active pane list. Hergould grow in an unbounded fashion, consuming server
we describe how the reduce operator creates and mergB¥mory and impacting its client-facing services.

panes. We control the amount of memory used by the APL
by employing a window-oriented flow control scheme.

After a reduce operator subscribes to a local map op-

erator it begins to receive tuples (containing key-value=ach operator monitors the memory used (by the JVM in

{k,v} pairs). The reducer operator first checks the |Og_our implementation) and issues a pause indicator when
it reaches a user-defined limit. The indicator contains

ical timestamp of eackk,v} pair. If it belongs to the he lowical ind  th i th )
current pane, the system inserts the pair into the hash t4nhe logical index of the youngest pane in the operator's

ble and calls the combiner (if defined). Wher{lav} APL. Internally, pane creation waits until the indicator

4.2.2 The reduce operator

pair arrives with a timestamp for the next pane, the SyS_IS greater than the current index or the indicator is re-

tem inserts the prior pane into the active-pane list (APL) MOVed. Pause indicators are also propagated top-down in
The operator may skip panes for which there is no locafn€ @ggregationtree, ensuring that operators send evicted

data. In that case, the operator inserts boundary pan@?_nes u_pw_ard only \_/vhen the indicator is greater than the
into the APL with completeness counts of one. evicted indices or it is not present.

Load shedding occurs during pane creation. As tuples )
arrive, the operator maintains an estimate of when thét.4 MapReduce with gap recovery
pane will complete. The operator periodically update

this estimate, maintained as an Exponentially Weighte hile load shedding and pane eviction policies improve

Moving Average (EWMA) biased towards recent Obser_ava|lab_|l|ty during processing (_':md network delays, no_des
may fail completely, losing their data and current queries.

:/::émfjfa;i?mf)\}vmngedﬁ\t;r mE;SaV\C’QS:gir t?ﬁeusegf;% 'rVVhiIe traditional MapReduce designs, such as Hadoop,

roc)(/esses 30% of the ané before the fi>r/ét estirrﬁ)ate N can restart map or reduce tasks on any node in the cluster,

P ootthe p o RVR does not assume a shared filesystem. Instead, IMR

date. For responsiveness, the operator periodically up- . .

. rovidegyap recovery19], meaning that the system may

dates and checks the estimate (every two seconds). FQr . ; :

. . rop tuples (i.e., panes) in the event of node failures.

each skipped pane the operator issues a boundary pane
with an incompleteness count of one. i )

The APL merges locally produced panes with panes4'4'1 Multi-tree aggregation

from other reduce operators in the aggregation tree. Th&lortar avoids failed network elements and nodes by
reduce operator calls the user's combiner for any groupouting data up multiple trees. Nodes route data up a sin-
with new keys in the pane’s hash map. The operator perigle tree until the node stops receiving heart beats from its
odically inspects the APL to determine whether it shouldparent. If a parent becomes unreachable, it chooses an-
evict a pane (based on the policies in Section 3.3). Reother tree (i.e., another parent) to route tuples to. Fer thi
duce operators on internal or leaf nodes forward the pangork, we use a single tree; this simplifies our implemen-
downstream on eviction. tation of failure eviction policies because internal nodes
If the operator is at the tree’s root, it has the additionalknow the maximum possible completeness of panes ar-
responsibility of determining when to evict the entire riving from their children.
window. The operator checks eviction policies on pe- Mortar employs new tuple routing rules to retain a de-
riodic timeouts (the user’s latency requirement) or whengree of failure resilience. If a parent becomes unreach-
a new pane arrives (possibly meeting the fidelity bound)able, the child forwards data directly to the root. This
At that point, the operator may produce the final resultpolicy allows data to bypass failed nodes at the expense
either by using the optional uncombine function or by of fewer aggregation opportunities. Mortar also designs
simply combining the constituent panes (strategies disits trees by clustering network coordinates [11], and we
cussed in Section 2.3). After this combining step, theuse the same mechanism in our experiments. We leave
operator calls the user-defined reduce function for eacimore advanced routing and tree-building schemes as fu-
key in the window’s hash map. ture work.



4.4.2 Operator re-install partitions. Here we use synthetic input data and a re-

. . ) ) ducer that implements a word count function. The query
IMR guarantees that queries (operators) will be installed,soq 5 tumbling window where the range is equal to the

and removed on nodes in an _gvgntually gon5|stent Malkjide; in this case the window range is 150 million input
ner. Mortar provides a reconciliation algorithm to ensure acords approximately 1GB of input data. We allow the
that nodes eventually install (or un-install) query operasqp, 16 run for five minutes and take the average through-

tors. Thus, vyhen nodes recover from afai_lure, they willput_ Unlike Hadoop, the iMR job is configured to read
re-install their current set of operators. While we lose they, log from local disk.

data in the operator’s APL at the time of failure, we need Figure 7 plots the records per second throughput of

to re-start processing at an appropriate point to avoid dupp ‘55 \ve increase the total cluster capacity. Each line
pllc.ate .data._ To do SO, oper_ators, during pa_ne_creat'or]”epresents a different configuration that increases the re-
maintain a S|_mple on-disk wrlte-ghead log _to indicate theducer and physical node count by one. Here three reduc-
next safe p0|nt_|n the log to begm_process_mg on re-starty g provide sufficient processing to handle the 30 map
For many queries the cos_t of writing to_ this log IS small tasks. We see that, as long as the reducer is not the bottle-
relative to pane computation, and we simply point to the, oy *aqding additional nodes increases throughput lin-
nextpane. early. Similarly, reducers can also add a linear increase
in throughput.

5 Evaluation

120

<§::::::: —o—Baseline
Our evaluation explores both the baseline performance _ go —o—Baseline 100/ —&—Timeout
of our prototype and the ability of our system to deliver ' 80| —&~Shedding
results in the event of delays or failures. Unless noted
otherwise, we evaluated iIMR on a 40 node cluster of
HP DL380G6 servers, each with two Intel E5520 CPUs Y
(227 GHZ), 24 GB of memaory, and 16 HP 507750-B21 00 20 40 60 :‘ 100 00 20 40 60 80 100
500GB 7,200 RPM 2.5” SATA drives. Each server has Load (%) Load (%)
two HP P410 drive controllers, as well as a Myricom 10 (a) Fidelity (b) Latency
Gbps network interface. The network interconnect we
use is a 52-port Cisco Nexus 5020 datacenter switch. ThEigure 8: Impact of load shedding on fidelity and latency
servers run Linux 2.6.35, and our implementation of IMR for a word count job under maximum latency require-
is written in Java. IMR experiments use star aggregationment and varying worker load.
topologies.
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5.2 Load shedding

514 —o—1 root
§ if) :g :gg:z These IMR experiments evaluate the ability of load shed-
g gl ——4 roots ding to improve result fidelity under limited CPU re-
%"’i 6 sources. We execute a word count MapReduce query on
2 4 a single node; this node installs a single map and reduce
5 9 operator. We vary the CPU load by running a separate
= 0 CPU burn application. The query specifies a tumbling
0 5 10 15 20 25 30 window (R = S) that contains 20 million records and we

Workers configure the system to use 20 panes per window. We ex-

) o ecute the query until it delivers 10 results and report the

Figure 7. Scaling iMR as the number of workers (andaverage latency (Figure 8(a)) and fidelity (Figure 8(b)) as
processing nodes) increases. we increase CPU load.

The baseline query has no latency requirement and al-
ways delivers results with 100% fidelity. The timeout
query has a latency requirement equal to the observed
baseline window latency, which is 160 seconds. Though
We first establish the scale-out properties of our processresults meet the latency requirement, quality degrades as
ing architecture. The purpose of these experiments is tthe load increases. Without load shedding the worker
verify the ability of the system to scale as we increaseattempts to process all panes, even if very few can be
both the number of mappers and the number of reducedelivered in time. In contrast, load shedding allows the

5.1 Scaling
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Figure 9: The performance of a count statistic on data skeaedss the log server pool. Enforcing either random
pane selection or spatial completeness allows the systeppi@ximate count frequencies and lower result latency.

worker to use the available CPU intelligently, processing 4 _

only the panes that can be delivered on time and increas- :'T:'rqeom i

ing average fidelity substantially. JC aflure eviction
E

. . 22

5.3 Failure eviction =
a

Here we show how failure eviction can deliver results 1

early if nodes fail. We execute a word count MapReduce 0

qguery on 10 workers. The query uses a tumbling window 0 20 40 60 80 100

with 2 million records, 2 panes, and a 30 second latency Failed workers (%)

requirement. After starting the query, we emulate tran-
sient failures by stopping an increasing number of work-Figure 10: Application goodput as the percentage of
ers. The experiment finishes when the query delivers 2@ailed workers increases. Failure eviction delivers panes
results. earlier, improving goodput by up to 64%.
In Figure 10, we report application goodput as the
number of panes delivered to the user per time. Note
that this metric is not a direct measure of how fast work-impact of different fidelity bounds on absolute count es-
ers can process raw data. Instead it reflects the ability ofmations and relative word frequency. We distribute the
the system to detect failures and deliver panes to the usdf0rds in the synthetic data across the log servers in a
early. The higher the metric, the less the user waits to getkewed fashion, where some words are more likely to be
the same number of panes. Without failure eviction the®n SOme servers than others. In these experiments the
root times out (30 seconds) before it delivers incompleteVindow range (and slide) is 100MB, the pane size is 10
results. With failure eviction, the root can deliver result MB, and there is no latency bound.
before the timeout, improving goodput by 57-64%. Here we explore three differeat? settings: temporal
completeness, spatial completeness, and area with ran-
. 9 dom pane selection. Figure 9 shows the relative error in
5.4 UsingC reported count, the relative error of the word frequency
This section explores how we use thé framework for ~ (with std. dev.), and the result latency as we increase the
three different application scenarios: word count withdata fidelity. As expected, the count error (Figure 9(a))
non-uniformly distributed keys, click-stream analysis, Improves linearly as we force the system to include more
and an HDFS anomaly detector. These experiments usedfta in each window (data volume).
a 30-node cluster of Dual Intel Xeon 2.4GHz machines However, because the data are not uniformly dis-

with 4GB of RAM connected by gigabit Ethernet. tributed, the frequency error (Figure 9(b)) is large for
the temporal completene€¥ specification(100%, V).
5.4.1 Word Count Note in this experiment we achieve varying levels of tem-

poral completeness by randomly selecting specific nodes
Our first experiment performed a word count queryto fail to report for an entire window. By removing data
across synthetic data placed on ten log servers in our lofrom a source completely, some keys may completely
cal cluster. This configuration allows us to explore thelose their representation and the remaining key’s fre-
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Figure 11: Estimating user session count using iMR and miffeC? policies. Random pane selection and temporal
completeness provide significantly higher data fidelitynteaforcing spatial completeness.

guencies shift. Both random pane selection and spatiallyo 20% (per user), even when computing across less than

complete results do much better, since they effectively50% of the window’s data.

sample from the entire server pool. Figure 11(b) shows that those policies also recover a
Finally, these three policies differ substantially in the large fraction of the totaliserlD space even when they

latency of the results they deliver. Figure 9(c) plots thesample a relatively small total fraction of data. Thus for

result latency for eacti’? specification. Clearly, provid- this application, the best? specification is random pane

ing temporal completeness requires each node to finisbelection, as it not only provides the best results but also

processing the entire window before returning a resultallows the system to lower result latency as well (Fig-

In contrast, by asking for spatial completeness, the rootire 11(c)).

can return as soon as the first x% of the panes complete,

allowing the best latency. 543 HDFS log analysis

5.4.2 Click-stream analysis

16
Here we develop a simple click-stream analysis. This 14 _—:—_E;ng%g)%% space jzz

analysis takes as input a log of click records that con- £ 1.2/ ——100% time, X% space

tain userlD andtimestamp fields. We developed are- 35 o 2 300

duce function to calculate three different click analysis u}" 0.6 § 200

metrics: the number of user sessions, the average sessic* 0.4 g 100] Z57 100% time, X36 space
duration, and the average number of clicks per session 0-2 —A— X% time, 100% space
We use our differenf? specifications and study the rel- % 20 40 60 80 100 % 20 40 60 80 100

. . 0, 0,
ative error each provides. Data volume (%) Data volume (%)

These experiments use 24 hours of publicly available (a) KS-test (b) Latency
server logs from the 1998 World Cup [1] as input. We
partition this data (4.5GB in total) across ten of our Figure 12: (a) Results from the Kolmogorov-Smirnov
servers, preserving the characteristic that clicks from dest illustrate the impact of reduced data fidelity on the
single user are often served by different nodes in thélistograms reported for each HDFS server. (b) For
trace. The window (and slide) of the MapReduce job isHDFS anomaly detection, random and spatial complete-
set to two hours and we set the pane size to be 6 minutg¥essC? improve latency by at least 30%.
(20 panes per window). We run each query for the entire
data set (12 windows). Our last application analyzes logs from the Hadoop
Figure 11 shows how the number of sessions pedistributed file system (HDFS) to determine faulty stor-
user changes as we accept different levels of data fiage nodes. The IMR MapReduce job first filters the local
delity. Surprisingly, requiring data from all nodes for HDFS log, finding all unique block write events. The
each pane( X, 100%), leads to large relative errors (per reduce function then computes a histogram of the block
user). This is primarily becaussserlDs are not uni- write service times. This collection of histograms, one
formly distributed across time and enforcing spatial com-per HDFS server, is then analyzed to determine anoma-
pleteness does not give a decent sample. However, raties in the cluster [27].
domly sampling at each log server lowers relative error We generated 48 hours of HDFS logs by running the



GridMix Hadoop workload generator [3] on our 30-node completed per time. Each data pointis the average of five
cluster. Each node’s log is approximately 2.5 GB, yield-runs.
ing appr. 75 GB in total. This analysis compares the Figure 13(a) shows that without load shedding, result
quality of the histograms produced under differéft  fidelity falls aimost linearly as the iMR process’ priority
specifications to the histogram produced with no lossdecreases. In contrast, load shedding greatly improves fi-
The query has a window range (and slide) of 48 hourgelity until there is insufficient CPU remaining to process
and uses 1 hour panes. any pane by the deadline (niee9). Looking at Hadoop
We use the Kolmogorov-Smirnov test to compare theperformance in Figure 13(b), we see that the cost for giv-
per-server histograms with perfect and incomplete dataing them equal priorities is a decrease in job throughput
Figure 12(a) shows the percentage of histograms thaaf 17%. Even when using nice, a relatively coarse-grain
when using incomplete data represent a markedly difknob for resource allocation, to assign a lower priority
ferent distribution (reject the null hypothesis). Here theto log processing, Hadoop can improve job throughput
(100%, Y') policy generates perfect data, since, if a node(< 10% penalty) and iMR can still deliver useful results.
reports, all data is included. The oth@? strategies re-
sult in a majority of the histograms failing the null hy-
pothesis when using less than 80% of the data. 6 Related work

However, since those strategies can lower result la“Online” bulk processing: iMR focuses on the chal-
tency significantly at that data volume (about 30% in Fig-lenges of migrating initial log analytics to the data
ure 12(b)), users must decide whether that is an accepspurces. A different (and complementary) approach has
able tradeoff. Going forward we intend to look at how peen to optimize traditional MapReduce architectures for
this Ultlmately impaCtS the ablllty to find falllng HDFS |Og processing themselves. For instance, the Hadoop
nodes. Online Prototype (HOP) [10] can run continuously, but

requires custom reduce functions to manage their own
state for incremental computation and framing incom-
ing data into meaningful units (windows). iIMR’s design
avoids this requirement by explicitly supporting sliding
window-based computation (Section 2.1), allowing ex-
isting reduce functions to run continuously without mod-
ification.

Like IMR, HOP also allows incomplete results, pro-
ducing “snapshots” of reduce output, where the reduce
phase executes on the map output that has accumu-
lated thus far. HOP describes incomplete results with

0 2 4 6 8 10 2 4 6 8 10 a "progress” metric that (self admittedly) is often too
niceness niceness coarse to be useful. In contrast, IMR® framework
(a) Fidelity (b) Hadoop performance (Section 3) not only provides both spatial and temporal
information about the result, but may be used to trade
Figure 13: Fidelity and Hadoop performance as a funcparticular aspects of data fidelity for decreased process-
tion of the iIMR process niceness. Hadoop is alwaysing time.
given the highest priority, nice: 0. Dremel [24] is another system that, like iIMR, aims to
provide fast analysis on large-scale data. While iMR tar-

We designed iMR to effectively process log data “on gets continuous raw log data, Dremel focuses on static
location.” This experiment illustrates the ability of the nested data, like web documents. It employs an efficient
iMR architecture to produce useful results when run sidecolumnar storage format that is benefitial when a frac-
by-side with a real application. Specifically, our 10- tion of the fields of the nested data must be accessed.
node cluster will execute Hadoop and iMR simultane-Like HOP, Dremel uses a coarse progress metric for de-
ously. Here, Hadoop executes a workload generated bgcribing early, partial results.
the GridMix generator and iIMR executes a word count Log collection systems:A system closely related to
query with a window of 2 million records, 20 panes periMR is Flume [2], a distributed log collection system
window, and a 60 second timeout. We vary the CPU al-that placesagentsin-situ on servers to relay log data to
located to iIMR by changing the priority (niceness) as-a tier of collectors. While a user’s “flows” (i.e., queries)
signed to the IMR process by the kernel scheduler andanay transform or filter individual events, iIMR provides
report the average result fidelity. We also report the relaa more powerful data processing model with grouping,
tive change in the Hadoop performance, in terms of jobgeduction, and windowing. While Flume supports best-

5.5 In-situ performance
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effort operation, users remain in the dark about resulincomplete data. For a handful of applications, we illus-
quality or latency. However, Flume does provide highertrated how theC? framework allows users to explicitly
reliability modes, recovering events from a write-aheadtrade specific aspects of data fidelity in the event failures
log to prevent data loss. While not discussed here, iIMRose data or the system cannot meet latency requirements.
could employ similaupstream backupl9] techniques Future work will consider how the system can assist in
to better support queries that specify fidelity bounds.  setting appropriat€? fidelity bounds, and whether sim-
Load shedding in data stream processorsiMR’s ilar techniques could be applied in dedicated processing

load shedding (Section 3.4) and result eviction policiescluster environments.

(Section 3.3) build upon the various load shedding tech-
nigues explored in stream processing [9, 28,29]. For
instance, iIMR’s latency and fidelity bounds are relate
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drop probabilities, typically via a centralized controjle
to maintain result quality under high-load conditions. In
contrast, our load shedding policies act locally at each
operator, shedding sub-windows (panes) as they are crepg
ated or merged. These “pane drop” policies are more
closely related to the probabilistic “window drop” oper-
ators proposed by Tatbul, et al. [29] for aggregate op-
erators. In contrast, iIMR’s operators may drop panes
both deterministically or probabilistically depending on
the O fidelity bound.

Distributed aggregation: Aggregation trees have
been explored in sensor networks [23], monitoring wired
networks [31], and distributed data stream process-
ing [18,22]. More recent work explored a variety
of strategies for distributed GroupBy aggregation re-
quired in MapReduce-style processing [32]. Our use [g]
of sub-windows (panes) is most closely related to their
Accumulator-PartialHashstrategy, since we accumu-
late (through combining) key-value pairs into each sub-
window. While they evicted the sub window based on[1
its storage size (experiencing a hash collision), iIMR uses, ),
fixed-sized panes.
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7 Conclusion [12]

This work explores moving initial log analysis steps out ;3
of dedicated clusters and onto the data sources them-
selves. By leveraging continuous in-situ processing,
iIMR can efficiently extract and transform data, improv-
ing system scalability and reducing analysis times. Al
key challenge is to provide a characterization of result fi-
delity that allows users to interpret results in the face of
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