TimeGraph: GPU Scheduling for Real-Time Multi-Tasking Environments

Shinpei Katd ¥, Karthik Lakshmana and Ragunathan (Raj) Rajkumarutaka Ishikawé
1 Department of Electrical and Computer Engineering, Caradgellon University
1 Department of Computer Science, The University of Tokyo

Abstract transition. Especially recent trends on 3-D browser and
. . . . desktop applications, such as SpaceTime, Web3D, 3D-
The Graphics Processing Unit (GPU) is now CommonlyDesktop, Compiz Fusion, BumpTop, Cooliris, and Win-

used for graphics and data-parallel computing. As more L S
o .dows Aero, are all intriguing possibilities for future user

and more applications tend to accelerate on the GPU in) . .
. . . . interfaces. GPUs are also leveraged in various domains
multi-tasking environments where multiple tasks access

the GPU concurrently, operating systems must provid of general-purpose GPU (GPGPU) processing to facili-

prioritization and isolation capabilities in GPU resource"ntate datq-parallel_comp_ute-mtensw_e appllcatlons_.
Real-time multi-tasking support is a key requirement

management, particularly in real-time setups. for such emeraing GPU lications. For exampl)
We present TimeGraph, a real-time GPU schedulefo" SUCh €MErgIng applications. -or example, USers

at the device-driver level for protecting important GPU fr?:ilrddlzgl?t(:)h Tg:ﬂpljtfrzuiniﬁ)sgfnat'Or;;‘;osnc\lljig:g“%;n_
workloads from performance interference. TimeGraph P P ! 99 T play
rs, web browsers, and live messengers, sharing the same

adopts a new event-driven model that synchronizes th . .
, . . PU. In such a case, quality-aware soft real-time ap-
GPU with the CPU to monitor GPU commands issued . ~" : . X
plications like games and video players should be pri-
from the user space and control GPU resource usage 'Oritized over live messengers and any other applications
a responsive manner. TimeGraph supports two priority-accessin the GPU in thg back rour?/d Otherpgxam los
based scheduling policies in order to address the trade- 9 9 - : P
. . include GPGPU-based cloud computing services, such
off between response times and throughput introduce

by the asynchronous and non-preemptive nature of i Amazon EC2, where virtual machines sharing GPUs

: . . must be prioritized and isolated from each other. More
processing. Resource reservation mechanisms are also

In general, important applications must be well-isolated
employed to account and enforce GPU resource usag t’o?’n others fgr qualitypgnd security issues on GPUs
which prevent misbehaving tasks from exhausting GP '

resources. Prediction of GPU command execution cost&S ©"-liné and user-space programs can craiay@rbi-
: . . . rary set of GPU commands, and access the Giridtly
is further provided to enhance isolation.

Our experiments using OpenGL graphics benchmarkghrough generic I/O system calls, meaning that malicious

demonstrate that TimeGraph maintains the frame—rateand buggy programs can easily cause the GPU to be over-

of primary GPU tasks at the desired level even in thePoaded. Thus, GPU resource management consolidating

rioritization and isolation iliti [Vi
face of extreme GPU workloads, whereas these tasks ber'o t ‘."“ ona d S0 "’?‘ 0 capab ties plays a vitalgo
in real-time multi-tasking environments.

come nearly unresponsive without TimeGraph support. :
y P P PP GPU resource management is usually supported at the

Our findings also include that the performance overhead

imposed on TimeGraph can be limited to 4-10%, and i,[Soperatmg-system level, while GPU program code itself

event-driven scheduler improves throughput by about 3(5”?\"1"”? GPrl:dc?n;?rzgndf? |?ng?l\r/1errkated;h:guglh :IIbrailtnieS'
times over the existing tick-driven scheduler. COMpIers, a u € frameworks. Farticutarly, 1t 1S
a device driver that transfers GPU commands from the

CPU to the GPU, regardless of whether they produce
1 Introduction graphics or GPGPU workloads. Hence, the development

of a robust GPU device driver is of significant impact for
The Graphics Processing Unit (GPU) is the burgeoningnany GPU applications. Unfortunately, existing GPU
platform to support high-performance graphics and datadevice drivers [1, 5, 7, 19, 25] are not tailored to support
parallel computing, as its peak performance is exceedingeal-time multi-tasking environments, but acceleaie
1000 GFLOPS, which is nearly equivalent af times particular high-performance application in the system or
that of traditional microprocessors. User-end windowingprovidefairnessamong applications.
systems, for instance, use GPUs to present a iy We have conducted a preliminary evaluation to see the
interface that improves the user experience significanthperformance of existing GPU drivers, (i) the NVIDIA
through 3-D windows, high-quality graphics, and smoothproprietary driver [19] and (ii) the Nouveau open-source

! ' ' T w/Engine .—— isolatetasks on the GPU, which provide different levels
w/Clearspd s | of quality of service (QoS) at the expense of different lev-
els of overhead. To the best of our knowledge, this is the
first work that enables GPU applications to be prioritized
and isolated in real-time multi-tasking environments.
Organization: The rest of this paper is organized as
follows. Section 2 introduces our system model, in-
b : cluding the scope and limitations of TimeGraph. Sec-
NVIDIA Nouveau NVIDIA Nouveau tion 3 provides the system architecture of TimeGraph.
GeForce 98006GT - (GeForce GTX285 Section 4 and Section 5 describe the design and imple-
Graphics ivers / Graphics carcs mentation of TimeGraph GPU scheduling and reserva-

Figure 1: Decrease in performance of the OpenArena apt_|on mechanisms respectively. In Section 6, the perfor-

lication competing with different GPU applications. ~ Mance of TimeGraphis evalua'lced,.and its cqpabilitie_s are
P peting PP demonstrated. Related work is discussed in Section 7.

Our concluding remarks are provided in Section 8.

0.8 [

0.6 [

04

0.2 |

Relative frame rate to standalone

57

driver [7], in multi-tasking environments, using two dif-
ferent NVIDIA graphics cards, (i) GeForce 9800 GT and 2 System Model
(il) GeForce GTX 285, where the Linux 2.6.35 kernel is
used as the underlying operating system. It should b&cope and Limitations: We assume a system composed
noted that this NVIDIA driver evaluated on Linux is also of a generic multi-core CPU and an on-board GPU. We
expected to closely match the performance of the Windo not manipulate any GPU-internal units, and hence
dows driver (WDDM [25]), as they share abdlit’s of ~ GPU commands are not preempted once they are submit-
code [23]. Figure 1 shows the relative decrease in perted to the GPU. TimeGraph is independent of libraries,
formance (frame-rate) of an OpenGL gar@penAreni compilers, and runtime engines. The principles of Time-
competing with two GPU-accelerated prografaagine Graph are therefore applicable for different GPU archi-
and Clearspd[15]) respectively. TheEngineprogram tectures (e.g., NVIDIA Fermi/Tesla and ATI Stream)
represents a regularly-behaved GPU workload, whileand programming frameworks (e.g., OpenGL, OpenCL,
the Clearspdprogram produces a GPU commaoimb ~ CUDA, and HMPP). Currently, TimeGraph is designed
causing the GPU to be overloaded, which represents and implemented for Nouveau [7] available in the Gal-
malicious or buggy program. To achieve the best possitium3D [15] OpenGL software stack, which is also
ble performance, this preliminary evaluation assigns theplanned to support OpenCL. Moreover, TimeGraph has
highest CPU (i ce) priority to theOpenArenapplica- been ported to the PSCNV open-source driver [22] pack-
tion as an important application. As observed in Fig-aged in the PathScale ENZO suite [21], which supports
ure 1, the performance of the importadpenArenaap- CUDA and HMPP. This paper is, however, focused on
plication drops significantly due to the existence of com-OpenGL workloads, given the currently-available set of
peting GPU applications. It highlights the fact that GPU open-source solutions: Nouveau and Gallium3D.
resource management in the current state of the art is Driver Model: TimeGraph is part of the device driver,
woefully inadequate, lacking prioritization and isolatio which is an interface for user-space programs to submit
capabilities for multiple GPU applications. GPU commands to the GPU. We assume that the device
Contributions: We propose, design, and implement driver is designed based on tBé&ect Rendering Infras-
TimeGraph a GPU scheduler to provide prioritization tructure(DRI) [14] model that is adopted in most UNIX-
and isolation capabilities for GPU applicationssoft like operating systems, as part of the X Window System.
real-time multi-tasking environments. We address a coréJnder the DRI model, user-space programs are allowed
challenge for GPU resource management posed due to access the GPU directly to render frames without us-
the asynchronous and non-preemptive nature of GPlUhg windowing protocols, while they still use the win-
processing. Specifically, TimeGraph adoptsement- dowing server to blit the rendered frames to the screen.
drivenscheduler model that synchronizes the GPU withGPGPU frameworks require no such windowing proce-
the CPU in a responsive manner, using GPU-to-CPWures, and hence their model is more simplified.
interrupts, to schedule non-preemptive GPU commands In order to submit GPU commands to the GPU, user-
for the asynchronously-operating GPU. Under this eventspace programs must be allocated Gétldnnelswhich
driven model, TimeGraph supports two scheduling poli-conceptually represent separate address spaces on the
cies toprioritize tasks on the GPU, which address the GPU. For instance, the NVIDIA Fermi and Tesla archi-
trade-off between response times and throughput. Timetectures supporit28 channels. Our GPU command sub-
Graph also employs two resource reservation policies tanission model for each channel is shown in Figure 2.

User Push Buffer i i
GPU command . X Client Library & Runtime
dispatch unit command group header - OpenGL | | OpenCL GPU Application
read buffer offset = j data [XServer| |[CUDA |[HVPP]
______________ command group || size L
~B4bits 40bits /\é Licau 2D Driver lO GPU command group
P e — command group [, data - -
l‘" ;" . header O User-Space Driver TimeGraph Wait Queue
R Py . 5 queuing
ey, B4 bits .- \ - -
Gt Device Driver (D) e 0000
ermel Push Buffer . data Ring Buffer - PuShBUf Interface) VI GPU Command Scheduler |
command group O f iisolaﬁon management
\ - Inotify|
command group : IRQ Handler | GPU Reserve Manager|
: heall Jor lO interrupt 1execution cost prediction
-------------------- [data [PU Command Profier]
Figure 2: GPU command submission model. Figure 3: TimeGraph system architecture.

Each channel uses two types of kernel-space bufferssPU channel. The GPU channels are switched automat-
User Push BuffeandKernel Push BufferThe User Push ically by the GPU engines.
Buffer is mapped on to the address space of the corre- Qur driver model described above is basedDirect
sponding task, where GPU commands are pushed frorRendering ManagefDRM) [6], and especially target the
the user space. GPU commands are usugdbuped NVIDIA Fermi and Tesla architectures, but can also be
asnon-preemptiveegions to match user-space atomic- used for other architectures with minor modification.
ity assumptions. The Kernel Push Buffer, meanwhile, is
used for kernel primitives, such as host-device synchro- . .
nization, GPU initialization, and GPU mode setting. 3 TimeGraph System Architecture

While user-space programs push GPU commands int
the User Push Buffer, they also wripackets each of
which is a 6izeand addres$ tuple to locate a certain
GPU command group, into a specific ring buffer part
of the Kernel Push Buffer, callethdirect Buffer The
driver configures the command dispatch unit on the GP
to read the buffer for command submission. This ring
buffer is controlled byGET andPUT pointers. The point-

(?'he architecture of TimeGraph and its interaction with
the rest of the software stack is illustrated in Figure 3.
No modification is required for user-space programs, and
GPU command groups can be generated through exist-
Ljng software frameworks. However, TimeGraph needs to
communicate with a specific interface, called PushBuf,
in the device driver space. The PushBuf interface enables

ers start from the same place. Every time packets ar,%hhe lLJJSGI‘rSF[)) acr(]a g) ifUtr)m'Il'tirSPGUrcorT mandtgiro;ps Eg)r??nm
written to the buffer, the driver moves tHJT pointer € User Fush butter. eraph uses this Fushbut in-

to the tail of the packets, and sends a signal to the GPS)eeraﬁe t(;”queue GPl(j ;:orgnl;zan;j gé(l):ulffc"tlt als? utsej_ the
command dispatch unit to download the GPU comman Q handler prepared for lo- INterrupts to dis-

groups located by the packets between@ag andPUT pa_trgh thGe neﬁt.avanable G(I;;Fc):ammand g:joups ' dul
pointers. TheZET pointer is then automatically updated imetrapn 1S compose command scneguier
to the same place as tRJT pointer. Once these GPU GPU reserve manageandGPU command profilerThe

command groups are submitted to the GPU, the drivepplJ command scheduler queues and dispaiches GPU

does not manage them any longer, and continues to S’ug_ommand groups based on task priorities. It also coordi-

mit the next set of GPU command groups, if any. Thus nates with the GPU reserve manager to account and en-
this Indirect Buffer plays a role of a command queue. force GPU execution times of tasks. The GPU command

Each GPU command group may include multiple profiler supports prediction of GPU command execution

GPU commands. Each GPU command is composed 0(fosts to avoid overruns out of reservation. There are two

the header and data. The header contaiethodsand scheduling policies supported to address the trade-off be-

the data size, while the data contains the values beinEjWeen response times and throughput.

passed to the methods. Methods represent GPU instruc- 4 predictable-Response-Time (PRT): This policy
tions, some of which are shared between compute and mjinimizes priority inversion on the GPU to provide
graphics, and others are specific for each. We assume predictable response times based on priorities.
that the device driver does not preempt on-the-fly GPU

command groups, once they are offloaded on to the GPU. e High-Throughput (HT): This policy increases total
GPU command execution is out-of-order within the same throughput, allowing additional priority inversion.

Enter PushBuf Interface i should not be dispatched immediately, the corresponding
task goes to sleep. Else, the User Push Buffer object is

¥
Get Buffer Object
activated for command submission with the mutex lock
v

+ A to ensure the GPU command group to be located in the

“Scheduling Peley> M place accessible from the GPU, though the necessity of
Run | 1 this procedure depends on driver implementation. Time-

((Unlook Mutex Graph next checks if GPU reservation is requested for
this task. If so, it applies the reservation policy to ver-

TWa ify the GPU resource usage of this task. If it overruns,

- Yes | <Reservation Policy> TimeGraph winds up buffer activation, and suspends this
| Reservation Requested? |—>

T Run or Wait? task until its resource budget becomes available. This
: Run task will be rescheduled later when it is waken up, since
; — j some higher-priority tasks may arrive by then. Finally, if
Start Accounting (" Enter IRQ Handier | the GPU command.g.roup i_s qualifi(_ad by the scheduling
T ! and reservation policies, it is submitted to the GPU. As
the reservation policies need to track GPU resource us-

No age, TimeGraph starts accounting for the GPU execution
: time of this task. It then configures the GPU command
group to generate an interrupt to the CPU upon comple-
tion so that TimeGraph can dispatch the next GPU com-
mand group. After deactivating the buffer and unlocking
the mutex, the PushBuf interface returns.
Figure 4: Diagram of the PushBuf interface and the IRQ The IRQ handler receives an interrupt notifying the
handler with the TimeGraph scheme. completion of the current GPU command group, where
TimeGraph stops accounting for the GPU execution
It also supports two GPU reservation policies that adime; and wakes up the next task to execute on the GPU
dress the trade-off between isolation and throughput: Pa@séd on the scheduling policy, if the GPU is idle.
Specification: System designers may usepecifica-
e Posterior Enforcement (PE): This policy enforces tion primitive to activate the TimeGraph functionality,
GPU resource usage after GPU command groupghich is inspired by the Redline system [31]. For each
are completed without sacrificing throughput. application, system designers can specify the scheduling

e Apriori Enforcement (AE): This policy enforces parameters as<nare: sphe_d: resv.prio. C T.>’
where nanme is the application namesched is its

GPU resource usage before GPU command groups : . - . : .
Scheduling policyr esv is its reservation policypri o

are submitted using predlc.tllon of GPU executmnis its priority, and a set o€ and T represents that the
costs at the expense of additional overhead.

application task is allowed to execute on the GPUGor
In order to unify multiple tasks into a single reserve, themicroseconds everly microseconds. The specification is
TimeGraph reservation mechanism provides3hared ~ atextfile { et ¢/ ti megr aph. spec), and TimeGraph
reservation mode. Particularly, TimeGraph creates a spgeads it every time a new GPU channel is allocated to a
cial Shared reserve instance with theE policy when task. If there is a matching entry based on the applica-
loaded, calledBackground, which serves all GPU- tion name associated with the task, the specification is
accelerated tasks that do not belong to any specific reapplied to the task. Otherwise, the task is assigned the
serves. The detailed design and implementation for GPUowest GPU priority and thBackground reserve.
scheduling and GPU reservation will be described in Priority Assignment: While system designers may
Section 4 and Section 5 respectively. assign static GPU priorities in their specification, Time-
Figure 4 shows a high-level diagram of the PushBufGraph also supports automatic GPU priority assignment
interface and the IRQ handler, where modifications in-(AGPA), which is enabled by using a wild-card™entry
troduced by TimeGraph are highlighted by bold frames.in thepr i o field. TimeGraph provides a user-space dae-
This diagram is based on the Nouveau implementationmon executing periodically to identify the task with the
but most GPU drivers should have similar control flows. foreground window through a window programming in-
The PushBuf interface first acquires the buffer objectterface, such as theNET_ACTI VE_W NDOWand the
associated with the incoming GPU command group. It NET_\WM PI D properties in the X Window System.
then applies the scheduling policy to determine whethelimeGraph receives the foreground task information via
this GPU command group can execute on the GPU. If ita system call, and assigns the highest priority to this

Deactivate Buffer H
Yes
Unlock Mutex i ((wake Up Next Task

Leave PushBuf Interface | | Leave IRQ Handler

task among those running under the AGPA mechanism. l TimeGraph Ml HPtask [MPtask [LPtask |
These tasks execute at tdefault static GPU priority L waitqueue T taskarival | SOTHARS % interrupt
level. Hence, different tasks can be prioritized over them
by assigning higher static GPU priorities. AGPA is, how- CPUJ:IW | R
ever, not available if the above window programming in- . |$| K Hﬁlgl Al;l U time
terface is not supported. TimeGraph instead provides 5 5 e
another user-space tool for system designers to assig#ry I tme
priorities. For instance, designers can provide an opti- (a) PRT scheduling.
mal priority assignment based on reserve periods [13],
as widely adopted in real-time systems. "B Timecraph W HPtask [MPtask [LPtask |

Admission Control: In order to achieve predictable 'L waitaueue T taskarival | Sommand - 4 ime,mpt;
services in overloaded situations, TimeGraph provides e
an admission control scheme that forces the new re- 1 B
serve to be a background reserve so that currently ac” u H 7 time
tive reserves continue to execute in a predictable manner. IEI : : U
TimeGraph provides a simple interface where designergpu
specify the limit of total GPU resource usage by 0-100%
in a text file (/etc/timegraph.ac). The amount of limit
is computed by a traditional resource-reservation model
based orC andT of each reserve [26].

(b) HT scheduling.

Figure 5: Example of GPU scheduling in TimeGraph.

4 TimeGraph GPU Scheduling on task priorities to make high-priority tasks responsive
on the GPU. Thedigh-Throughput (HT) policy, on the

The goal of the GPU command scheduler igteueand other hand, is suitable for such tasks that should execute
dispatchnon-preemptive GPU command groups in ac-as fast as possible. There is a trade-off that RiReT
cordance with task priorities. To this end, TimeGraphpolicy prevents tasks from interference at the expense of
contains await queueto stall tasks. It also manages a throughput, while thédT policy achieves high through-
GPU-online list a list of pointers to the GPU command put for one task but may block others. For instance,
groups currently executing on the GPU. desktop-widget, browser-plugin, and video-player tasks
The GPU-online list is used to check if there areare desired to use tHeRT policy, while 3-D game and
currently-executing GPU command groups, when a GPUNteractive 3-D interfacing tasks can use Hi€ policy.
command group enters into the PushBuf interface. If the PRT Scheduling: The PRT policy forces any GPU
list is empty, the corresponding task is inserted into it,command groups to wait for the completion of the pre-
and the GPU command group is submitted to the GPUceding GPU command group, if any. Specifically, a new
Else, the task is inserted into the wait queue to be schedsPU command group arriving at the device driver can be
uled. The scheduling policies supported by TimeGraprsubmitted to the GPU immediately, if the GPU-online list
will be presented in Section 4.1. is empty. Else, the corresponding task must sleep in the
Management of the GPU-online list requires the in-wait queue. The highest-priority task in the wait queue,
formation about when GPU command groups completeif any, is waken up upon every interrupt from the GPU.
TimeGraph adopts an event-driven model that uses GPU- Figure 5 (a) indicates how three tasks with different
to-CPU interrupts to notify the completion of each GPU priorities, high-priority, medium-priority (MP), and low
command group, rather than a tick-driven model adoptegbriority (LP), are scheduled on the GPU under BT
in the previous work [1, 5]. Upon every interrupt, the cor- policy. When the MP task arrives, its GPU command
responding GPU command group is removed from thegroup can execute on the GPU, since no GPU command
GPU-online list. Our GPU-to-CPU interrupt setting and groups are executing. Given that the GPU and CPU op-
handling mechanisms will be described in Section 4.2. erate asynchronously, the MP task can arrive again while
its previous GPU command group is executing. How-
ever, the MP task is queued this time, because the GPU
is not idle, according to thBRT policy. Even the next
TimeGraph supports two GPU scheduling policies. TheHP task is also queued due to the same reason, since fur-
Predictable-Response-Time (PRT) policy encourages ther higher-priority tasks may arrive soon. The specific
such tasks that should behave on a timely basis withoutet of GPU commands appended at the end of every GPU
affecting important tasks. This policy is predictable in command group by TimeGraph generates an interrupt to
a sense that GPU command groups are scheduled basttte CPU, and the TimeGraph scheduler is invoked ac-

4.1 Scheduling Policies

cordingly to wake up the highest-priority task in the wait of order on the GPU. If th&lOTI FY command is oper-
gueue. Hence, the HP task is next chosen to execute aated before all commands in the original GPU command
the GPU rather than the MP task. In this manner, the nexgroup are operated, the generated interrupt is not timely
instance of the LP task and the second instance of the HRt all. TimeGraph hence adds ti$&ERI ALI ZE com-
task are scheduled in accordance with their priorities. mand right before th&lOTI FY command, which forces

Given that the arrival times of GPU command groupsthe GPU to stall until all on-the-fly commands complete.
are not known a priori, and each GPU command groupl'here is no need to add another piece ofS&&l ALI ZE
is non-preemptive, we believe that tRRT policy isthe command after th&lOTI FY command, since we know
best possible approach to provide predictable respondéat no tasks other than the current task can use the GPU
times. However, it inevitably incurs overhead to makeuntil TimeGraph is invoked upon the interrupt.
a scheduling decision at every GPU command group Interrupt Association: All interrupts from the GPU
boundary, as shown in Figure 5 (a). caught in the IRQ handler are relayed to TimeGraph.

HT Scheduling: TheHT policy reduces this schedul- When TimeGraph receives an interrupt, it first references
ing overhead, compromising predictable response timethe head of the GPU-online list to obtain the task in-
a bit. It allows GPU command groups to be submitted toformation associated with the corresponding GPU com-
the GPU immediately, if (i) the currently-executing GPU mand group. TimeGraph next needs to verify whether
command group was submitted by the same task, anthis interrupt is truly generated by the commands that
(i) no higher-priority tasks are ready in the wait queue. TimeGraph inserted into at the end of the GPU command
Otherwise, they must suspend in the same manner as tlggoup, given that user-space programs may also use the
PRT policy. Upon an interrupt, the highest-priority task NOTI FY command. In order to recognize the right inter-
in the wait queue is waken upnly wherthe GPU-online rupt, TimeGraph further adds tf®ET_REF command
list is empty (the GPU is idle). before theSERI ALl ZE command, which instructs the

Figure 5 (b) depicts how the same set of GPU com-GPU to write a specified sequence number to a particular
mand groups used in Figure 5 (a) is scheduled under thePU register. This number is identical for each task, and
HT policy. Unlike thePRT policy, the second instance of is simply incremented by TimeGraph. TimeGraph reads
the MP task can submit its GPU command group imme+his GPU register when an interrupt is received. If the
diately, because the currently-executing GPU commandegister value is less than the expected sequence num-
group was issued by itself. These two GPU commander associated with the corresponding GPU command
groups of the MP task can execute successively withougroup, this interrupt should be ignored, since it must have
producing the idle time. The same is true for the twobeen caused by someone else beforeéSEE_REF com-
GPU command groups of the HP task. Thus Hiepol- ~ mand. Another piece of thieERI ALI ZE command also
icy is more for throughput-oriented tasks, but the HP taskneeds to be added before tBET_REF command to en-
is blocked by the MP task for a longer internal. This is sure in-order command execution. As a consequence,
a trade-off, and if priority inversion is critical, the PRT TimeGraph inserts the following commands at the end
policy is more appropriate. of each GPU command groufERI AL| ZE, SET_REF,

SERI ALI ZE, NOTI FY, NOP.
. . Task Wake-Up: Once the interrupt is verified, Time-

4.2 Interrupt Setting and Handling Graph removes the GPU command group at the head of

In order to provide an event-driven model, TimeGraphthe GPU-online list. If t_he co_rresponding task is sched-
configures the GPU to generate an interrupt to the cp(yled under thePRT policy, TimeGraph wakes up the
upon the completion of each GPU command group. Thdvighest-priority task in the wait queue, and inserts its

scheduling point is thus made at every GPU command>PY command group into the GPU-online list. If the

group boundary. We now describe how the interrupt istaSK is assigned thiT policy, meanwhile, TimeGraph

generated. For simplicity of description, we here focusVakes up the highest-priority task in the same manner as

on the NVIDIA GPU architecture. thePRT policy, only wherthe GPU-online list is empty.
Completion Notifier: The NVIDIA GPU provides

theNOTI FY command to generate an interrupt from the 5 TimeGraph GPU Reservation

GPU to the CPU. TimeGraph puts this command at the

end of each GPU command group. However, the in-TimeGraph provides GPU reservation mechanisms to

terrupt is not launched immediately when tR&T1 FY regulate GPU resource usage for tasks scheduled under

command is operated but when the next command is dishe PRT policy. Each task is assignedraservethat is

patched. TimeGraph therefore adds M@ command represented by capacify and periodl’. Budgete is the

after theNOT| FY command, as a dummy command. We amount of time that a task is entitled for execution. Time-

also need to consider that GPU commands execute o@raph uses a popular rule for budget consumption and

grival grival — grival grival the third GPU command group must wait for the bud-

GPU time | | | | | 8 othercommands | By get to be replenished, even though the GPU remains idle.
budget C P o Since GPU reservation is available underfiT policy,
the fourth GPU command group is blocked even though
the budget is greater than zero, since another GPU com-
mand group is currently executing.
(a) PE reservation. AE Reservation: For each GPU command group sub-
mission, theAE policy first predicts a GPU execution
&y costz. The GPU command group can be submitted to the
GPUtime GPU, only if the predicted cost is no greater than the bud-
budget CF ”””” NGO get. Else, the task goes to sleep until the budget is replen-
0 ‘ S ished. The next replenishment amount depends on the
T : T T predicted cost and the currently-remaining budgetlf
the predicted cost is no greater than the capacity the
budget for the next period is bounded by C to avoid
Figure 6: Example of GPU reservation in TimeGraph. ransientoverload. Else, itis setdo= min{z, e + C'}.
The task can be waken up only whep> x.

Figure 6 (b) depicts how the same set of four GPU
replenishment used in real-time systems [20, 26]. Specifecommand groups used in Figure 6 (a) is controlled un-
ically, the budget is decreased by the amount of time conéder theAE policy. For simplicity of description, we as-
sumed on the GPU, and is replenished by at most capasume for now that prediction of GPU execution costs is
ity C once every period’. However, we need different perfectly accurate, and Section 5.3 will describe how to
reservation policies than previous work due to the asynpractically predict GPU execution costs. Unlike tRE
chronous and non-preemptive nature of GPU processingpolicy, the second GPU command group is not submitted
as we will describe in Section 5.1. Our GPU resource acto the GPU, as its budget is less than the predicted cost,
counting and enforcement mechanisms will be describedut is submitted later when the budget is replenished to
in Section 5.2. TimeGraph further supports prediction ofbee = min{z, e + C'} > z. The fourth GPU command
GPU execution costs for strict isolation. Section 5.3 will group also needs to wait until the budget is sufficiently
describe our approach to GPU execution cost predictioreplenished. However, unlike the second GPU command
group, the replenished budget is boundeddysince
x < C. This avoids transient overload.

Shared Reservation: TimeGraph allows multiple
TimeGraph supports two GPU reservation policies. Thelasks to share a single reserve underShared mode.
Posterior Enforcement (PE) policy is aimed for light- When some task createsShared reserve, other tasks
weight reservation, allowing tasks to overrun out of their¢an join it. TheShared mode can be used together with
reserves to an extent. Theriori Enforcement (AE) both thePE andAE policies. TheShared mode is use-
policy reduces reserve overruns by predicting GPU exful when users want to cap the GPU resource usage of
ecution costs a priori at the expense of additional overmultiple tasks to a certain range. There is no need to
head. We recommend that tR&E policy be primarily adjust the capacity and period for each task. It can also
used when isolation is required, and tAE policy be reduce the overhead of reservation, since it only needs to
used only if extremely time-critical applications are con- manage one reserve for multiple tasks.
currently executed on the GPU.

PE Reservation: The P_E policy permits _GPU_com- 5.2 Accounting and Enforcement
mand groups to be submitted to the GPU, if their budget
is greater than zero. Else, the task goes to sleep untGPU execution times are accounted in the PushBuf in-
the budget is replenished. The budget can be negativéerface and the IRQ handler as illustrated in Figure 4.
when the task overruns out of reservation. The overTimeGraph saves CPU timestamps when GPU command
run penalty is, however, imposed on the next budget regroups start and complete. Specifically, when each GPU
plenishment. The budget for the next period is thereforeecommand group is qualified to be submitted to the GPU,
given bye = min(C, e + C). TimeGraph records the current CPU time asitat time

Figure 6 (a) shows how four GPU command groupsin the PushBuf interface, and at some later point of time
of the same task are enforced underBtepolicy. The when TimeGraph is notified of the completion of this
budget is initialized taC. When the second GPU com- GPU command group, the current CPU time is recorded
mand group completes, the budget is negative. Hences itsfinish timein the IRQ handler. The difference be-

arrival arrival ‘/predi(ted(ost arrival arrival

(b) AE reservation.

5.1 Reservation Policies

tween the start time and the finish time is accounted forecution cost among all the records. Upon the comple-
as the execution time of this GPU command group, andion of the GPU command group, TimeGraph references
is subtracted from the budget. the flag attached to the corresponding task. If the flag
Enforcement works differently for theE and theAE is set, it updates the average GPU execution cost of the
policies. In the PushBuf interface, tAé& policy predicts record with the actual execution time of this GPU com-
the execution cost of each GPU command group based mand group. Otherwise, it inserts a new record where
on the idea presented in Section 5.3, while B pol- the matrix has the methods and the data size of this GPU
icy always assumes = 0. Then, both policies compare command group, and the average GPU execution time
the budget and the cost:. Only if e > x is satisfied, is initialized with its actual execution time. The size of
the GPU command group can be submitted to the GPUthe history table is configurable by designers. If the total
Otherwise, the corresponding task is suspended until theumber of the records exceeds the table size, the least-
budget is replenished. It should be noted that this enfecently-used (LRU) record is removed.
forcement mechanism is very different from traditional Preemption Impact: Even the same GPU command
CPU reservation mechanisms [20, 26] that use timers ogroup may consume very different GPU execution times.
ticks to suspend tasks, since GPU command groups arfeor example, if reusable texture data is cached, graph-
non-preemptive, and hence we need to perform enforcees operation is much faster. We realize that when the
ment at GPU command group boundary. TimeGraphGPU contexts (channels) are switched, GPU execution
however still uses timers to replenish the budget periodtimes can vary. Hence, TimeGraph verifies GPU con-
ically. Every time the budget is replenished, it comparedext switches at every scheduling point. If the context is
e andz again. Ife > =z is satisfied, the task is waken up, switched, TimeGraph will not update the average GPU
but it needs to be rescheduled, as illustrated in Figure 4 execution cost, since the context switch may have af-
fected the actual GPU execution time. Instead, it saves
- the difference between the actual GPU execution time
5.3 Command Profiling and the average GPU execution cost aspgreemption
TimeGraph contains the GPU command profiler to predmpact TimeGraph keeps updating the average preemp-
dict GPU execution costs féE reservation. Each GPU tion impact. A single preemption cost is measured be-
command is composed of the header and data, as shoWréhand when TimeGraph is loaded. The preemption
in Figure 2. We hence parse the methods and the dat§'Pactis then added to the predicted cost.
sizes from the headers.
We now explain how to predict GPU execution costsg Evaluation
from these pieces of information. GPU applications tend
to repeatedly create GPU command groups with the sam@/e now provide a detailed quantitative evaluation of
methods and data sizes, since they use the same set TimeGraph on the NVIDIA GeForce 9800 GT graphics
API functions, e.g., OpenGL, and each function likely card with the default frequency and 1 GB of video mem-
generates the same sequence of GPU commands in terragy. Our underlying platform is the Linux 2.6.35 kernel
of methods and data sizes, while data values are quiteunning on the Intel Xeon E5504 CPU and 4 GB of main
variant. Given that GPU execution costs depend highlynemory. While our evaluation and discussion are fo-
on methods and data sizes, but not on data values, weused on this graphics card, Similar performance benefits
propose a history-based prediction approach. from TimeGraph have also been observed with different
TimeGraph manages a history table to record the GPWraphics cards viz, GeForce GTX 285 and GTX 480.
command group information. Each record consists of a As primary 3-D graphics benchmarks, we use the
GPU command group matriand the average GPU ex- Phoronix Test Suite [24] that executes the OpenGL 3-
ecution cost associated to this matrix. The row and thed gamesOpenArenaWorld of PadmanUrban Terror,
column of the matrix contain the methods and their dataand Unreal Tournament 2004 (UT2004n the demo
sizes respectively. TimeGraph also attaches a flag to eaghode based on the test profile, producing various GPU-
GPU command group, indicating if it hits some record.intensive workloads. We also udédPlayer as a pe-
When the methods and the data sizes of the GPU conriodic workload. In addition, the Gallium3Engine
mand group are obtained from the remapped User Pusttemo program is used as a regularly-behaved workload,
Buffer, TimeGraph looks at the history table. If there and the Gallium3DClearspd demo program that ex-
exists a record that contains exactly the same GPU conploits a GPU commantombis used as a misbehaving
mand group matrix, i.e., the same set of methods anavorkload. Furthermore, we usePECviewperf 1128]
data sizes, it uses the average GPU execution cost storéal evaluate the throughput of different GPU scheduling
in this record, and the flag is set. Otherwise, the flagnodels. The screen resolution is set1Z80 x 1024.
is cleared, and TimeGraph uses the worst-case GPU eX-he scheduling parameters are loaded from the pre-

configured TimeGraph specification file. The maximum
number of records in the history table for GPU execution
cost prediction is set tb00.

T T
No TimeGraph support ——

HT & PRT scheduling &>

HT & PRT scheduling w/ PE reservatiol
HT & PRT scheduling w/ AE reservatiol

a
=}
T

IS
S

6.1 Prioritization and Isolation

Average frame rate (fps)
8 8

We first evaluate the prioritization and isolation proper-
ties achieved by TimeGraph. As described in Section 3,
TimeGraph automatically assigns priorities. CRikce T Openavena World of Padman
priorities are always effective, while GPU priorities are 3D game applications
effective only when TimeGraph is activated. The priority _) .
level is aligned between the GPU and CPU. We use th&19ure 7: Performance of the 3-D games competing with
PRT policy for the X server to prevent it from affecting asingle instance of the Engine widget.
primary applications, but it is scheduled by the highest
GPUICPU priority, since it should still be responsive to ‘ ‘ No TimeGraph support
blit the rendered frames to the screen. T & PRI Schading wi AE reservation e |

Coarse-grained Performance: Figure 7 shows the
performance of the 3-D games, while the Engine widget
is concurrently sharing the GPU. We use Hi€ policy
for the 3-D games, while the Engine widget is assigned
thePRT policy under TimeGraph. As shown in Figure 7,
TimeGraph improves the performance of the 3-D games & h{
by about11% for OpenArena27% for World of Pad- Openarena W°f'd§fDP;:m appﬁ‘é;?g;:"of UT2004
man, 22% for Urban Terror, an®% for UT2004, with
GPU priority support. Further performance isolation is
obtained by GPU reservation, capping the GPU resourc
usage of the Engine widget. Our experiment assigns th
Engine widget a reserve @f5ms every25ms to retain 60 ‘ ‘ ‘ ‘
GPU resource usage 80%. As compared to the case | HT&PRTSCﬁ@:%ESEi%:@%E’EE" 5
without GPU reservation support, the performance of the * HT & PR T scheduling wf AE reservation e
3-D games is improved b9 ~ 21% underPE reser-
vation, and by4 ~ 36% underAE reservation. Thus,
the AE policy provides better performance for the 3-D
games at the expense of more conservative scheduling of
the Engine widget with prediction.

Figure 8 presents the results from a setup similar to the
above experiments, where the Clearspd bomb generates
heavily-competing workload instead of the Engine wid-

get. The performance benefit resulting from assigningrigure 9: Performance of the 3-D games competing with

higher GPU priorities to the games under & pol- fijve instances of the Clearspd bomb.
icy is clearer in this setup. Even without GPU reser-

vation support, TimeGraph enables the 3-D games to
run about3 ~ 6 times faster than the vanilla Nouveau serve is correspondingly decreased tons every25ms
driver, though they still face a performance loss of aboutso that the total cap of the five Clearspd-bomb tasks is
24 ~ 52% as compared to the previous setup where thealigned with2.5ms every25ms. As here are multiple
Engine widget contends with the 3-D games. RegulatingClearspd-bomb tasks, we evaluate an additional setup
the GPU resource usage of the Clearspd bomb througihere a singlePE reserve of2.5ms every25ms runs
GPU reservation limits this performance loss to be withinwith the Shared reservation mode. As shown in Fig-
3%. Particularly, theAE policy yields improvements of ure 9, the 3-D games are nearly unresponsive without
up to5% over thePE policy. TimeGraph support due to the scaled-up GPU workload,
Extreme Workloads: In order to evaluate the capabil- whereas TimeGraph can isolate the performance of the
ities of TimeGraph in the face of extreme workloads, we3-D games even under such an extreme circumstance. In
execute the 3-D games with five instances of the Clearfact, the performance impact is reduced’te- 20% by
spd bomb. In this case, the cap of each individual re-using GPU priorities, and leveraging GPU reservation re-

=
15
T

1

Urban Terror

UT2004

a
=}
T

IS
S

N
S
T

Average frame rate (fps)
w
o

=
15
T

Figure 8: Performance of the 3-D games competing with
gsingle instance of the Clearspd bomb.

Average frame rate (fps)
8 8 8

=
15
T

o

NN NN N
OpenArena World of Padman Urban Terror uT2004
3D game applications

N
o
<]

—— End\ne against Oﬁenarena ' ' ? 200 F
--£3--- Engine (AE reservation) against Openarena —_
Openarena against Engine _ 2 160 F
200 [---<--- Openarena against Engine (AE reservation) j - = gl
n £ 1
(=% < 0
Pty g 8oyl
[IS ;
= L 40l Engine #1
2100 ; o E”g!ne zg
S ‘/" 0 L nqlne L L L o L L L n L
L 0 10 20 30 40 50 60 70 80 90 100 110 120
50E T Elapsed time (second)
""""""" (a) No TimeGraph support.
0 0
10 20 30 40 50 60 70 T T T T T T T T T T T
Reserve size of the Engine widget (%) o [LA LA L L oo ™
é 160 4
. . . 9
Figure 10: Performance regulation by GPU reservation & - Endhe i
; @ A ENgine #3 - i o o
for the 3-D game and the 3-D widget. £ 80Fh B
L 40}
320 T T T T T T T T T T T 0 Lo S EEE———

0 10 20 30 40 50 60 70 80 90 100 110 120

280 f.. Elapsed time (second)

R TS R T T A e T T R T

- (b) PRT scheduling.
o
= 200 |- No TimeGraph support T T T T T T
L | PRT scheduling 200
© 160 | - PRT scheduling w/ PE reservation ™
o PRT scheduling w/ AE reservation Q 160 |
€ 120} —— PRT scheduling w/ Shard PE reservation =
© 10} Engine #1
(T T 120 - 9!
v 80 - I . e I C e Engine #2
1 o " FRE I T R N N o) === Engine #3
SUSNPS ENR B N S M TN g sof
40 I
<
WWAWW T 40k
0 I . . .
0 10 20 30 40 50 60 70 80 90 100 110 120 0 L L L L L L L L L L
Elapsed time (second) 0 10 20 30 40 50 60 70 80 90 100 110 120

Elapsed time (second)

Figure 11: Performance of the Engine widget competing (c) PRT scheduling an®E reservation.

with five instances of the Clearspd bomb. Figure 12: Interference among three widget instances.

sults in nearly no performance loss, similar to results in
Figure 8. TheShared reservation mode also provides Fine-grained Performance: The 3-D games demon-
slightly better performance witRE reserves. strate highly variable frame-rate workloads, while 3-D
Performance Regulation: We next demonstrate the Widgets often exhibit nearly constant frame-rates. In or-
effectiveness of TimeGraph in regulating the frame-rateder to study the behavior of TimeGraph on both these
for each task by Changing the size of GPU reserve. FigIWO Categories of applications, we look at the variabil-
ure 10 shows the performance of the OpenArena gamiy of frame-rate with time for the Engine widget con-
and the Engine widget contending with each other. Thdending with five instances of the Clearspd bomb, as
solid lines indicate a setup where tR& policy is as- shown in Figure 11. The total GPU resource usage of
signed for both the applications, while the dotted linesthe Clearspd-bomb tasks is capped.&ins every25ms
indicate a setup where th&E policy is assigned for the through GPU reservation, and a higher priority is given to
Engine widget instead. GPU reservation is configuredhe Engine widget. These results show that GPU reser-
so that the total GPU resource usage of the two applicavation can provide stable frame-rates on a time for the
tions is capped &0%, and the remaining0% is avail- ~ Engine widget. Since the Engine widget is not as GPU-
able for the X server. Assigning th&E policy for the intensive as the 3-D games, it is affected more by the
Engine widget slightly improves the performance of the Clearspd bomb making the GPU overloaded, when GPU
OpenArena game, while it brings a performance penany’eservation is not applled The benefits of GPU reserva-
for the Engine widget itself due to the overhead for pre-tion are therefore more clearly observed.
diction of GPU execution costs. In either case, however, Interference Issues: We now evaluate the interfer-
TimeGraph successfully regulates the frame-rate in acence among regularly-behaved concurrent 3-D widgets.
cordance with the size of GPU reserve. In this experfigure 12 (a) shows a chaotic behavior arising from exe-
iment, we conclude that it is desirable to assign a GPltuting three instances of the Engine widget concurrently,
reserve for the OpenArena game WithT = 60 ~ 80% with different CPU priorities but without TimeGraph
and that for the Engine widget with/T" = 10 ~ 30%, support. Although the Engine widget by itself is a very
given that this configuration provides both the applica-regular workload, when competing with more instances
tions with an acceptable frame-rate 026rfps. of itself, the GPU resource usage exhibits high variabil-

N
a

N
o

200 ||
|| m

Frame rate (fps)
5 &

3
T

No TimeGraph suppprt
------- . PRT sghedul\ng w/ HE rgservaliqn

. . . .
0 20 40 60 80 100 120 140 160 180 200
Elapsed time (second)

st bk
0 L ‘W‘\‘

Prediction error (us) Actual GPU cost (us)
R

00
5000 6000 7000 8000 9000 10000
GPU command group counts

Figure 13: Performance of MPlayer competing with five (a) Engine widget.
instances of the Clearspd bomb. ‘

2000 -

JWl\IL\xMH\\\.\\\\NJJi
1500 [‘ " 1

1000

ity and unpredictability. Figure 12 (b) illustrates the im-
proved behavior under TimeGraph using RT pol-

icy, where we assign the high, the medium, and the low
GPU priorities forEngine #1 Engine #2 andEngine #3
respectively, using the user-space tool presented in Sec-
tion 3. TimeGraph successfully provides predictable re-
sponse times for the three tasks according based on theirg | ‘ ‘ ‘ ‘]
priorities. Further performance isolation can be achieved * s 6000 7000 8000 9000 10000
by GPU reservation, exploiting different sizes of GPU GPU command group counts

reserves: (i)lbms every25ms to Engine #1 (ii) 5ms (b) Clearspd bomb.

every50ms to Engine #2 and (iii) 5ms every100ms to ‘ ‘ ‘
Engine #3 as shown in Figure 12 (c). THeE policy is
used here. Since the Engine widget has a non-trivial de-
pendence on the CPU, the absolute performance is lower
than expected for smaller reserves.

Periodic Behavior: For evaluating the impact on ap-
plications with periodic activity, we execute MPlayer
in the foreground when five instances of the Clearspd
bomb contend for the GPU. We use an H264-compressed
video, with a frame size of 192800 and a frame rate 2000
of 24 fps, which uses x-video acceleration on the GPU. GPU command group counts
As shown in Figure 13, the video playback experience (c) OpenArena game.
is significantly disturbed without TimeGraph support.
When TimeGraph assignsRE reserve ofl0ms every
40ms for MPlayer, and &@E reserve obms every40ms
for the Clearspd bomb tasks in tishared reservation . _ . .

can predict GPU execution costs more precisely. Fig-

mode, the playback experience is significantly improved. .
It closely follows the ideal frame-rate @fi fps for video ~ 'c 14 shows both actual GPU execution costs and pre-

playback. This illustrates the benefits of TimeGraph ford'crtl'iorr‘ e;rorrsirrf]ornihfa é;}Dirg]]rapCf;lcsr ap(;:)llcigogs unssrg |nn
interactivity, where performance isolation plays a vital ? € t‘; perime I'S.t' gine, Liearspd, ? pe b € af.
role in determining user experience. ince these applications issue a very large number o

GPU command groups, we focus on a snapshot between

the 5000th and the 10000th GPU command groups of
6.2 GPU Execution Cost Prediction the applications. In the following discussion, positive er

rors denote pessimistic predictions. Figure 14 (a) shows
We now evaluate the history-based prediction of GPU exthat the history-based prediction approach employed by
ecution costs for realizing GPU reservation with ki ~ TimeGraph performs within 45% error margin on the
policy. The effectiveness &XE reservation relies highly Engine widget that uses a reasonable number of meth-
on GPU execution cost prediction. Hence, it is impor-ods. For the Clearspd bomb that issues a very limited set
tant to identify the types of applications for which we of methods, while producing extreme workloads, Time-

500 [

1000 F

500

iction error (us) Actual GPU cost (us)

-500 [

5000
4000
3000
2000
1000

0 WA

2000
1000

it

-2000

Prediction error (us) Actual GPU cost (us)

000 . .
5000 6000 7000 9000 10000

Figure 14: Errors for GPU execution cost prediction.

Graph can predict GPU execution costs withifi% er- 70
ror margin as shown in Figure 14 (b). On the other 60 -
hand, the results of GPU execution cost prediction un-
der OpenArena, provided in Figure 14 (c), show that
only about65% of the observed GPU command groups
have the predicted GPU execution costs withif0&

error margin. Such unpredictability arises from the in-
herently dynamic nature of complex computer graphics ~ *°f
like abrupt scene changes. The actual penalty of mis- 0

T T
No timing support C——

HT scheduling (both game and Xorg) &5
HT schedulini
PRT scheduling
PRT scheduling w/ AE reservatiol
PRT scheduling w/ AE reservation 272772 |

50

40 -

30

20

Average frame rate (fps)

F o0 s e A
Arena World of Padman Urban Terror

prediction is, however, suffered only once per reserve 3D game applications
period, and is hence not expected to be significant for
reserves with long periods. Figure 15: Performance overheads of TimeGraph.

In addition to the presented method, we have also ex-
plored static approaches using pre-configured values for ‘4 =3 No Timebraph support
predicted costs. Our experiments show that such static _ 7% Tickdriven model
approaches perform worse than the presented dynamic< 25

S,

approach, largely due to the dynamically changing and ; 12:
non-stationary nature of application workloads. £ 1
GPU execution cost prediction plays a vital role in 05
real-time setups, where itis unacceptable for low-pnyorit 0

tasks to even cause the slightest interference to high-
priority tasks. As the above experimental results show
that our prediction approach tends to fail for complex
interactive applications like OpenArena. However, we
expect the structure of real-time applications to be less
dynamic and more regular like the Engine and Clearspd]))
tasks. GPU reservation with theE policy for complex Figure 16: Thrpughput of event-driven and tick-driven
applications like OpenArena would require support fromSchedulers in TimeGraph.

the application program itself, since their behavior is not

easily predictable from historic execution results. Other head cost is inevitable for GPU scheduling at the device-

handShaded [533&
hand wireframe [
squid shaded [
wolf fur select
wolf shaded

o8
o
I
=]
3
S
3
g
7}
=]
2
5
g

squid shaded HQ W
toy store shaded
toy store wireframe [}
wolf fur select HQ

wolf shaded Hi

SPECViewperfl1l Maya benchmarks

wise, thePE policy is desired for low overhead. driver level to shield important GPU applications from
performance interference. If there is no TimeGraph sup-
6.3 Overhead and Throughput port, the performance of high-priority GPU applications

could significantly decrease in the presence of competing
In order to quantify the performance overhead imposed>PU workloads (as shown in Figure 1), which affects the
by TimeGraph, we measure the standalone performancgystem performance more than the maximum scheduling
of the 3-D game benchmarks. Figure 15 shows that aseverhead o28% introduced by TimeGraph. As a con-
signing theHT policy for both the games and the X sequence, TimeGraph is evidently beneficial in real-time
server incurs about% performance overhead for the multi-tasking environments.
games. This small overhead is attributed to the fact that Finally, we compare the throughput of two conceiv-
TimeGraph is still invoked upon every arrival and com- able GPU scheduling models: (i) the event-driven sched-
pletion of GPU command group. It is interesting to seeuler adopted in TimeGraph, and (ii) the tick-driven
that assigning th@RT policy for the X server increases scheduler that was presented in the previous work, called
the overhead for the games up to abtift, eventhough GERM [1, 5]. The TimeGraph event-driven scheduler
the games use tHeT policy. As the X server is used to is invoked only when GPU command groups arrive and
blit the rendered frames to the screen, it can lower theeomplete, while the GERM tick-driven scheduler is in-
frame-rate of the game, if it is blocked by the game itself.voked at every tick, configured to Bens (Linux jiffies).
On the other hand, assigning tRRT policy for both Figure 16 shows the results of SPECviewperf bench-
the X server and the game adds a non-trivial overhead afarking with theMayaviewset created for 3-D computer
aboutl7 ~ 28% largely due to queuing and dispatching graphics, where theRT policy is used for GPU schedul-
all GPU command groups. This overhead is introducedng. Surprisingly, the TimeGraph event-driven scheduler
by queuing delays and scheduling overheads, as Timesbtains about5 ~ 30 times better scores than the tick-
Graph needs to be invoked for submission of each GPWriven scheduler for most test cases. According to our
command group. We however conjecture that such overanalysis, this difference arises from the fact that many

GPU command groups can arrive in a very short intervalthe user space as a first-class primitive. Apparently, there
The GERM tick-driven scheduler reads a particular GPUis no GPU reservation support. In fact, since NVIDIA
register every tick to verify if the current GPU command shares more tha®0% of code between Linux and Win-
group has completed. Suppose that there3@r&&PU dows [23]. Therefore, it eventually suffers from the per-
command groups with a total execution time of less tharformance interference as demonstrated in Figure 1.

1ms. The tick-driven scheduler takes at le@8tns to VMGL [11] supports virtualization in the OpenGL
compete these GPU command groups because the GPAPIs for graphics applications running inside a Vir-
register must be reatld times, while the event-driven tyal Machine (VM). It passes graphics requests from
scheduler could complete themims as GPU-to-CPU guest OSes to a VMM host, but GPU resource man-
interrupts are used. Hence, non-trivial overheads are imagement is left to the underlying device driver. The

posed on the tick-driven scheduler. GPU-accelerated Virtual Machine (GViM) [8] virtual-
izes the GPU at the level of abstraction for GPGPU ap-
7 Related Work plications, such as the CUDA APIs. However, since the

solution is 'above’ the device driver layer, GPU resource

GPU Scheduling: The Graphics Engine Resource Man- Management is coarse-grained and functionally limited.
ager (GERM) [1, 5] aims for GPU multi-tasking support VMware’s Virtual GPU [3] enables GPU virtualization
similar to TimeGraph_ The resource management Conat the 1/O level. Hence, it Operates faster and its usage
Cepts of TimeGraph and GERM are, however, fundameni.s not limited to GPGPU applications. However, multi-
tally different. TimeGraph focuses on prioritization and tasking support with prioritization, isolation, or faige
isolation among competing GPU applications, while fair- i hot supported. TimeGraph could coordinate with these
ness is a primary concern for GERM. Since fair resourcd>PU virtualization systems to provide predictable re-
allocation cannot shield particular important tasks fromSPonse times and isolation.
interference in the face of extreme workloads, as reported CPU Scheduling: TimeGraph shares the concept of
in [31], TimeGraph addresses this problem for GPU ap-priority and reservation, which has been well-studied by
plications through priority and reservation support. Ap-the real-time systems community [13, 26], but there is
proaches to synchronize the GPU with the CPU are als@ fundamental difference from these traditional studies
different between TimeGraph and GERM. TimeGraph isin that TimeGraph is designed to address an arbitrarily-
based on an event-driven model that uses GPU-to-CP@rriving non-preemptive GPU execution model, whereas
interrupts, whereas GERM adopts a tick-driven modelthe real-time systems community has often considered
that polls a particular GPU register. As demonstratec® periodic preemptive CPU execution model. Several
in Section 6.3, the tick-driven model can become unre-bandwidth-preserving approaches [12, 29, 30] for an
sponsive when many GPU commands arrive in a shor@rbitrarily-arriving model exist, but a non-preemptive
interval, which could likely happen for graphics and model has not been much studied yet. The concept
compute-intensive workloads, while TimeGraph is re-of priority and reservation has also been considered in
sponsive even in such cases. Hence, TimeGraph is moitBe operating systems literature [4, 9, 10, 17, 20, 31].
suitable for real-time applications. In addition, Time- Specifically, batch scheduling has a similar constraint to
Graph carpredict GPU execution costs a priori, taking GPU scheduling in that non-preemptive regions disturb
into account both methods and data sizes, while GERMpredictable responsiveness [27]. These previous work
estimateghem posteriorly, using only data sizes. Sinceare, however, mainly focused on synchronous on-chip
GPU execution costs are very dependent not only on dat&PU architectures, whereas TimeGraph addresses those
sizes but also on methods, we claim that TimeGraptscheduling problems for asynchronous on-board GPU ar-
computes GPU execution costs more precisely. Howchitectures where explicit synchronization between the
ever, additional computation overheads are required fosPU and CPU is required.
prediction. TimeGraph therefore provides light-weight Disk Scheduling: Disk devices have similarity to
reservation with th&E policy without prediction to ad- GPUs in that they operate with non-preemptive regions
dress this trade-off. Furthermore, TimeGraph falls insideoff the chip. Disk scheduling for real-time and interactive
the device driver, while GERM is spread across the desystems [2, 16] therefore considered priority and reserva-
vice driver and user-space library. Hence, GERM couldtion support for non-preemptive operation. However, the
require major modifications for different runtime frame- GPU is typically a coprocessor independent of the CPU,
works, e.g., OpenGL, OpenCL, CUDA, and HMPP. which has its own set of execution contexts, registers,
The Windows Display Driver Model (WDDM) [25]is and memory devices, while the disk is more dedicated to
a GPU driver architecture for the Microsoft Windows. I/O. Hence, TimeGraph uses completely different mech-
While it is proprietary, GPU priorities seem to be sup- anisms to realize prioritization and isolation than these
ported in our experience, but are not explicitly exposed tgorevious work. In addition, TimeGraph needs to ad-

dress the trade-off between predictable response timegs]
and throughput since synchronizing the GPU and CPU

incurs overhead, while disk I/O is originally synchronous 7l
with read and write operation. (8]

8 Conclusions [9]
This paper has presented TimeGraph, a GPU scheduler
to support real-time multi-tasking environments. We de-[10]
veloped the event-driven model to schedule GPU com-
mands in a responsive manner. This model allowed usgi 1)
to propose two GPU scheduling policiedRredictable
Response Time (PRT) andHigh Throughput (HT),

which address the trade-off between response times ar%2]
throughput. We also proposed two GPU reservation
policies, Posterior Enforcement (PE) and theApriori [13]
Enforcement (AE), which present an essential design
knob for choosing the level of isolation and through- [14]
put. Our detailed evaluation demonstrated that Time-
Graph can protect important GPU applications even
in the face of extreme GPU workloads, while provid- [15]
ing high-throughput, in real-time multi-tasking environ- 16]
ments. TimeGraph is open-source software, and may be

downloaded from our websiteltt p: //rt m . ece. [17]
cru. edu/ proj ect s/ ti megraph/.
In future work, we will elaborate coordination of [€l

GPU and CPU resource management schemes to fur-
ther consolidate prioritization and isolation capalshti [19]
for the entire system. We are also interested in coordina-
tion of video memory and system memory managemenﬁ20
schemes. Exploration of other models for GPU schedul-
ing is another interesting direction of future work. For [21]
instance, modifying the current API to introduce non-[22]
blocking interfaces could improve throughput at the ex-
pense of modifications to legacy applications. Schedull?®!
ing overhead and blocking time may also be reduced by
implementing an real-timsatellite kernel[18] on mi- [24]
crocontrollers present in modern GPUs. Finally, we will
tackle the problem of mapping application-level specifi-
cations, such as frame-rates, into priority and resematio

[25]

properties at the operating-system level. [26]
References 27]

[1] BAUTIN, M., DWARAKINATH, A., AND CHIUEH, T. Graphics
Engine Resource Management.Aroc. MMCN (2008).

[2] DIMITRIJEVIC, Z., RANGAWAMI , R.,AND CHANG, E. Design [28]
and Implementation of Semi-preemptible 10. Fnoc. USENIX
FAST(2003). [29]

[3] DowTy, M., AND SUGEMAN, J. GPU Virtualization on
VMware's Hosted 1/0O Architecture.ACM SIGOPS Operating
Systems Review 43 (2009), 73-82. [30]

[4] DuDA, K., AND CHERITON, D. Borrowed-Virtual-Time (BVT)
Scheduling: Supporting Latency-Sensitive Threads in aeGeén
Purpose Scheduler. Proc. ACM SOSR1999), pp. 261-276. (31]

(5]

DWARAKINATH, A. A Fair-Share Scheduler for the Graphics
Processing Unit. Master’s thesis, Stony Brook Universij(8.

FAITH, R. The Direct Rendering Manager: Kernel Support for
the Direct Rendering Infrastructurérecision Insight, Inc., 1999.

FREEDESKTOR Nouveau Open-Source Driver.http://
nouveau. freedeskt op. org/ .

GUPTA, V., GAVRILOVSKA, A., TOLIA, N., AND TALWAR,
V. GViM: GPU-accelerated Virtual Machines. Froc. ACM
HPCVirt (2009), pp. 17-24.

JONES, M., Rosuy, D., AND Rosu, M.-C. CPU Reservations
and Time Constraints: Efficient, Predictable Schedulingndé-
pendent Activities. IiProc. ACM SOSR1997), pp. 198-211.

KRASIC, C., SAUBHASIK, M., AND GOEL, A. Fair and Timely
Scheduling via Cooperative Polling. IRroc. ACM EuroSys
(2009), pp. 103-116.

LAGAR-CAVILLA , H., TOLIA, N., SATYANARAYANAN , M.,
AND DE LARA, E. VMM-Independent Graphics Acceleration.
In Proc. ACM VEEK2007), pp. 33-43.

LEHOCZKY, J., $HA, L., AND STROSNIDER J. Enhanced Ape-
riodic Responsiveness in Hard Real-Time Environment®rac.
IEEE RTS$1987), pp. 261-270.

Liu, C.,AND LAYLAND, J. Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environmedburnal of the
ACM 20(1973), 46-61.

MARTIN, K., FAITH, R., OWEN, J.,AND AKIN, A. Direct Ren-
dering Infrastructure, Low-Level Design Documen®recision
Insight, Inc., 1999.

MESA3D. Gallium3D.ht t p: / / ww. nesa3d. or g/ .
MoLANO, A., JUWA, K., AND RAJKUMAR, R. Real-Time

Filesystems. Guaranteeing Timing Constraints for Diskesses
in RT-Mach. InProc. IEEE RTS$1997), pp. 155-165.

NIEH, J.,AND LAM, M. SMART: A Processor Scheduler for
Multimedia Applications. IProc. ACM SOSRK1995).

NIGHTINGALE, E., HobsoN, O., MCLLORY, R., Haw-
BLITZEL, C.,AND HUNT, G. Helios: Heterogeneous Multipro-
cessing with Satellite Kernels. Proc. ACM SOSK2009).

NVIDIA C ORPORATION Proprietary Driver.ht t p: / / www.
nvi di a. conf page/ drivers. htnm .

] OIKAWA, S.,AND RAJKUMAR, R. Portable RT: A Portable Re-

source Kernel for Guaranteed and Enforced Timing Behawor.
Proc. IEEE RTA$1999), pp. 111-120.

PATHSCALE INC. ENZO.ht t p: / / wwv. pat hscal e. coni .

PATHSCALE INC. PSCNV. https://github.conl
pat hscal e/ pscnv.

PHORONIX. NVIDIA Developer Talks Openly About Linux Sup-
port. http://wwm. phoroni x. com scan. php?page=
article& tenrnvidi aga.l i nux&unr2.

PHORONIX. Phoronix Test Suite. http:// ww.
phoroni x- test-suite.coni .

PRONOVOST, S., MORETON, H., AND KELLEY, T. Windows
Display Driver Model (WDDM v2) And Beyond. IWindows
Hardware Engineering Conferen¢2006).

RAJKUMAR, R., LEE, C., LEHOCZKY, J., AND SIEWIOREK,
D. A Resource Allocation Model for QoS ManagementPhoc.
IEEE RTS$1997), pp. 298-307.

Roussos K., BITAR, N., AND ENGLISH, R. Deterministic
Batch Scheduling Without Static Partitioning. Rroc. JSSPP
(1999), pp. 220-235.

SPEC. SPECviewperf.htt p://ww. spec. or g/ gwpg/
gpc. static/vpllinfo.htnl.

SPRUNT, B., LEHOCZKY, J.,AND SHA, L. Exploiting Unused
Periodic Time for Aperiodic Service using the Extended o
Exchange Algorithm. IriProc. IEEE RTS$1988), pp. 251-258.

SPURI, M., AND BUTTAZO, G. Efficient Aperiodic Service un-
der Earliest Deadline Scheduling. Rroc. IEEE RTS$%1994),
pp. 2-11.

YANG, T., Liu, T., BERGER E., KAPLAN, S.,AND MOSS J.-

B. Redline: First Class Support for Interactivity in Comritgd
Operating Systems. IRroc. USENIX OSD(2008), pp. 73—-86.

