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Abstract

The Graphics Processing Unit (GPU) is now commonly
used for graphics and data-parallel computing. As more
and more applications tend to accelerate on the GPU in
multi-tasking environments where multiple tasks access
the GPU concurrently, operating systems must provide
prioritization and isolation capabilities in GPU resource
management, particularly in real-time setups.

We present TimeGraph, a real-time GPU scheduler
at the device-driver level for protecting important GPU
workloads from performance interference. TimeGraph
adopts a new event-driven model that synchronizes the
GPU with the CPU to monitor GPU commands issued
from the user space and control GPU resource usage in
a responsive manner. TimeGraph supports two priority-
based scheduling policies in order to address the trade-
off between response times and throughput introduced
by the asynchronous and non-preemptive nature of GPU
processing. Resource reservation mechanisms are also
employed to account and enforce GPU resource usage,
which prevent misbehaving tasks from exhausting GPU
resources. Prediction of GPU command execution costs
is further provided to enhance isolation.

Our experiments using OpenGL graphics benchmarks
demonstrate that TimeGraph maintains the frame-rates
of primary GPU tasks at the desired level even in the
face of extreme GPU workloads, whereas these tasks be-
come nearly unresponsive without TimeGraph support.
Our findings also include that the performance overhead
imposed on TimeGraph can be limited to 4-10%, and its
event-driven scheduler improves throughput by about 30
times over the existing tick-driven scheduler.

1 Introduction

The Graphics Processing Unit (GPU) is the burgeoning
platform to support high-performance graphics and data-
parallel computing, as its peak performance is exceeding
1000 GFLOPS, which is nearly equivalent of10 times
that of traditional microprocessors. User-end windowing
systems, for instance, use GPUs to present a morelively
interface that improves the user experience significantly
through 3-D windows, high-quality graphics, and smooth

transition. Especially recent trends on 3-D browser and
desktop applications, such as SpaceTime, Web3D, 3D-
Desktop, Compiz Fusion, BumpTop, Cooliris, and Win-
dows Aero, are all intriguing possibilities for future user
interfaces. GPUs are also leveraged in various domains
of general-purpose GPU (GPGPU) processing to facili-
tate data-parallel compute-intensive applications.

Real-time multi-tasking support is a key requirement
for such emerging GPU applications. For example, users
could launch multiple GPU applications concurrently in
their desktop computers, including games, video play-
ers, web browsers, and live messengers, sharing the same
GPU. In such a case, quality-aware soft real-time ap-
plications like games and video players should be pri-
oritized over live messengers and any other applications
accessing the GPU in the background. Other examples
include GPGPU-based cloud computing services, such
as Amazon EC2, where virtual machines sharing GPUs
must be prioritized and isolated from each other. More
in general, important applications must be well-isolated
from others for quality and security issues on GPUs,
as on-line and user-space programs can createanyarbi-
trary set of GPU commands, and access the GPUdirectly
through generic I/O system calls, meaning that malicious
and buggy programs can easily cause the GPU to be over-
loaded. Thus, GPU resource management consolidating
prioritization and isolation capabilities plays a vital role
in real-time multi-tasking environments.

GPU resource management is usually supported at the
operating-system level, while GPU program code itself
including GPU commands is generated through libraries,
compilers, and runtime frameworks. Particularly, it is
a device driver that transfers GPU commands from the
CPU to the GPU, regardless of whether they produce
graphics or GPGPU workloads. Hence, the development
of a robust GPU device driver is of significant impact for
many GPU applications. Unfortunately, existing GPU
device drivers [1, 5, 7, 19, 25] are not tailored to support
real-time multi-tasking environments, but accelerateone
particular high-performance application in the system or
providefairnessamong applications.

We have conducted a preliminary evaluation to see the
performance of existing GPU drivers, (i) the NVIDIA
proprietary driver [19] and (ii) the Nouveau open-source
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Figure 1: Decrease in performance of the OpenArena ap-
plication competing with different GPU applications.

driver [7], in multi-tasking environments, using two dif-
ferent NVIDIA graphics cards, (i) GeForce 9800 GT and
(ii) GeForce GTX 285, where the Linux 2.6.35 kernel is
used as the underlying operating system. It should be
noted that this NVIDIA driver evaluated on Linux is also
expected to closely match the performance of the Win-
dows driver (WDDM [25]), as they share about90% of
code [23]. Figure 1 shows the relative decrease in per-
formance (frame-rate) of an OpenGL game (OpenArena)
competing with two GPU-accelerated programs (Engine
and Clearspd[15]) respectively. TheEngineprogram
represents a regularly-behaved GPU workload, while
theClearspdprogram produces a GPU commandbomb
causing the GPU to be overloaded, which represents a
malicious or buggy program. To achieve the best possi-
ble performance, this preliminary evaluation assigns the
highest CPU (nice) priority to theOpenArenaapplica-
tion as an important application. As observed in Fig-
ure 1, the performance of the importantOpenArenaap-
plication drops significantly due to the existence of com-
peting GPU applications. It highlights the fact that GPU
resource management in the current state of the art is
woefully inadequate, lacking prioritization and isolation
capabilities for multiple GPU applications.

Contributions: We propose, design, and implement
TimeGraph, a GPU scheduler to provide prioritization
and isolation capabilities for GPU applications insoft
real-time multi-tasking environments. We address a core
challenge for GPU resource management posed due to
the asynchronous and non-preemptive nature of GPU
processing. Specifically, TimeGraph adopts anevent-
drivenscheduler model that synchronizes the GPU with
the CPU in a responsive manner, using GPU-to-CPU
interrupts, to schedule non-preemptive GPU commands
for the asynchronously-operatingGPU. Under this event-
driven model, TimeGraph supports two scheduling poli-
cies toprioritize tasks on the GPU, which address the
trade-off between response times and throughput. Time-
Graph also employs two resource reservation policies to

isolatetasks on the GPU, which provide different levels
of quality of service (QoS) at the expense of different lev-
els of overhead. To the best of our knowledge, this is the
first work that enables GPU applications to be prioritized
and isolated in real-time multi-tasking environments.

Organization: The rest of this paper is organized as
follows. Section 2 introduces our system model, in-
cluding the scope and limitations of TimeGraph. Sec-
tion 3 provides the system architecture of TimeGraph.
Section 4 and Section 5 describe the design and imple-
mentation of TimeGraph GPU scheduling and reserva-
tion mechanisms respectively. In Section 6, the perfor-
mance of TimeGraph is evaluated, and its capabilities are
demonstrated. Related work is discussed in Section 7.
Our concluding remarks are provided in Section 8.

2 System Model

Scope and Limitations:We assume a system composed
of a generic multi-core CPU and an on-board GPU. We
do not manipulate any GPU-internal units, and hence
GPU commands are not preempted once they are submit-
ted to the GPU. TimeGraph is independent of libraries,
compilers, and runtime engines. The principles of Time-
Graph are therefore applicable for different GPU archi-
tectures (e.g., NVIDIA Fermi/Tesla and ATI Stream)
and programming frameworks (e.g., OpenGL, OpenCL,
CUDA, and HMPP). Currently, TimeGraph is designed
and implemented for Nouveau [7] available in the Gal-
lium3D [15] OpenGL software stack, which is also
planned to support OpenCL. Moreover, TimeGraph has
been ported to the PSCNV open-source driver [22] pack-
aged in the PathScale ENZO suite [21], which supports
CUDA and HMPP. This paper is, however, focused on
OpenGL workloads, given the currently-available set of
open-source solutions: Nouveau and Gallium3D.

Driver Model: TimeGraph is part of the device driver,
which is an interface for user-space programs to submit
GPU commands to the GPU. We assume that the device
driver is designed based on theDirect Rendering Infras-
tructure(DRI) [14] model that is adopted in most UNIX-
like operating systems, as part of the X Window System.
Under the DRI model, user-space programs are allowed
to access the GPU directly to render frames without us-
ing windowing protocols, while they still use the win-
dowing server to blit the rendered frames to the screen.
GPGPU frameworks require no such windowing proce-
dures, and hence their model is more simplified.

In order to submit GPU commands to the GPU, user-
space programs must be allocated GPUchannels, which
conceptually represent separate address spaces on the
GPU. For instance, the NVIDIA Fermi and Tesla archi-
tectures support128 channels. Our GPU command sub-
mission model for each channel is shown in Figure 2.
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Figure 2: GPU command submission model.

Each channel uses two types of kernel-space buffers:
User Push BufferandKernel Push Buffer. The User Push
Buffer is mapped on to the address space of the corre-
sponding task, where GPU commands are pushed from
the user space. GPU commands are usuallygrouped
asnon-preemptiveregions to match user-space atomic-
ity assumptions. The Kernel Push Buffer, meanwhile, is
used for kernel primitives, such as host-device synchro-
nization, GPU initialization, and GPU mode setting.

While user-space programs push GPU commands into
the User Push Buffer, they also writepackets, each of
which is a (sizeand address) tuple to locate a certain
GPU command group, into a specific ring buffer part
of the Kernel Push Buffer, calledIndirect Buffer. The
driver configures the command dispatch unit on the GPU
to read the buffer for command submission. This ring
buffer is controlled byGET andPUT pointers. The point-
ers start from the same place. Every time packets are
written to the buffer, the driver moves thePUT pointer
to the tail of the packets, and sends a signal to the GPU
command dispatch unit to download the GPU command
groups located by the packets between theGET andPUT
pointers. TheGET pointer is then automatically updated
to the same place as thePUT pointer. Once these GPU
command groups are submitted to the GPU, the driver
does not manage them any longer, and continues to sub-
mit the next set of GPU command groups, if any. Thus,
this Indirect Buffer plays a role of a command queue.

Each GPU command group may include multiple
GPU commands. Each GPU command is composed of
the header and data. The header containsmethodsand
the data size, while the data contains the values being
passed to the methods. Methods represent GPU instruc-
tions, some of which are shared between compute and
graphics, and others are specific for each. We assume
that the device driver does not preempt on-the-fly GPU
command groups, once they are offloaded on to the GPU.
GPU command execution is out-of-order within the same
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Figure 3: TimeGraph system architecture.

GPU channel. The GPU channels are switched automat-
ically by the GPU engines.

Our driver model described above is based onDirect
Rendering Manager(DRM) [6], and especially target the
NVIDIA Fermi and Tesla architectures, but can also be
used for other architectures with minor modification.

3 TimeGraph System Architecture

The architecture of TimeGraph and its interaction with
the rest of the software stack is illustrated in Figure 3.
No modification is required for user-space programs, and
GPU command groups can be generated through exist-
ing software frameworks. However, TimeGraph needs to
communicate with a specific interface, called PushBuf,
in the device driver space. The PushBuf interface enables
the user space to submit GPU command groups stored in
the User Push Buffer. TimeGraph uses this PushBuf in-
terface to queue GPU command groups. It also uses the
IRQ handler prepared for GPU-to-CPU interrupts to dis-
patch the next available GPU command groups.

TimeGraph is composed ofGPU command scheduler,
GPU reserve manager, andGPU command profiler. The
GPU command scheduler queues and dispatches GPU
command groups based on task priorities. It also coordi-
nates with the GPU reserve manager to account and en-
force GPU execution times of tasks. The GPU command
profiler supports prediction of GPU command execution
costs to avoid overruns out of reservation. There are two
scheduling policies supported to address the trade-off be-
tween response times and throughput:

• Predictable-Response-Time (PRT): This policy
minimizes priority inversion on the GPU to provide
predictable response times based on priorities.

• High-Throughput (HT): This policy increases total
throughput, allowing additional priority inversion.
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Figure 4: Diagram of the PushBuf interface and the IRQ
handler with the TimeGraph scheme.

It also supports two GPU reservation policies that ad-
dress the trade-off between isolation and throughput:

• Posterior Enforcement (PE): This policy enforces
GPU resource usage after GPU command groups
are completed without sacrificing throughput.

• Apriori Enforcement (AE): This policy enforces
GPU resource usage before GPU command groups
are submitted using prediction of GPU execution
costs at the expense of additional overhead.

In order to unify multiple tasks into a single reserve, the
TimeGraph reservation mechanism provides theShared
reservation mode. Particularly, TimeGraph creates a spe-
cial Shared reserve instance with thePE policy when
loaded, calledBackground, which serves all GPU-
accelerated tasks that do not belong to any specific re-
serves. The detailed design and implementation for GPU
scheduling and GPU reservation will be described in
Section 4 and Section 5 respectively.

Figure 4 shows a high-level diagram of the PushBuf
interface and the IRQ handler, where modifications in-
troduced by TimeGraph are highlighted by bold frames.
This diagram is based on the Nouveau implementation,
but most GPU drivers should have similar control flows.

The PushBuf interface first acquires the buffer object
associated with the incoming GPU command group. It
then applies the scheduling policy to determine whether
this GPU command group can execute on the GPU. If it

should not be dispatched immediately, the corresponding
task goes to sleep. Else, the User Push Buffer object is
activated for command submission with the mutex lock
to ensure the GPU command group to be located in the
place accessible from the GPU, though the necessity of
this procedure depends on driver implementation. Time-
Graph next checks if GPU reservation is requested for
this task. If so, it applies the reservation policy to ver-
ify the GPU resource usage of this task. If it overruns,
TimeGraph winds up buffer activation, and suspends this
task until its resource budget becomes available. This
task will be rescheduled later when it is waken up, since
some higher-priority tasks may arrive by then. Finally, if
the GPU command group is qualified by the scheduling
and reservation policies, it is submitted to the GPU. As
the reservation policies need to track GPU resource us-
age, TimeGraph starts accounting for the GPU execution
time of this task. It then configures the GPU command
group to generate an interrupt to the CPU upon comple-
tion so that TimeGraph can dispatch the next GPU com-
mand group. After deactivating the buffer and unlocking
the mutex, the PushBuf interface returns.

The IRQ handler receives an interrupt notifying the
completion of the current GPU command group, where
TimeGraph stops accounting for the GPU execution
time, and wakes up the next task to execute on the GPU
based on the scheduling policy, if the GPU is idle.

Specification: System designers may use aspecifica-
tion primitive to activate the TimeGraph functionality,
which is inspired by the Redline system [31]. For each
application, system designers can specify the scheduling
parameters as:<name:sched:resv:prio:C:T>,
where name is the application name,sched is its
scheduling policy,resv is its reservation policy,prio
is its priority, and a set ofC andT represents that the
application task is allowed to execute on the GPU forC
microseconds everyTmicroseconds. The specification is
a text file (/etc/timegraph.spec), and TimeGraph
reads it every time a new GPU channel is allocated to a
task. If there is a matching entry based on the applica-
tion name associated with the task, the specification is
applied to the task. Otherwise, the task is assigned the
lowest GPU priority and theBackground reserve.

Priority Assignment: While system designers may
assign static GPU priorities in their specification, Time-
Graph also supports automatic GPU priority assignment
(AGPA), which is enabled by using a wild-card “*” entry
in theprio field. TimeGraph provides a user-space dae-
mon executing periodically to identify the task with the
foreground window through a window programming in-
terface, such as the_NET_ACTIVE_WINDOW and the
_NET_WM_PID properties in the X Window System.
TimeGraph receives the foreground task information via
a system call, and assigns the highest priority to this



task among those running under the AGPA mechanism.
These tasks execute at thedefault static GPU priority
level. Hence, different tasks can be prioritized over them
by assigning higher static GPU priorities. AGPA is, how-
ever, not available if the above window programming in-
terface is not supported. TimeGraph instead provides
another user-space tool for system designers to assign
priorities. For instance, designers can provide an opti-
mal priority assignment based on reserve periods [13],
as widely adopted in real-time systems.

Admission Control: In order to achieve predictable
services in overloaded situations, TimeGraph provides
an admission control scheme that forces the new re-
serve to be a background reserve so that currently ac-
tive reserves continue to execute in a predictable manner.
TimeGraph provides a simple interface where designers
specify the limit of total GPU resource usage by 0-100%
in a text file (/etc/timegraph.ac). The amount of limit
is computed by a traditional resource-reservation model
based onC andT of each reserve [26].

4 TimeGraph GPU Scheduling

The goal of the GPU command scheduler is toqueueand
dispatchnon-preemptive GPU command groups in ac-
cordance with task priorities. To this end, TimeGraph
contains await queueto stall tasks. It also manages a
GPU-online list, a list of pointers to the GPU command
groups currently executing on the GPU.

The GPU-online list is used to check if there are
currently-executing GPU command groups, when a GPU
command group enters into the PushBuf interface. If the
list is empty, the corresponding task is inserted into it,
and the GPU command group is submitted to the GPU.
Else, the task is inserted into the wait queue to be sched-
uled. The scheduling policies supported by TimeGraph
will be presented in Section 4.1.

Management of the GPU-online list requires the in-
formation about when GPU command groups complete.
TimeGraph adopts an event-driven model that uses GPU-
to-CPU interrupts to notify the completion of each GPU
command group, rather than a tick-driven model adopted
in the previous work [1, 5]. Upon every interrupt, the cor-
responding GPU command group is removed from the
GPU-online list. Our GPU-to-CPU interrupt setting and
handling mechanisms will be described in Section 4.2.

4.1 Scheduling Policies

TimeGraph supports two GPU scheduling policies. The
Predictable-Response-Time (PRT) policy encourages
such tasks that should behave on a timely basis without
affecting important tasks. This policy is predictable in
a sense that GPU command groups are scheduled based
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Figure 5: Example of GPU scheduling in TimeGraph.

on task priorities to make high-priority tasks responsive
on the GPU. TheHigh-Throughput (HT) policy, on the
other hand, is suitable for such tasks that should execute
as fast as possible. There is a trade-off that thePRT
policy prevents tasks from interference at the expense of
throughput, while theHT policy achieves high through-
put for one task but may block others. For instance,
desktop-widget, browser-plugin, and video-player tasks
are desired to use thePRT policy, while 3-D game and
interactive 3-D interfacing tasks can use theHT policy.

PRT Scheduling: The PRT policy forces any GPU
command groups to wait for the completion of the pre-
ceding GPU command group, if any. Specifically, a new
GPU command group arriving at the device driver can be
submitted to the GPU immediately, if the GPU-online list
is empty. Else, the corresponding task must sleep in the
wait queue. The highest-priority task in the wait queue,
if any, is waken up upon every interrupt from the GPU.

Figure 5 (a) indicates how three tasks with different
priorities, high-priority, medium-priority (MP), and low-
priority (LP), are scheduled on the GPU under thePRT
policy. When the MP task arrives, its GPU command
group can execute on the GPU, since no GPU command
groups are executing. Given that the GPU and CPU op-
erate asynchronously, the MP task can arrive again while
its previous GPU command group is executing. How-
ever, the MP task is queued this time, because the GPU
is not idle, according to thePRT policy. Even the next
HP task is also queued due to the same reason, since fur-
ther higher-priority tasks may arrive soon. The specific
set of GPU commands appended at the end of every GPU
command group by TimeGraph generates an interrupt to
the CPU, and the TimeGraph scheduler is invoked ac-



cordingly to wake up the highest-priority task in the wait
queue. Hence, the HP task is next chosen to execute on
the GPU rather than the MP task. In this manner, the next
instance of the LP task and the second instance of the HP
task are scheduled in accordance with their priorities.

Given that the arrival times of GPU command groups
are not known a priori, and each GPU command group
is non-preemptive, we believe that thePRT policy is the
best possible approach to provide predictable response
times. However, it inevitably incurs overhead to make
a scheduling decision at every GPU command group
boundary, as shown in Figure 5 (a).

HT Scheduling: TheHT policy reduces this schedul-
ing overhead, compromising predictable response times
a bit. It allows GPU command groups to be submitted to
the GPU immediately, if (i) the currently-executing GPU
command group was submitted by the same task, and
(ii) no higher-priority tasks are ready in the wait queue.
Otherwise, they must suspend in the same manner as the
PRT policy. Upon an interrupt, the highest-priority task
in the wait queue is waken up,only whenthe GPU-online
list is empty (the GPU is idle).

Figure 5 (b) depicts how the same set of GPU com-
mand groups used in Figure 5 (a) is scheduled under the
HT policy. Unlike thePRT policy, the second instance of
the MP task can submit its GPU command group imme-
diately, because the currently-executing GPU command
group was issued by itself. These two GPU command
groups of the MP task can execute successively without
producing the idle time. The same is true for the two
GPU command groups of the HP task. Thus, theHT pol-
icy is more for throughput-oriented tasks, but the HP task
is blocked by the MP task for a longer internal. This is
a trade-off, and if priority inversion is critical, the PRT
policy is more appropriate.

4.2 Interrupt Setting and Handling

In order to provide an event-driven model, TimeGraph
configures the GPU to generate an interrupt to the CPU
upon the completion of each GPU command group. The
scheduling point is thus made at every GPU command
group boundary. We now describe how the interrupt is
generated. For simplicity of description, we here focus
on the NVIDIA GPU architecture.

Completion Notifier: The NVIDIA GPU provides
theNOTIFY command to generate an interrupt from the
GPU to the CPU. TimeGraph puts this command at the
end of each GPU command group. However, the in-
terrupt is not launched immediately when theNOTIFY
command is operated but when the next command is dis-
patched. TimeGraph therefore adds theNOP command
after theNOTIFY command, as a dummy command. We
also need to consider that GPU commands execute out

of order on the GPU. If theNOTIFY command is oper-
ated before all commands in the original GPU command
group are operated, the generated interrupt is not timely
at all. TimeGraph hence adds theSERIALIZE com-
mand right before theNOTIFY command, which forces
the GPU to stall until all on-the-fly commands complete.
There is no need to add another piece of theSERIALIZE
command after theNOTIFY command, since we know
that no tasks other than the current task can use the GPU
until TimeGraph is invoked upon the interrupt.

Interrupt Association: All interrupts from the GPU
caught in the IRQ handler are relayed to TimeGraph.
When TimeGraph receives an interrupt, it first references
the head of the GPU-online list to obtain the task in-
formation associated with the corresponding GPU com-
mand group. TimeGraph next needs to verify whether
this interrupt is truly generated by the commands that
TimeGraph inserted into at the end of the GPU command
group, given that user-space programs may also use the
NOTIFY command. In order to recognize the right inter-
rupt, TimeGraph further adds theSET_REF command
before theSERIALIZE command, which instructs the
GPU to write a specified sequence number to a particular
GPU register. This number is identical for each task, and
is simply incremented by TimeGraph. TimeGraph reads
this GPU register when an interrupt is received. If the
register value is less than the expected sequence num-
ber associated with the corresponding GPU command
group, this interrupt should be ignored, since it must have
been caused by someone else before theSET_REF com-
mand. Another piece of theSERIALIZE command also
needs to be added before theSET_REF command to en-
sure in-order command execution. As a consequence,
TimeGraph inserts the following commands at the end
of each GPU command group:SERIALIZE,SET_REF,
SERIALIZE, NOTIFY, NOP.

Task Wake-Up: Once the interrupt is verified, Time-
Graph removes the GPU command group at the head of
the GPU-online list. If the corresponding task is sched-
uled under thePRT policy, TimeGraph wakes up the
highest-priority task in the wait queue, and inserts its
GPU command group into the GPU-online list. If the
task is assigned theHT policy, meanwhile, TimeGraph
wakes up the highest-priority task in the same manner as
thePRT policy,only whenthe GPU-online list is empty.

5 TimeGraph GPU Reservation

TimeGraph provides GPU reservation mechanisms to
regulate GPU resource usage for tasks scheduled under
the PRT policy. Each task is assigned areservethat is
represented by capacityC and periodT . Budgete is the
amount of time that a task is entitled for execution. Time-
Graph uses a popular rule for budget consumption and
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Figure 6: Example of GPU reservation in TimeGraph.

replenishment used in real-time systems [20, 26]. Specif-
ically, the budget is decreased by the amount of time con-
sumed on the GPU, and is replenished by at most capac-
ity C once every periodT . However, we need different
reservation policies than previous work due to the asyn-
chronous and non-preemptive nature of GPU processing,
as we will describe in Section 5.1. Our GPU resource ac-
counting and enforcement mechanisms will be described
in Section 5.2. TimeGraph further supports prediction of
GPU execution costs for strict isolation. Section 5.3 will
describe our approach to GPU execution cost prediction.

5.1 Reservation Policies

TimeGraph supports two GPU reservation policies. The
Posterior Enforcement (PE) policy is aimed for light-
weight reservation, allowing tasks to overrun out of their
reserves to an extent. TheApriori Enforcement (AE)
policy reduces reserve overruns by predicting GPU ex-
ecution costs a priori at the expense of additional over-
head. We recommend that thePE policy be primarily
used when isolation is required, and theAE policy be
used only if extremely time-critical applications are con-
currently executed on the GPU.

PE Reservation: The PE policy permits GPU com-
mand groups to be submitted to the GPU, if their budget
is greater than zero. Else, the task goes to sleep until
the budget is replenished. The budget can be negative,
when the task overruns out of reservation. The over-
run penalty is, however, imposed on the next budget re-
plenishment. The budget for the next period is therefore
given bye = min(C, e + C).

Figure 6 (a) shows how four GPU command groups
of the same task are enforced under thePE policy. The
budget is initialized toC. When the second GPU com-
mand group completes, the budget is negative. Hence,

the third GPU command group must wait for the bud-
get to be replenished, even though the GPU remains idle.
Since GPU reservation is available under thePRT policy,
the fourth GPU command group is blocked even though
the budget is greater than zero, since another GPU com-
mand group is currently executing.

AE Reservation: For each GPU command group sub-
mission, theAE policy first predicts a GPU execution
costx. The GPU command group can be submitted to the
GPU, only if the predicted cost is no greater than the bud-
get. Else, the task goes to sleep until the budget is replen-
ished. The next replenishment amount depends on the
predicted costx and the currently-remaining budgete. If
the predicted costx is no greater than the capacityC, the
budget for the next period is bounded bye = C to avoid
transient overload. Else, it is set toe = min{x, e + C}.
The task can be waken up only whene ≥ x.

Figure 6 (b) depicts how the same set of four GPU
command groups used in Figure 6 (a) is controlled un-
der theAE policy. For simplicity of description, we as-
sume for now that prediction of GPU execution costs is
perfectly accurate, and Section 5.3 will describe how to
practically predict GPU execution costs. Unlike thePE
policy, the second GPU command group is not submitted
to the GPU, as its budget is less than the predicted cost,
but is submitted later when the budget is replenished to
bee = min{x, e + C} > x. The fourth GPU command
group also needs to wait until the budget is sufficiently
replenished. However, unlike the second GPU command
group, the replenished budget is bounded byC, since
x < C. This avoids transient overload.

Shared Reservation: TimeGraph allows multiple
tasks to share a single reserve under theShared mode.
When some task creates aShared reserve, other tasks
can join it. TheShared mode can be used together with
both thePE andAE policies. TheShared mode is use-
ful when users want to cap the GPU resource usage of
multiple tasks to a certain range. There is no need to
adjust the capacity and period for each task. It can also
reduce the overhead of reservation, since it only needs to
manage one reserve for multiple tasks.

5.2 Accounting and Enforcement

GPU execution times are accounted in the PushBuf in-
terface and the IRQ handler as illustrated in Figure 4.
TimeGraph saves CPU timestamps when GPU command
groups start and complete. Specifically, when each GPU
command group is qualified to be submitted to the GPU,
TimeGraph records the current CPU time as itsstart time
in the PushBuf interface, and at some later point of time
when TimeGraph is notified of the completion of this
GPU command group, the current CPU time is recorded
as itsfinish timein the IRQ handler. The difference be-



tween the start time and the finish time is accounted for
as the execution time of this GPU command group, and
is subtracted from the budget.

Enforcement works differently for thePE and theAE
policies. In the PushBuf interface, theAE policy predicts
the execution costx of each GPU command group based
on the idea presented in Section 5.3, while thePE pol-
icy always assumesx = 0. Then, both policies compare
the budgete and the costx. Only if e > x is satisfied,
the GPU command group can be submitted to the GPU.
Otherwise, the corresponding task is suspended until the
budget is replenished. It should be noted that this en-
forcement mechanism is very different from traditional
CPU reservation mechanisms [20, 26] that use timers or
ticks to suspend tasks, since GPU command groups are
non-preemptive, and hence we need to perform enforce-
ment at GPU command group boundary. TimeGraph
however still uses timers to replenish the budget period-
ically. Every time the budget is replenished, it compares
e andx again. Ife > x is satisfied, the task is waken up,
but it needs to be rescheduled, as illustrated in Figure 4.

5.3 Command Profiling

TimeGraph contains the GPU command profiler to pre-
dict GPU execution costs forAE reservation. Each GPU
command is composed of the header and data, as shown
in Figure 2. We hence parse the methods and the data
sizes from the headers.

We now explain how to predict GPU execution costs
from these pieces of information. GPU applications tend
to repeatedly create GPU command groups with the same
methods and data sizes, since they use the same set of
API functions, e.g., OpenGL, and each function likely
generates the same sequence of GPU commands in terms
of methods and data sizes, while data values are quite
variant. Given that GPU execution costs depend highly
on methods and data sizes, but not on data values, we
propose a history-based prediction approach.

TimeGraph manages a history table to record the GPU
command group information. Each record consists of a
GPU command group matrixand the average GPU ex-
ecution cost associated to this matrix. The row and the
column of the matrix contain the methods and their data
sizes respectively. TimeGraph also attaches a flag to each
GPU command group, indicating if it hits some record.
When the methods and the data sizes of the GPU com-
mand group are obtained from the remapped User Push
Buffer, TimeGraph looks at the history table. If there
exists a record that contains exactly the same GPU com-
mand group matrix, i.e., the same set of methods and
data sizes, it uses the average GPU execution cost stored
in this record, and the flag is set. Otherwise, the flag
is cleared, and TimeGraph uses the worst-case GPU ex-

ecution cost among all the records. Upon the comple-
tion of the GPU command group, TimeGraph references
the flag attached to the corresponding task. If the flag
is set, it updates the average GPU execution cost of the
record with the actual execution time of this GPU com-
mand group. Otherwise, it inserts a new record where
the matrix has the methods and the data size of this GPU
command group, and the average GPU execution time
is initialized with its actual execution time. The size of
the history table is configurable by designers. If the total
number of the records exceeds the table size, the least-
recently-used (LRU) record is removed.

Preemption Impact: Even the same GPU command
group may consume very different GPU execution times.
For example, if reusable texture data is cached, graph-
ics operation is much faster. We realize that when the
GPU contexts (channels) are switched, GPU execution
times can vary. Hence, TimeGraph verifies GPU con-
text switches at every scheduling point. If the context is
switched, TimeGraph will not update the average GPU
execution cost, since the context switch may have af-
fected the actual GPU execution time. Instead, it saves
the difference between the actual GPU execution time
and the average GPU execution cost as thepreemption
impact. TimeGraph keeps updating the average preemp-
tion impact. A single preemption cost is measured be-
forehand when TimeGraph is loaded. The preemption
impact is then added to the predicted cost.

6 Evaluation

We now provide a detailed quantitative evaluation of
TimeGraph on the NVIDIA GeForce 9800 GT graphics
card with the default frequency and 1 GB of video mem-
ory. Our underlying platform is the Linux 2.6.35 kernel
running on the Intel Xeon E5504 CPU and 4 GB of main
memory. While our evaluation and discussion are fo-
cused on this graphics card, Similar performance benefits
from TimeGraph have also been observed with different
graphics cards viz, GeForce GTX 285 and GTX 480.

As primary 3-D graphics benchmarks, we use the
Phoronix Test Suite [24] that executes the OpenGL 3-
D games,OpenArena, World of Padman, Urban Terror,
and Unreal Tournament 2004 (UT2004), in the demo
mode based on the test profile, producing various GPU-
intensive workloads. We also useMPlayer as a pe-
riodic workload. In addition, the Gallium3DEngine
demo program is used as a regularly-behaved workload,
and the Gallium3DClearspd demo program that ex-
ploits a GPU commandbombis used as a misbehaving
workload. Furthermore, we useSPECviewperf 11[28]
to evaluate the throughput of different GPU scheduling
models. The screen resolution is set to1280 × 1024.
The scheduling parameters are loaded from the pre-



configured TimeGraph specification file. The maximum
number of records in the history table for GPU execution
cost prediction is set to100.

6.1 Prioritization and Isolation

We first evaluate the prioritization and isolation proper-
ties achieved by TimeGraph. As described in Section 3,
TimeGraph automatically assigns priorities. CPUnice
priorities are always effective, while GPU priorities are
effective only when TimeGraph is activated. The priority
level is aligned between the GPU and CPU. We use the
PRT policy for the X server to prevent it from affecting
primary applications, but it is scheduled by the highest
GPU/CPU priority, since it should still be responsive to
blit the rendered frames to the screen.

Coarse-grained Performance: Figure 7 shows the
performance of the 3-D games, while the Engine widget
is concurrently sharing the GPU. We use theHT policy
for the 3-D games, while the Engine widget is assigned
thePRT policy under TimeGraph. As shown in Figure 7,
TimeGraph improves the performance of the 3-D games
by about11% for OpenArena,27% for World of Pad-
man,22% for Urban Terror, and2% for UT2004, with
GPU priority support. Further performance isolation is
obtained by GPU reservation, capping the GPU resource
usage of the Engine widget. Our experiment assigns the
Engine widget a reserve of2.5ms every25ms to retain
GPU resource usage at10%. As compared to the case
without GPU reservation support, the performance of the
3-D games is improved by2 ∼ 21% underPE reser-
vation, and by4 ∼ 36% underAE reservation. Thus,
the AE policy provides better performance for the 3-D
games at the expense of more conservative scheduling of
the Engine widget with prediction.

Figure 8 presents the results from a setup similar to the
above experiments, where the Clearspd bomb generates
heavily-competing workload instead of the Engine wid-
get. The performance benefit resulting from assigning
higher GPU priorities to the games under theHT pol-
icy is clearer in this setup. Even without GPU reser-
vation support, TimeGraph enables the 3-D games to
run about3 ∼ 6 times faster than the vanilla Nouveau
driver, though they still face a performance loss of about
24 ∼ 52% as compared to the previous setup where the
Engine widget contends with the 3-D games. Regulating
the GPU resource usage of the Clearspd bomb through
GPU reservation limits this performance loss to be within
3%. Particularly, theAE policy yields improvements of
up to5% over thePE policy.

Extreme Workloads: In order to evaluate the capabil-
ities of TimeGraph in the face of extreme workloads, we
execute the 3-D games with five instances of the Clear-
spd bomb. In this case, the cap of each individual re-
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Figure 7: Performance of the 3-D games competing with
a single instance of the Engine widget.
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Figure 8: Performance of the 3-D games competing with
a single instance of the Clearspd bomb.
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Figure 9: Performance of the 3-D games competing with
five instances of the Clearspd bomb.

serve is correspondingly decreased to0.5ms every25ms
so that the total cap of the five Clearspd-bomb tasks is
aligned with2.5ms every25ms. As here are multiple
Clearspd-bomb tasks, we evaluate an additional setup
where a singlePE reserve of2.5ms every25ms runs
with the Shared reservation mode. As shown in Fig-
ure 9, the 3-D games are nearly unresponsive without
TimeGraph support due to the scaled-up GPU workload,
whereas TimeGraph can isolate the performance of the
3-D games even under such an extreme circumstance. In
fact, the performance impact is reduced to7 ∼ 20% by
using GPU priorities, and leveraging GPU reservation re-
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Figure 11: Performance of the Engine widget competing
with five instances of the Clearspd bomb.

sults in nearly no performance loss, similar to results in
Figure 8. TheShared reservation mode also provides
slightly better performance withPE reserves.

Performance Regulation: We next demonstrate the
effectiveness of TimeGraph in regulating the frame-rate
for each task by changing the size of GPU reserve. Fig-
ure 10 shows the performance of the OpenArena game
and the Engine widget contending with each other. The
solid lines indicate a setup where thePE policy is as-
signed for both the applications, while the dotted lines
indicate a setup where theAE policy is assigned for the
Engine widget instead. GPU reservation is configured
so that the total GPU resource usage of the two applica-
tions is capped at90%, and the remaining10% is avail-
able for the X server. Assigning theAE policy for the
Engine widget slightly improves the performance of the
OpenArena game, while it brings a performance penalty
for the Engine widget itself due to the overhead for pre-
diction of GPU execution costs. In either case, however,
TimeGraph successfully regulates the frame-rate in ac-
cordance with the size of GPU reserve. In this exper-
iment, we conclude that it is desirable to assign a GPU
reserve for the OpenArena game withC/T = 60 ∼ 80%
and that for the Engine widget withC/T = 10 ∼ 30%,
given that this configuration provides both the applica-
tions with an acceptable frame-rate over25 fps.
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Figure 12: Interference among three widget instances.

Fine-grained Performance:The 3-D games demon-
strate highly variable frame-rate workloads, while 3-D
widgets often exhibit nearly constant frame-rates. In or-
der to study the behavior of TimeGraph on both these
two categories of applications, we look at the variabil-
ity of frame-rate with time for the Engine widget con-
tending with five instances of the Clearspd bomb, as
shown in Figure 11. The total GPU resource usage of
the Clearspd-bomb tasks is capped at2.5ms every25ms
through GPU reservation, and a higher priority is given to
the Engine widget. These results show that GPU reser-
vation can provide stable frame-rates on a time for the
Engine widget. Since the Engine widget is not as GPU-
intensive as the 3-D games, it is affected more by the
Clearspd bomb making the GPU overloaded, when GPU
reservation is not applied. The benefits of GPU reserva-
tion are therefore more clearly observed.

Interference Issues: We now evaluate the interfer-
ence among regularly-behaved concurrent 3-D widgets.
Figure 12 (a) shows a chaotic behavior arising from exe-
cuting three instances of the Engine widget concurrently,
with different CPU priorities but without TimeGraph
support. Although the Engine widget by itself is a very
regular workload, when competing with more instances
of itself, the GPU resource usage exhibits high variabil-
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Figure 13: Performance of MPlayer competing with five
instances of the Clearspd bomb.

ity and unpredictability. Figure 12 (b) illustrates the im-
proved behavior under TimeGraph using thePRT pol-
icy, where we assign the high, the medium, and the low
GPU priorities forEngine #1, Engine #2, andEngine #3
respectively, using the user-space tool presented in Sec-
tion 3. TimeGraph successfully provides predictable re-
sponse times for the three tasks according based on their
priorities. Further performance isolation can be achieved
by GPU reservation, exploiting different sizes of GPU
reserves: (i)15ms every25ms to Engine #1, (ii) 5ms
every50ms to Engine #2, and (iii) 5ms every100ms to
Engine #3, as shown in Figure 12 (c). ThePE policy is
used here. Since the Engine widget has a non-trivial de-
pendence on the CPU, the absolute performance is lower
than expected for smaller reserves.

Periodic Behavior: For evaluating the impact on ap-
plications with periodic activity, we execute MPlayer
in the foreground when five instances of the Clearspd
bomb contend for the GPU. We use an H264-compressed
video, with a frame size of 1920×800 and a frame rate
of 24 fps, which uses x-video acceleration on the GPU.
As shown in Figure 13, the video playback experience
is significantly disturbed without TimeGraph support.
When TimeGraph assigns aPE reserve of10ms every
40ms for MPlayer, and aPE reserve of5ms every40ms
for the Clearspd bomb tasks in theShared reservation
mode, the playback experience is significantly improved.
It closely follows the ideal frame-rate of24 fps for video
playback. This illustrates the benefits of TimeGraph for
interactivity, where performance isolation plays a vital
role in determining user experience.

6.2 GPU Execution Cost Prediction

We now evaluate the history-based prediction of GPU ex-
ecution costs for realizing GPU reservation with theAE
policy. The effectiveness ofAE reservation relies highly
on GPU execution cost prediction. Hence, it is impor-
tant to identify the types of applications for which we
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Figure 14: Errors for GPU execution cost prediction.

can predict GPU execution costs more precisely. Fig-
ure 14 shows both actual GPU execution costs and pre-
diction errors for the 3-D graphics applications used in
earlier experiments: Engine, Clearspd, and OpenArena.
Since these applications issue a very large number of
GPU command groups, we focus on a snapshot between
the 5000th and the 10000th GPU command groups of
the applications. In the following discussion, positive er-
rors denote pessimistic predictions. Figure 14 (a) shows
that the history-based prediction approach employed by
TimeGraph performs within a15% error margin on the
Engine widget that uses a reasonable number of meth-
ods. For the Clearspd bomb that issues a very limited set
of methods, while producing extreme workloads, Time-



Graph can predict GPU execution costs within a7% er-
ror margin as shown in Figure 14 (b). On the other
hand, the results of GPU execution cost prediction un-
der OpenArena, provided in Figure 14 (c), show that
only about65% of the observed GPU command groups
have the predicted GPU execution costs within a20%
error margin. Such unpredictability arises from the in-
herently dynamic nature of complex computer graphics
like abrupt scene changes. The actual penalty of mis-
prediction is, however, suffered only once per reserve
period, and is hence not expected to be significant for
reserves with long periods.

In addition to the presented method, we have also ex-
plored static approaches using pre-configured values for
predicted costs. Our experiments show that such static
approaches perform worse than the presented dynamic
approach, largely due to the dynamically changing and
non-stationary nature of application workloads.

GPU execution cost prediction plays a vital role in
real-time setups, where it is unacceptable for low-priority
tasks to even cause the slightest interference to high-
priority tasks. As the above experimental results show
that our prediction approach tends to fail for complex
interactive applications like OpenArena. However, we
expect the structure of real-time applications to be less
dynamic and more regular like the Engine and Clearspd
tasks. GPU reservation with theAE policy for complex
applications like OpenArena would require support from
the application program itself, since their behavior is not
easily predictable from historic execution results. Other-
wise, thePE policy is desired for low overhead.

6.3 Overhead and Throughput

In order to quantify the performance overhead imposed
by TimeGraph, we measure the standalone performance
of the 3-D game benchmarks. Figure 15 shows that as-
signing theHT policy for both the games and the X
server incurs about4% performance overhead for the
games. This small overhead is attributed to the fact that
TimeGraph is still invoked upon every arrival and com-
pletion of GPU command group. It is interesting to see
that assigning thePRT policy for the X server increases
the overhead for the games up to about10%, even though
the games use theHT policy. As the X server is used to
blit the rendered frames to the screen, it can lower the
frame-rate of the game, if it is blocked by the game itself.
On the other hand, assigning thePRT policy for both
the X server and the game adds a non-trivial overhead of
about17 ∼ 28% largely due to queuing and dispatching
all GPU command groups. This overhead is introduced
by queuing delays and scheduling overheads, as Time-
Graph needs to be invoked for submission of each GPU
command group. We however conjecture that such over-
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Figure 16: Throughput of event-driven and tick-driven
schedulers in TimeGraph.

head cost is inevitable for GPU scheduling at the device-
driver level to shield important GPU applications from
performance interference. If there is no TimeGraph sup-
port, the performance of high-priority GPU applications
could significantly decrease in the presence of competing
GPU workloads (as shown in Figure 1), which affects the
system performance more than the maximum scheduling
overhead of28% introduced by TimeGraph. As a con-
sequence, TimeGraph is evidently beneficial in real-time
multi-tasking environments.

Finally, we compare the throughput of two conceiv-
able GPU scheduling models: (i) the event-driven sched-
uler adopted in TimeGraph, and (ii) the tick-driven
scheduler that was presented in the previous work, called
GERM [1, 5]. The TimeGraph event-driven scheduler
is invoked only when GPU command groups arrive and
complete, while the GERM tick-driven scheduler is in-
voked at every tick, configured to be1ms (Linux jiffies).
Figure 16 shows the results of SPECviewperf bench-
marking with theMayaviewset created for 3-D computer
graphics, where thePRT policy is used for GPU schedul-
ing. Surprisingly, the TimeGraph event-driven scheduler
obtains about15 ∼ 30 times better scores than the tick-
driven scheduler for most test cases. According to our
analysis, this difference arises from the fact that many



GPU command groups can arrive in a very short interval.
The GERM tick-driven scheduler reads a particular GPU
register every tick to verify if the current GPU command
group has completed. Suppose that there are30 GPU
command groups with a total execution time of less than
1ms. The tick-driven scheduler takes at least30ms to
compete these GPU command groups because the GPU
register must be read10 times, while the event-driven
scheduler could complete them in1ms as GPU-to-CPU
interrupts are used. Hence, non-trivial overheads are im-
posed on the tick-driven scheduler.

7 Related Work

GPU Scheduling:The Graphics Engine Resource Man-
ager (GERM) [1, 5] aims for GPU multi-tasking support
similar to TimeGraph. The resource management con-
cepts of TimeGraph and GERM are, however, fundamen-
tally different. TimeGraph focuses on prioritization and
isolation among competing GPU applications, while fair-
ness is a primary concern for GERM. Since fair resource
allocation cannot shield particular important tasks from
interference in the face of extreme workloads, as reported
in [31], TimeGraph addresses this problem for GPU ap-
plications through priority and reservation support. Ap-
proaches to synchronize the GPU with the CPU are also
different between TimeGraph and GERM. TimeGraph is
based on an event-driven model that uses GPU-to-CPU
interrupts, whereas GERM adopts a tick-driven model
that polls a particular GPU register. As demonstrated
in Section 6.3, the tick-driven model can become unre-
sponsive when many GPU commands arrive in a short
interval, which could likely happen for graphics and
compute-intensive workloads, while TimeGraph is re-
sponsive even in such cases. Hence, TimeGraph is more
suitable for real-time applications. In addition, Time-
Graph canpredict GPU execution costs a priori, taking
into account both methods and data sizes, while GERM
estimatesthem posteriorly, using only data sizes. Since
GPU execution costs are very dependent not only on data
sizes but also on methods, we claim that TimeGraph
computes GPU execution costs more precisely. How-
ever, additional computation overheads are required for
prediction. TimeGraph therefore provides light-weight
reservation with thePE policy without prediction to ad-
dress this trade-off. Furthermore, TimeGraph falls inside
the device driver, while GERM is spread across the de-
vice driver and user-space library. Hence, GERM could
require major modifications for different runtime frame-
works, e.g., OpenGL, OpenCL, CUDA, and HMPP.

The Windows Display Driver Model (WDDM) [25] is
a GPU driver architecture for the Microsoft Windows.
While it is proprietary, GPU priorities seem to be sup-
ported in our experience, but are not explicitly exposed to

the user space as a first-class primitive. Apparently, there
is no GPU reservation support. In fact, since NVIDIA
shares more than90% of code between Linux and Win-
dows [23]. Therefore, it eventually suffers from the per-
formance interference as demonstrated in Figure 1.

VMGL [11] supports virtualization in the OpenGL
APIs for graphics applications running inside a Vir-
tual Machine (VM). It passes graphics requests from
guest OSes to a VMM host, but GPU resource man-
agement is left to the underlying device driver. The
GPU-accelerated Virtual Machine (GViM) [8] virtual-
izes the GPU at the level of abstraction for GPGPU ap-
plications, such as the CUDA APIs. However, since the
solution is ’above’ the device driver layer, GPU resource
management is coarse-grained and functionally limited.
VMware’s Virtual GPU [3] enables GPU virtualization
at the I/O level. Hence, it operates faster and its usage
is not limited to GPGPU applications. However, multi-
tasking support with prioritization, isolation, or fairness
is not supported. TimeGraph could coordinate with these
GPU virtualization systems to provide predictable re-
sponse times and isolation.

CPU Scheduling: TimeGraph shares the concept of
priority and reservation, which has been well-studied by
the real-time systems community [13, 26], but there is
a fundamental difference from these traditional studies
in that TimeGraph is designed to address an arbitrarily-
arriving non-preemptive GPU execution model, whereas
the real-time systems community has often considered
a periodic preemptive CPU execution model. Several
bandwidth-preserving approaches [12, 29, 30] for an
arbitrarily-arriving model exist, but a non-preemptive
model has not been much studied yet. The concept
of priority and reservation has also been considered in
the operating systems literature [4, 9, 10, 17, 20, 31].
Specifically, batch scheduling has a similar constraint to
GPU scheduling in that non-preemptive regions disturb
predictable responsiveness [27]. These previous work
are, however, mainly focused on synchronous on-chip
CPU architectures, whereas TimeGraph addresses those
scheduling problems for asynchronous on-board GPU ar-
chitectures where explicit synchronization between the
GPU and CPU is required.

Disk Scheduling: Disk devices have similarity to
GPUs in that they operate with non-preemptive regions
off the chip. Disk scheduling for real-time and interactive
systems [2, 16] therefore considered priority and reserva-
tion support for non-preemptive operation. However, the
GPU is typically a coprocessor independent of the CPU,
which has its own set of execution contexts, registers,
and memory devices, while the disk is more dedicated to
I/O. Hence, TimeGraph uses completely different mech-
anisms to realize prioritization and isolation than these
previous work. In addition, TimeGraph needs to ad-



dress the trade-off between predictable response times
and throughput since synchronizing the GPU and CPU
incurs overhead, while disk I/O is originally synchronous
with read and write operation.

8 Conclusions

This paper has presented TimeGraph, a GPU scheduler
to support real-time multi-tasking environments. We de-
veloped the event-driven model to schedule GPU com-
mands in a responsive manner. This model allowed us
to propose two GPU scheduling policies,Predictable
Response Time (PRT) andHigh Throughput (HT),
which address the trade-off between response times and
throughput. We also proposed two GPU reservation
policies,Posterior Enforcement (PE) and theApriori
Enforcement (AE), which present an essential design
knob for choosing the level of isolation and through-
put. Our detailed evaluation demonstrated that Time-
Graph can protect important GPU applications even
in the face of extreme GPU workloads, while provid-
ing high-throughput, in real-time multi-tasking environ-
ments. TimeGraph is open-source software, and may be
downloaded from our website athttp://rtml.ece.
cmu.edu/projects/timegraph/.

In future work, we will elaborate coordination of
GPU and CPU resource management schemes to fur-
ther consolidate prioritization and isolation capabilities
for the entire system. We are also interested in coordina-
tion of video memory and system memory management
schemes. Exploration of other models for GPU schedul-
ing is another interesting direction of future work. For
instance, modifying the current API to introduce non-
blocking interfaces could improve throughput at the ex-
pense of modifications to legacy applications. Schedul-
ing overhead and blocking time may also be reduced by
implementing an real-timesatellite kernel[18] on mi-
crocontrollers present in modern GPUs. Finally, we will
tackle the problem of mapping application-level specifi-
cations, such as frame-rates, into priority and reservation
properties at the operating-system level.
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