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Abstract
Synchronous small writes play a critical role in the re-
liability and availability of file systems and applications
that use them to safely log recent state modifications and
quickly recover from failures. However, storage stacks
usually enforce page-sized granularity in their data trans-
fers from memory to disk. We experimentally show that
subpage writes may lead to storage bandwidth waste and
high disk latencies. To address the issue in a journaled
file system, we propose wasteless journaling as a mount
mode that coalesces synchronous concurrent small writes
of data into full page-sized blocks before transferring
them to the journal. Additionally, we propose selective
journaling that automatically applies wasteless journal-
ing on data writes whose size lies below a fixed precon-
figured threshold. In the Okeanos prototype implemen-
tation that we developed, we use microbenchmarks and
application-level workloads to show substantial improve-
ments in write latency, transaction throughput and stor-
age bandwidth requirements.

1 Introduction
Synchronous small writes lie in the critical path of sev-
eral contemporary systems that target fast recovery from
failures with low performance overhead during normal
operation [1, 4, 5]. Typically, synchronous small writes
are applied to a sequential file (write-ahead log) in order
to record updates before the actual modification of the
system state. In addition, the system periodically copies
its entire state (checkpoint) to permanent storage. After a
transient failure, recent state can be reconstructed by re-
playing the logged updates against the latest checkpoint.
Write-ahead logging improves system reliability by pre-
serving recent updates from failures; it also increases
system availability by substantially reducing the subse-
quent recovery time. The method is widely applied in
general-purpose file systems [6], relational databases [5],
distributed key-value stores [4], event processing en-
gines [3], and other mission-critical systems [7]. Further-

more, logging is useful for checkpointing parallel appli-
cations to preserve multiple hours or days of processing
after an application or system crash [1].

Today, several file systems use a log file (journal) in
order to temporarily move data or metadata from mem-
ory to disk at sequential throughput. Thus, they post-
pone the more costly writes to the file system without
penalizing the corresponding latency perceived by the
applications. A basic component across current oper-
ating systems is the page cache that temporarily stores
recently accessed data and metadata in case they are
reused soon. It receives byte-range requests from the
applications, and communicates with the disk through
page-sized blocks. The page-sized block granularity of
disk accesses is prevalent across all data transfers, in-
cluding data and metadata updates or the correspond-
ing journaling whenever it is used. Asynchronous small
writes improve their efficiency, when multiple consecu-
tive requests are batched into page-sized blocks before
they are flushed to disk. Instead, each synchronous write
is flushed to disk individually causing data and metadata
traffic of multiple full pages, even if the bytes actually
modified across the pages collectively occupy much less
space.

In Figure 1, we measure the amount of data written to
the journal across different mount modes. We use a syn-
thetic workload that consists of 100 concurrent threads
with periodic synchronous writes of varying request sizes
(one req/s). We include the ordered, writeback, and
journal –refered to as data journaling from now on for
clarity– modes of the ext3 file system (Section 4). As
the request size increases up to 4KB, the traffic of data
journaling remains almost unchanged at a disproportion-
ately high value. At each write call, the mode appends to
the journal the entire modified data and metadata blocks
rather than only the corresponding block modifications.
Instead, the ordered and writeback modes incur almost
linearly increasing traffic, because they only store to the
journal the blocks that contain modified metadata.
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Figure 1: During a 5min interval, we measure the total
write traffic to the journal device across different mount
modes of the ext3 file system on Linux.

We set as objective to reduce the journal traffic so that
we improve the performance of reliable storage at low
cost. Thus, we introduce wasteless journaling and selec-
tive journaling as two new mount modes, that we pro-
pose, design and fully implement in the Linux ext3 file
system. We are specifically concerned about highly con-
current multithreaded workloads that synchronously ap-
ply small writes over common storage devices [1, 4, 7].
We target to save the disk bandwidth that is currently
wasted due to unnecessary writes of unmodified data,
or writes with high positioning overhead. The opera-
tions in both these cases occupy valuable disk access
time that should be used for useful data transfers instead.
To achieve our goal we transform multiple random small
writes into a single block append to the journal.

We summarize our contributions as follows: (i) Con-
sider the reduction of journal bandwidth in current sys-
tems as a means to improve the performance of reli-
able storage at low cost; (ii) Design and fully implement
wasteless and selective journaling as optional mount
modes in a widely-used file system; (iii) Discuss the im-
plications of our journaling optimizations to the consis-
tency semantics; (iv) Apply micro-benchmarks, a storage
workload and database logging traces over a single jour-
nal spindle to demonstrate performance improvements
up to an order of magnitude across several metrics; (v)
Use a parallel file system to show that wasteless journal-
ing doubles, at reasonable cost, the throughput of parallel
application checkpointing over small writes.

In the remaining paper, we summarize the related re-
search in Section 2, present architectural aspects of our
design in Section 3, while in Section 4 we describe
the implementation of the Okeanos prototype system.
In Section 5, we explain our experimentation environ-
ment, in Section 6 we present performance measure-
ments across different workloads, and in Section 7 we
outline our conclusions and future work.

2 Related Work
The log-structured file system addresses the synchronous
metadata update problem and the small-write problem by
batching data writes sequentially to a segmented log [9].
In transaction processing, group commit is a known
database logging optimization that periodically flushes
to the log multiple outstanding commit requests [5]. The
above approaches gather multiple block writes into a sin-
gle multi-block request instead of fitting multiple sub-
page modifications into a single block that we do. Also,
subpage journaling of metadata updates is already avail-
able in commercial file systems, such as IBM JFS and
MS NTFS [8]. Adding extra spindles to improve I/O
parallelism or non-volatile RAM to absorb small writes
could also reduce latency and raise throughput [6]. How-
ever, such solutions carry drawbacks that primarily have
to do with increased cost and maintenance concerns.

A structured storage system may maintain numerous
independent log files to facilitate load balancing in case
of failure [4]. However, concurrent sequential writes to
the same device create a random-access workload with
low disk throughput. To address this issue, the sys-
tem may store multiple logs into a single file and sepa-
rate them by record sorting during recovery. Similarly,
for the storage needs of parallel applications in high-
performance computing, specialized file formats are used
to manage as a single file the data streams generated by
multiple processes [1]. Instead, we aim to handle the
above cases at low cost through the mount modes that
we add to a general-purpose file system.

The Echo distributed file system logged subpage up-
dates for improved performance and availability, but by-
passed logging for page-sized or larger writes [2]. How-
ever, Echo was discontinued in the early nineties partly
because its hardware lacked fast enough computation rel-
ative to communication. Recent research introduced se-
mantic trace playback to rapidly emulate alternative file
system designs [8]. In that context, the authors emulated
writing block modifications instead of entire blocks to
the journal, but didn’t consider the performance and re-
covery implications. Due to the obsolete hardware plat-
form or the high emulation level at which they were ap-
plied, the above studies leave open the general architec-
tural fit and actual performance benefit of journal band-
width reduction in current systems.

3 System Design
We set as objective to safely store recent state updates
on disk and ensure their fast recovery in case of fail-
ure. We also strive to serve the synchronous small writes
and subsequent reads at sequential disk throughput with
low bandwidth requirements. We are motivated by the
important role that small writes play for reliable stor-
age and the lack of comprehensive studies on subpage
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data logging in current systems. In order to reduce the
storage bandwidth consumed by data journaling, we de-
signed and implemented a new mount mode that we call
wasteless journaling. During synchronous writes, we
transform partially modified data blocks into descrip-
tor records that we subsequently accumulate into special
journal blocks. We synchronously transfer all the data
modifications from memory to the journal device. After
timeout expiration or due to shortage of journal space,
we move the partially or fully modified data blocks from
memory to their final location in the file system.

With goal to reduce the journal I/O activity during se-
quential writes, we further evolved wasteless journaling
into selective journaling. In that mount mode, the system
automatically differentiates the write requests based on a
fixed size threshold that we call write threshold. Depend-
ing on whether the write size is below the write threshold
or not, we respectively transfer the synchronous writes to
either the journal or directly the final disk location. Thus,
we apply data journaling in only those cases that either
multiple small writes can be coalesced into a single jour-
nal block according to wasteless journaling, or different
data blocks that have been fully modified are scattered
across multiple locations in the file system. We antici-
pate that journaling of the modified blocks will reduce
the latency of synchronous writes through the sequential
throughput offered by the journal device.

For consistency across system failures, each write op-
eration delays metadata updates on disk, until the com-
pletion of the corresponding data updates. In wasteless
journaling, we log both data and metadata into the jour-
nal to consider a write operation effectively completed.
Synchronous writes from the same thread are added to
the journal sequentially. In case of failure, a prefix of
the operation sequence is recovered through the replay of
the data modifications that have been successfully logged
into the journal. Instead, selective journaling allows a
synchronous write sequence to have a subset of the mod-
ified data added to the journal, and the rest of the mod-
ified data directly transferred to the final location in the
file system. Given that a synchronous write from a single
thread must be transferred to disk immediately, it only
makes sense to accumulate into a journal block the writes
from different concurrent threads. As a result, wasteless
and selective journaling are mostly beneficial in concur-
rent environments with multiple writing streams that in-
clude frequent small writes.

In selective journaling, we call update sequence of a
disk block a series of multiple incoming updates applied
to the same block buffer. The updates don’t have to be
back-to-back, but there should be no in-between transfer
of the respective buffer to the final disk location. If the
first update in such a sequence has subpage size, we log
to the journal the entire update sequence of this buffer.

Thus, we handle consistency in a relatively clean way,
because we eliminate the case that we turn off the jour-
naling of a particular buffer halfway through a transac-
tion. On the other hand, if the first update of the buffer
is page-sized, we decide to skip journaling for the entire
update sequence of the corresponding block. In our ex-
perience, the above two transitions in update sizes along
a sequence occur infrequently. Therefore, we anticipate
low impact to the journaling activity of selective journal-
ing.

4 The Okeanos Prototype Implementation

We implemented wasteless and selective journaling in
the Okeanos prototype that we developed based on Linux
ext3. Originally, ext3 first copies the modified blocks
into the journal, then transfers them to their final disk
location. In data journaling mount mode, data and meta-
data blocks are copied to the journal, before they update
the file system. To reduce the risk of data corruption,
the ordered mode only copies the metadata blocks to the
journal, after the associated data blocks have updated the
file system. The writeback mode copies only metadata
blocks to the journal, without any constraint in the rela-
tive order of data and metadata updates to the file system.
It is the weakest mode in terms of consistency and we
don’t consider it any further in the rest of the paper.

The Linux kernel uses the page cache to keep in mem-
ory data and metadata of recently accessed disk files. For
every disk block cached in memory, a block buffer stores
its data and a buffer head maintains the related bookkeep-
ing information. The page cache manages disk blocks
in page-sized groups called buffer pages. We use block
and page interchangeably, because they typically have
the same size. Ext3 implements the journal as either a
hidden file in the file system or a separate disk partition.
Each log record in the journal contains an entire modified
block instead of the byte range actually affected. How-
ever, the system only needs to log the updated part of
each modified block and merge it into the original block
to get its latest version during a recovery. To achieve that,
we introduce a new type of journal block that we call
multiwrite block. We only use multiwrite blocks to accu-
mulate the updates from data writes that partially modify
block buffers. When a block buffer contains metadata or
is fully modified by a write operation, we can send it di-
rectly to the journal without the need to create an extra
copy first in the page cache. We call regular block such
a journal block.

When a write request of arbitrary size enters the ker-
nel, the request is broken into variable-sized updates of
individual block buffers. In wasteless journaling, if the
size of a buffer update is less than the block size, we
copy the corresponding data modification into a multi-
write block. Otherwise, we point to the entire modified
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Figure 2: Alternative execution paths
of a write request in the selective jour-
naling mode.

(a) (b)

Figure 3: (a). In data journaling, the system sends to the journal the entire
blocks modified by write operations. (b) In wasteless journaling, we accumu-
late multiple data writes into a single multiwrite journal block.

block in the page cache. For selective journaling, we
have the write threshold fixed to the page size of 4KB.
When a buffer update has size smaller than the write
threshold, then we mark the corresponding page as jour-
naled. Correspondingly, we copy the modification to the
multiwrite block. We clear the journaled flag, after we
transfer the corresponding block to its final location on
disk. In Figure 2, we use a flowchart to summarize the
possible execution paths of a write request through selec-
tive journaling.

A system call may consist of multiple low-level op-
erations that atomically manipulate disk data structures
of the file system. For improved efficiency, the system
groups the records of multiple calls into one transaction.
Before the transaction moves to the commit state, the ker-
nel allocates a journal descriptor block with a list of tags
that map block buffers to their final disk location. For
each block buffer that will be written to the journal, the
kernel allocates an extra buffer head specifically for the
needs of journaling I/O. Additionally, it creates a jour-
nal head structure to associate the block buffer with the
respective transaction. For writes that only modify part
of a block, we expanded the journal head with two extra
fields that contain the offset and the length of the mul-
tiwrite block pointed to by the buffer head (Figure 3).
When we start a new transaction, we allocate a journal
descriptor block that contains multiple fixed-length tags,
one per write. In our system, we introduce three new
fields in each tag: (i) a flag to indicate the use of a multi-
write block, (ii) the length of the write in the multiwrite
block, and (iii) the starting offset of the modification in
the final data block.

A transaction is committed, if it has flushed all its
records to the journal; it is checkpointed, if all the blocks
of a committed transaction have been moved to their fi-
nal location on disk and the corresponding log records
are removed from the journal. If the journal contains log

records after a crash, the system initiates a recovery pro-
cess during which we retrieve the modified blocks from
the journal. In the case of multiwrite blocks, we apply
the updates to blocks that we read from the correspond-
ing final disk locations. We read into memory and update
the appropriate block, as specified by the final disk loca-
tion and the starting offset in the tag. However, if the
multiwrite flag is not set, then we read the next block of
the journal and treat it as a regular block. We write every
regular block directly to the final disk location without
need to read first its older version from the disk.

Both data and wasteless journaling guarantee the
atomicity of updates, because they replay the modifica-
tions of the committed transactions until they fully reach
the file system. Instead, selective journaling makes a
decision whether to journal or not an update sequence
based on the size of the first write. Journaling of an
update sequence implies atomicity of the modification
for the corresponding block, while direct transfer of the
block to the file system implies consistency similar to
that of ordered mode.

5 Experimentation Environment

We developed the Okeanos prototype implementation
of wasteless and selective journaling by modifying 684
lines of code across 19 files of the original Linux kernel
version 2.6.18. Members of our team used the proto-
type system as working environment for several months.
In our experiments we use x86-based servers with one
quad-core 2.66GHz processor, 3GB RAM, two Seagate
Cheetah SAS 300GB 15KRPM disks and one active gi-
gabit ethernet port. Unless we specify differently, we as-
sume synchronous write operations with the journal and
data partition on two separate disks. Our results have
half-length of 90% confidence interval within 10% of the
reported average. We flushed the page cache between all
the repetitions of our experiments.
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Figure 4: (a) At 1Kbps, the journal throughput (lower is better) of selective and wasteless journaling lies approaches
that of ordered, unlike data journaling which is several factors higher. (b) In comparison to ordered at 1Kbps, the
remaining three modes reduce file system throughput by several factors (lower is better). (c) At 1Mbps, the selective
and ordered modes incur much higher latency in comparison to the other ext3 modes or NILFS. (d) If we create
multiple files concurrently, read requests of 4KB with NILFS take an order of magnitude longer with respect to ext3.

6 Performance Evaluation

First, we produce a random I/O traffic by running a
number of concurrent threads directly on the file server.
Each thread appends data to a separate file by calling
one synchronous write per second. At increasing num-
ber of 1Kbps streams, Figure 4(a) shows that the journal
throughput of data journaling is an order of magnitude
higher than that of the other modes (up to 27MB/s). On
the contrary, selective and wasteless journaling limit the
traffic up to about 4MB/s. In Figure 4(b), we measure the
write throughput of the file system device. The ordered
mode wastes disk bandwidth by sending each write to
the final location in units of 4KB. Instead, wasteless, se-
lective and data journaling leave dirty pages temporarily
in memory before coalescing them into the file system.
With controlled system crashes, we additionally found
that selective and wasteless journaling tend to reduce the
recovery time of data journaling (by more than 20% in
some cases).

Next, we examine the average latency of synchronous
writes. In Figure 4(c) with 1Mbps streams, ordered and
selective incur orders of magnitude higher latency than
the other modes. At 1Kbps (not shown), selective tends
to become identical to wasteless journaling. In asyn-
chronous writes that we also tried, we found selective
and wasteless journaling to reduce the latency of ordered
and data journaling up to two orders of magnitude. In
Figure 4(c), we also consider a stable Linux port (NILFS)
of the log-structured file system [9]. The write latency of
NILFS is comparable to that of wasteless and data jour-
naling. In Figure 4(d), we use a thread to read sequen-
tially one after the other different numbers of files that
we previously created concurrently at 1Mbps each, us-
ing NILFS or ext3. Then, we measure the average time
to read a 4KB block. We observe that NILFS is an order

of magnitude slower with respect to ext3. In fact, NILFS
interleaves the writes from different files on disk, which
may lead to poor storage locality during sequential reads.

We use the Postmark benchmark to examine the per-
formance of small writes as seen in electronic mail, net-
news and web-based commerce. We apply version 1.5
with synchronous writes added by FSL of Stony Brook
Univ. We assume an initial set of 500 files and use 100
threads for a total workload of 10,000 mixed transac-
tions. We draw the file sizes from the default range, while
I/O request sizes lie between 128 bytes and 128KB. In
Figure 5(a), we observe that the transaction rate of waste-
less journaling gets as high as 738tps. Across different
request sizes, wasteless journaling consistently remains
faster than the other modes, including data journaling.
Instead, selective journaling lies between data journaling
and ordered mode, which are slower than wasteless.

We also examine the OLTP performance benchmark
TPC-C as implemented in Test 2 of the Database Test
Suite. We used the MySQL open-source database sys-
tem with the default InnoDB storage engine. We tested
a configuration with 20 warehouses and 20 connections,
10 terminals per warehouse and 500s duration. InnoDB
supports three methods for flushing the database transac-
tion log to disk. In the default method 1 (Cmt/Disk), the
log is flushed directly to disk at each transaction commit.
In method 0 (Prd/Disk), the transaction log is written to
the page cache and flushed to disk periodically. Finally,
in method 2 (Cmt/Cache), the transaction log is written
to the page cache at each transaction commit and period-
ically flushed to disk. During an execution of TPC-C, we
collect a system-call trace of the MySQL transaction log.
Subsequently, we replay a varied number of concurrent
instances of the log trace over the ordered and wasteless
journaling. In Figure 5(a), we see that wasteless jour-
naling takes up to tens of seconds to complete each log
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Figure 5: (a) Wasteless journaling consistently achieves the highest transaction rate in Postmark. (b) Across the three
flushing methods of MySQL/InnoDB, wasteless journaling substantially reduces the latency to flush the transaction
log to disk. (c) Wasteless journaling almost doubles the data throughput (higher is better) of ordered mode. (d) We
measure the write traffic (lower is better) to BerkeleyDB (BDB), the journal (Journal) and the file system (Final) at the
data server of PVFS2. Selective and wasteless journaling incur less traffic under the MPI-IO benchmark.

flush across the three methods of InnoDB at high load.
Instead, ordered mode takes hundreds of seconds, as the
number of instances approaches or exceeds 64.

Finally, we use our mount modes in the storage server
of a PVFS2 multi-tier configuration. In a networked clus-
ter, we use thirteen machines as clients, one machine as
PVFS2 data server and one as PVFS2 metadata server.
By default, each server uses a local BerkeleyDB database
to maintain local metadata. At the data server we placed
the BerkeleyDB on one partition of the root disk, and
dedicated the entire second disk to the user data (file sys-
tem and journal). We fixed the BerkeleyDB partition to
ordered mode and tried alternative mount modes at the
data disk. We enabled data and metadata synchroniza-
tion, as suggested to avoid write losses at server failures.
We used the LANL MPI-IO Test to generate a synthetic
parallel I/O workload on top of PVFS2. In our config-
uration each process writes to a separate unique file, as
suggested for best performance [1]. We varied between
4 and 40 the number of processes on each of the thir-
teen quad-core clients leading to total processes between
52 and 520. We tried 65000 writes of size 1024 bytes.
In Figure 5(c), wasteless journaling almost doubles the
throughput of ordered mode, while data journaling and
selective lie between the other two modes. In Figure
5(d), wasteless journaling reduces by 42% the journal
traffic of data journaling, while selective journaling fur-
ther reduces the write volume of wasteless journaling.

7 Conclusions and Future Work
We rely on journaling of data updates in a file system to
ensure their safe transfer to disk at low latency and high
throughput without storage bandwidth waste. We design
and implement a mount mode that we call wasteless jour-
naling to merge into page-size blocks concurrent sub-
page writes to the journal. Additionally, we develop the

selective journaling mode that only logs updates below a
write threshold and transfers the rest directly to the file
system. We experimentally demonstrate reduced write
latency, improved transaction throughput with low jour-
nal bandwidth requirements. Our plans for future work
include extension of our journaling methods for virtual-
ization environments and solid-state disks.
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