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Abstract

Heterogeneous multi-cores—platforms comprised of
both general purpose and accelerator cores—are becom-
ing increasingly common. While applications wish to
freely utilize all cores present on such platforms, operat-
ing systems continue to view accelerators as specialized
devices. The Pegasus system described in this paper uses
an alternative approach that offers a uniform resource
usage model for all cores on heterogeneous chip mul-
tiprocessors. Operating at the hypervisor level, its novel
scheduling methods fairly and efficiently share acceler-
ators across multiple virtual machines, thereby making
accelerators into first class schedulable entities of choice
for many-core applications. Using NVIDIA GPGPUs
coupled with x86-based general purpose host cores, a
Xen-based implementation of Pegasus demonstrates im-
proved performance for applications by better managing
combined platform resources. With moderate virtual-
ization penalties, performance improvements range from
18% to 140% over base GPU driver scheduling when the
GPUs are shared.

1 Introduction

Systems with specialized processors like those used
for accelerating computations, network processing, or
cryptographic tasks [27, 34] have proven their utility
in terms of higher performance and lower power con-
sumption. This is not only causing tremendous growth
in accelerator-based platforms, but it is also leading
to the release of heterogeneous processors where x86-
based cores and on-chip network or graphics accelera-
tors [17, 31] form a common pool of resources. However,
operating systems and virtualization platforms have not
yet adjusted to these architectural trends. In particular,
they continue to treat accelerators as secondary devices
and focus scheduling and resource management on their
general purpose processors, supported by vendors that
shield developers from the complexities of accelerator
hardware by ‘hiding’ it behind drivers that only expose

Georgia Institute of Technology

Karsten Schwan Niraj Tolia

Maginatics

Parthasarathy Ranganathan

HP Labs

higher level programming APIs [19, 28]. Unfortunately,
technically, this implies that drivers rather than operating
systems or hypervisors determine how accelerators are
shared, which restricts scheduling policies and thus, the
optimization criteria applied when using such heteroge-
neous systems.

A driver-based execution model can not only poten-
tially hurt utilization, but also make it difficult for appli-
cations and systems to obtain desired benefits from the
combined use of heterogeneous processing units. Con-
sider, for instance, an advanced image processing ser-
vice akin to HP’s Snapfish [32] or Microsoft’s Photo-
Synth [25] applications, but offering additional compu-
tational services like complex image enhancement and
watermarking, hosted in a data center. For such appli-
cations, the low latency responses desired by end users
require the combined processing power of both general
purpose and accelerator cores. An example is the ex-
ecution of sequences of operations like those that first
identify spatial correlation or correspondence [33] be-
tween images prior to synthesizing them [25]. For these
pipelined sets of tasks, some can efficiently run on multi-
core CPUs, whereas others can substantially benefit from
acceleration [6, 23]. However, when they concurrently
use both types of processing resources, low latency is at-
tained only when different pipeline elements are appro-
priately co- or gang-scheduled onto both CPU and GPU
cores. As shown later in this paper, such co-scheduling is
difficult to perform with current accelerators when used
in consolidated data center settings. Further, it is hard to
enforce fairness in accelerator use when the many clients
in typical web applications cause multiple tasks to com-
pete for both general purpose and accelerator resources,

The Pegasus project addresses the urgent need for sys-
tems support to smartly manage accelerators. It does
this by leveraging the new opportunities presented by
increased adoption of virtualization technology in com-
mercial, cloud computing [1], and even high perfor-
mance infrastructures [22, 35]: the Pegasus hypervisor



extensions (1) make accelerators into first class schedu-
lable entities and (2) support scheduling methods that en-
able efficient use of both the general purpose and acceler-
ator cores of heterogeneous hardware platforms. Specifi-
cally, for platforms comprised of x86 CPUs connected to
NVIDIA GPUs, these extensions can be used to manage
all of the platform’s processing resources, to address the
broad range of needs of GPGPU (general purpose com-
putation on graphics processing units) applications, in-
cluding the high throughput requirements of compute in-
tensive web applications like the image processing code
outlined above and the low latency requirements of com-
putational finance [24] or similarly computationally in-
tensive high performance codes. For high throughput,
platform resources can be shared across many applica-
tions and/or clients. For low latency, resource manage-
ment with such sharing also considers individual applica-
tion requirements, including those of the inter-dependent
pipeline-based codes employed for the financial and im-
age processing applications.

The Pegasus hypervisor extensions described in Sec-
tions 3 and 5 do not give applications direct access to
accelerators [28], nor do they hide them behind a virtual
file system layer [5, 15]. Instead, similar to past work
on self-virtualizing devices [29], Pegasus exposes to ap-
plications a virtual accelerator interface, and it supports
existing GPGPU applications by making this interface
identical to NVIDIA’s CUDA programming API [13].
As a result, whenever a virtual machine attempts to use
the accelerator by calling this API, control reverts to the
hypervisor. This means, of course, that the hypervisor
‘sees’ the application’s accelerator accesses, thereby get-
ting an opportunity to regulate (schedule) them. A sec-
ond step taken by Pegasus is to then explicitly coordi-
nate how VMs use general purpose and accelerator re-
sources. With the Xen implementation [7] of Pegasus
shown in this paper, this is done by explicitly scheduling
guest VMs’ accelerator accesses in Xen’s Dom0, while at
the same time controlling those VMs’ use of general pur-
pose processors, the latter exploiting Dom0O’s privileged
access to the Xen hypervisor and its VM scheduler.

Pegasus elevates accelerators to first class schedula-
ble citizens in a manner somewhat similar to the way
it is done in the Helios operating system [26], which
uses satellite kernels with standard interfaces for XScale-
based IO cards. However, given the fast rate of tech-
nology development in accelerator chips, we consider
it premature to impose a common abstraction across
all possible heterogeneous processors. Instead, Pegasus
uses a more loosely coupled approach in which it as-
sumes systems to have different ‘scheduling domains’,
each of which is adept at controlling its own set of re-
sources, e.g., accelerator vs. general purpose cores. Pe-
gasus scheduling, then, coordinates when and to what ex-

tent, VMs use the resources managed by these multiple
scheduling domains. This approach leverages notions of
‘cellular’ hypervisor structures [11] or federated sched-
ulers that have been shown useful in other contexts [20].
Concurrent use of both CPU and GPU resources is one
class of coordination methods Pegasus implements, with
other methods aimed at delivering both high performance
and fairness in terms of VM usage of platform resources.

Pegasus relies on application developers or toolchains
to identify the right target processors for different com-
putational tasks and to generate such tasks with the ap-
propriate instruction set architectures (ISAs). Further,
its current implementation does not interact with tool
chains or runtimes, but we recognize that such inter-
actions could improve the effectiveness of its runtime
methods for resource management [8]. An advantage
derived from this lack of interaction, however, is that
Pegasus does not depend on certain toolchains or run-
times, nor does it require internal information about ac-
celerators [23]. As a result, Pegasus can operate with
both ‘closed’ accelerators like NVIDIA GPUs and with
‘open’ ones like IBM Cell [14], and its approach can eas-
ily be extended to support other APIs like OpenCL [19].

Summarizing, the Pegasus hypervisor extensions
make the following contributions:

Accelerators as first class schedulable entities—
accelerators (accelerator physical CPUs or aPCPUs) can
be managed as first class schedulable entities, i.e., they
can be shared by multiple tasks, and task mappings to
processors are dynamic, within the constraints imposed
by the accelerator software stacks.

Visible heterogeneity—Pegasus respects the fact that
aPCPUs differ in capabilities, have different modes of
access, and sometimes use different ISAs. Rather than
hiding these facts, Pegasus exposes heterogeneity to the
applications and the guest virtual machines (VMs) that
are capable of exploiting it.

Diversity in scheduling—accelerators are used in
multiple ways, e.g., to speedup parallel codes, to increase
throughput, or to improve a platform’s power/perfor-
mance properties. Pegasus addresses differing applica-
tion needs by offering a diversity of methods for schedul-
ing accelerator and general purpose resources, including
co-scheduling for concurrency constraints.

‘Coordination’ as the basis for resource manage-
ment—internally, accelerators use specialized execution
environments with their own resource managers [14, 27].
Pegasus uses coordinated scheduling methods to align
accelerator resource usage with platform-level manage-
ment. While coordination applies external controls to
control the use of ‘closed’ accelerators, i.e., accelerators
with resource managers that do not export coordination
interfaces, it could interact more intimately with ‘open’
managers as per their internal scheduling methods.



Novel scheduling methods—current schedulers on
parallel machines assume complete control over their un-
derlying platforms’ processing resources. In contrast,
Pegasus recognizes and deals with heterogeneity not only
in terms of differing resource capabilities, but also in
terms of the diverse scheduling methods these resources
may require, an example being the highly parallel inter-
nal scheduling used in GPGPUs. Pegasus coordination
methods, therefore, differ from traditional co-scheduling
in that they operate above underlying native techniques.
Such meta-scheduling, therefore, seeks to influence the
actions of underlying schedulers rather than replacing
their functionality. This paper proposes and evaluates
new coordination methods that are geared to dealing with
diverse resources, including CPUs vs. GPUs and mul-
tiple generations of the latter, yet at the same time, at-
tempting to preserve desired virtual platform properties,
including fair-sharing and rioritization.

The current Xen-based Pegasus prototype efficiently
virtualizes NVIDIA GPUs, resulting in performance
competitive with that of applications that have direct ac-
cess to the GPU resources, as shown in Section 6. More
importantly, when the GPGPU resources are shared by
multiple guest VMs, online resource management be-
comes critical. This is evident from the performance
benefits derived from the coordination policies described
in Section 4, which range from 18% to 140% over base
GPU driver scheduling. An extension to the current,
fully functional, single-node Pegasus prototype will be
deployed to a large-scale GPU-based cluster machine,
called Keeneland, under construction at Oak Ridge Na-
tional Labs [35], to further validate our approach and to
better understand how to improve the federated schedul-
ing infrastructures needed for future larger scale hetero-
geneous systems.

In the remaining paper, Section 2 articulates the need
for smart accelerator sharing. Section 3 outlines the Pe-
gasus architecture. Section 4 describes its rich resource
management methods. A discussion of scheduling poli-
cies is followed by implementation details in Section 5,
and experimental evaluation in Section 6. Related work
is in Section 7, followed by conclusions and future work.

2 Background

This section offers additional motivation for the Pegasus
approach on a heterogeneous multi-core platforms.
Value in sharing resources—Accelerator perfor-
mance and usability (e.g., the increasing adoption of
CUDA) are improving rapidly. However, even for to-
day’s platforms, the majority of applications do not oc-
cupy the entire accelerator [2, 18]. In consequence and
despite continuing efforts to improve the performance
of single accelerator applications [12], resource sharing
is now supported in NVIDIA’s Fermi architecture [27],

IBM’s Cell, and others. These facts are the prime drivers
behind our decision to develop scheduling methods that
can efficiently utilize both accelerator and general pur-
pose cores. However, as stated earlier, for reasons of
portability across different accelerators and accelerator
generations, and to deal with their proprietary nature,
Pegasus resource sharing across different VMs is imple-
mented at a layer above the driver, leaving it up to the
individual applications running in each VM to control
and optimize their use of accelerator resources.
Limitations of traditional device driver based so-
lutions—Typical accelerators have a sophisticated and
often proprietary device driver layer, with an optional
runtime. While these efficiently implement the computa-
tional and data interactions between accelerator and host
cores [28], they lack support for efficient resource shar-
ing. For example, first-come-first-serve issue of CUDA
calls from ‘applications-to-GPU’ through a centralized
NVIDIA-driver can lead to possibly detrimental call in-
terleavings, which can cause high variances in call times
and degradation in performance, as shown by measure-
ments of the NVIDIA driver in Section 6. Pegasus can
avoid such issues and use a more favorable call order, by
introducing and regulating time-shares for VMs to issue
GPU-requests. This leads to significantly improved per-
formance even for simple scheduling schemes.

3 Pegasus System Architecture

Designed to generalize from current accelerator-based
systems to future heterogeneous many-core platforms,
Pegasus creates the logical view of computational re-
sources shown in Figure 1. In this view, general purpose
and accelerator tasks are schedulable entities mapped to
VCPUs (virtual CPUs) characterized as general purpose
or as ‘accelerator’. Since both sets of processors can
be scheduled independently, platform-wide scheduling,
then, requires Pegasus to federate the platform’s gen-
eral purpose and accelerator schedulers. Federation is
implemented by coordination methods that provide the
serviced virtual machines with shares of physical pro-
cessors based on the diverse policies described in Sec-
tion 4. Coordination is particularly important for closely
coupled tasks running on both accelerator and general
purpose cores, as with the image processing application
explained earlier. Figure 1 shows virtual machines run-
ning on either one or both types of processors, i.e., the
CPUs and/or the accelerators. The figure also suggests
the relative rarity of VMs running solely on accelerators
(grayed out in the figure) in current systems. We segre-
gate the privileged software components shown for the
host and accelerator cores to acknowledge that the accel-
erator could have its own privileged runtime.

The following questions articulate the challenges in
achieving the vision shown in Figure 1.
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Figure 1: Logical view of Pegasus architecture

How can heterogeneous resources be managed?:
Hardware heterogeneity goes beyond varying compute
speeds to include differing interconnect distances, differ-
ent and possibly disjoint memory models, and potentially
different or non-overlapping ISAs. This makes it difficult
to assimilate these accelerators into one common plat-
form. Exacerbating these hardware differences are soft-
ware challenges, like those caused by the fact that there
is no general agreement about programming models and
runtimes for accelerator-based systems [19, 28].

Are there efficient methods to utilize heterogeneous re-
sources?: The hypervisor has limited control over how
the resources internal to closed accelerators are used, and
whether sharing is possible in time, space, or both be-
cause there is no direct control over scheduler actions
beyond the proprietary interfaces. The concrete ques-
tion, then, is whether and to what extent the coordinated
scheduling approach adopted by Pegasus can succeed.

Pegasus therefore allows schedulers to run resource al-
location policies that offer diversity in how they maxi-
mize application performance and/or fairness in resource
sharing.

3.1 Accelerator Virtualization

With GViM [13], we outline methods for low-overhead
virtualization of GPUs for the Xen hypervisor, address-
ing heterogeneous hardware with general purpose and
accelerator cores, used by VMs with suitable codes (e.g.,
for Larrabee or Tolapai cores, codes that are IA in-
struction set compatible vs. non-IA compatible codes for
NVIDIA or Cell accelerators). Building on this approach
and acknowledging the current off-chip nature of accel-
erators, Pegasus assumes these hardware resources to be
managed by both the hypervisor and Xen’s ‘Dom0’ man-
agement (and driver) domain. Hence, Pegasus uses front
end/back end split drivers [3] to mediate all accesses
to GPUs connected via PCle. Specifically, the requests

for GPU usage issued by guest VMs (i.e., CUDA tasks)
are contained in call buffers shared between guests and
Dom0, as shown in Figure 2, using a separate buffer for
each guest. Buffers are inspected by ‘poller’ threads that
pick call packets from per-guest buffers and issue them
to the actual CUDA runtime/driver resident in DomO.
These poller threads can be woken up whenever a do-
main has call requests waiting. This model of execution
is well-matched with the ways in which guests use accel-
erators, typically wishing to utilize their computational
capabilities for some time and with multiple calls.

For general purpose cores, a VCPU as the (virtual)
CPU representation offered to a VM embodies the state
representing the execution of the VM’s threads/processes
on physical CPUs (PCPUs). As a similar abstraction,
Pegasus introduces the notion of an accelerator VCPU
(aVCPU), which embodies the VM’s state concerning
the execution of its calls to the accelerator. For the
Xen/NVIDIA implementation, this abstraction is a com-
bination of state allocated on the host and on the acceler-
ator (i.e., DomO polling thread, CUDA calls, and driver
context form the execution context while the data that is
operated upon forms the data portion, when compared
with the VCPUs). By introducing aVCPUs, Pegasus can
then explicitly schedule them, just like their general pur-
pose counterparts. Further, and as seen from Section 6,
virtualization costs are negligible or low and with this
API-based approach to virtualization, Pegasus leaves the
use of resources on the accelerator hardware up to the
application, ensures portability and independence from
low-level changes in NVIDIA drivers and hardware.

3.2 Resource Management Framework

For VMs using both VCPUs and aVCPUs, resource man-
agement can explicitly track and schedule their joint use
of both general purpose and accelerator resources. Tech-
nically, such management involves scheduling their VC-
PUs and aVCPUs to meet desired Service Level Objec-
tives (SLOs), concurrency constraints, and to ensure fair-
ness in different guest VMs’ resource usage.

For high performance, Pegasus distinguishes two
phases in accelerator request scheduling. First, the
accelerator selection module runs in the Accelera-
tor Domain—which in our current implementation is
DomO—henceforth, called DomA. This module asso-
ciates a domain, i.e., a guest VM, with an accelerator
that has available resources, by placing the domain into
an ‘accelerator ready queue’, as shown in Figure 2. Do-
mains are selected from this queue when they are ready
to issue requests. Second, it is only after this selection
that actual usage requests are forwarded to, i.e., sched-
uled and run on, the selected accelerator. There are mul-
tiple reasons for this difference in accelerator vs. CPU
scheduling. (1) An accelerator like the NVIDIA GPU
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Figure 2: Logical view of the resource management
framework in Pegasus

has limited memory, and it associates a context with each
‘user’ (e.g., a thread) that locks some of the GPU’s re-
sources. (2) Memory swapping between host and accel-
erator memory over an interconnect like PCle is expen-
sive, which means that it is costly to dynamically change
the context currently running on the GPU. In response,
Pegasus GPU scheduling restricts the number of domains
simultaneously scheduled on each accelerator and in ad-
dition, it permits each such domain to use the accelerator
for some extensive time duration. The following param-
eters are used for accelerator selection.

Accelerator profile and queue—accelerators vary in
terms of clock speed, memory size, in-out bandwidths
and other such physical characteristics. These are static
or hardware properties that can identify capability dif-
ferences between various accelerators connected in the
system. There also are dynamic properties like allo-
cated memory, number of associated domains, etc., at
any given time. This static and dynamic information
is captured in an ‘accelerator profile’. An ‘accelerator
weight’ computed from this profile information deter-
mines current hardware capabilities and load character-
istics for the accelerator. These weights are used to or-
der accelerators in a priority queue maintained within the
DomA Scheduler, termed as ‘accelerator queue’. For
example, the more an accelerator is used, the lower its
weight becomes so that it does not get oversubscribed.
The accelerator with the highest weight is the most ca-
pable and is the first to be considered when a domain
requests accelerator use.

Domain profile—domains may be more or less de-
manding of accelerator resources and more vs. less capa-
ble of using them. The ‘domain profiles’ maintained by
Pegasus describe these differences, and they also quan-

titatively capture domain requirements. Concretely, the
current implementation expects credit assignments [7]
for each domain that gives it proportional access to
the accelerator. Another example is to match the do-
main’s expected memory requirements against the avail-
able memory on an accelerator (with CUDA, it is possi-
ble to determine this from application metadata). Since
the execution properties of domains change over time,
domain execution characteristics should be determined
dynamically, which would then cause the runtime mod-
ification of a domain’s accelerator credits and/or access
privileges to accelerators. Automated methods for doing
s0, based on runtime monitoring, are subject of our fu-
ture work, with initial ideas reported in [8]. This paper
lays the groundwork for such research: (1) we show co-
ordination to be a fundamentally useful method for man-
aging future heterogeneous systems, and (2) we demon-
strate the importance of these runtime-based techniques
and performance advantages derived from their use in a
coordinated scheduling environment.

Once a domain has been associated with an acceler-
ator, the DomA Scheduler in Figure 2 schedules exe-
cution of individual domain requests per accelerator by
activating the corresponding domain’s aVCPU. For all
domains in its ready queue, the ‘DomA Scheduler’ has
complete control over which domain’s requests are sub-
mitted to the accelerator(s), and it can make such deci-
sions in coordination with the hypervisor’s VCPU sched-
uler, by exchanging relevant accelerator and schedule
data. Scheduling in this second phase, can thus be en-
hanced by coordinating the actions of the hypervisor and
DomA scheduler(s) present on the platform, as intro-
duced in Figure 1. In addition, certain coordination poli-
cies can use the monitoring/feedback module, which cur-
rently tracks the average values of wait times for acceler-
ator requests, the goal being to detect SLO (service level
objective) violations for guest requests. Various policies
supported by the DomA scheduler are described in the
following section.

4 Resource Management Policies for
Heterogeneity-aware Hypervisors

Pegasus contributes its novel, federated, and
heterogeneity-aware scheduling methods to the sub-
stantive body of past work in resource management.
The policies described below, and implemented by the
DomA scheduler, are categorized based on their level
of interaction with the hypervisor’s scheduler. They
range from simple and easily implemented schemes
offering basic scheduling properties to coordination-
based policies that exploit information sharing between
the hypervisor and accelerator subsystems. Policies
are designed to demonstrate the range of achievable
coordination between the two scheduler subsystems



Algorithm 1: Simplified Representation of Scheduling Data
and Functions for Credit-based Schemes

/* D = Domain being considered =*/

/* X = Domain cpu or accelerator credits =/
/x T Scheduler timer period =/

/* Tc = Ticks assigned to next D */

/* Tm = maximum ticks D gets based on X */
Data: Ready queue RQ4 of domains (D)

/* RQ is ordered by X =*/

Data: Accelerator queue AccQ of accelerators

/* AccQ 1s ordered by accelerator weight »*/

InsertDomainforScheduling (D)
if D not in RQ, then
To 1, T ¢ g
A < PickAccelerator (AccQ,D)
InsertDomainInRQ_CreditSorted (RQy,D)
else
/% D already in some RQ4q */
if ContextEstablished then
T. <+ T,
else
T. <1
DomASchedule (RQ4)
InsertDomainforScheduling (Curr_Dom)
D + RemoveHeadandAdvance (RQ4)
Set D’s timer period to 7;; Curr_dom « D

and the benefits seen by such coordination for various
workloads. The specific property offered by each policy
is indicated in square brackets.

4.1 Hypervisor Independent Policies

The simplest methods do not support scheduler federa-
tion, limiting their scheduling logic to DomA.

No scheduling in backend (None) [first-come-first-
serve]—provides base functionality that assigns domains
to accelerators in a round robin manner, but relies on
NVIDIA’s runtime/driver layer to handle all request
scheduling. DomA scheduler plays no role in domain
request scheduling. This serves as our baseline.

AccCredit (AccC) [proportional fair-share]—
recognizing that domains differ in terms of their desire
and ability to use accelerators, accelerator credits are
associated with each domain, based on which different
domains are polled for different time periods. This
makes the time given to a guest proportional to how
much it desires to use the accelerator, as apparent in
the pseudo-code shown in Algorithm 1, where the
requests from the domain at the head of the queue are
handled until it finishes its awarded number of ticks.
For instance, with credit assignments (Doml,1024),
(Dom2,512), (Dom3,256), and (Dom4,512), the number
of ticks will be 4, 2, 1, and 2, respectively.

Because the accelerators used with Pegasus require
their applications to explicitly allocate and free accelera-
tor state, it is easy to determine whether or not a domain
currently has context (state) established on an accelera-

Algorithm 2: Simplified Representation of CoSched and
AugC Schemes

/* RQcpu=Per CPU ready g in hypervisor =/
/* HS=VCPU-PCPU schedule for next period =/
/* X = domain credits */

HypeSchedule (RQcpu)
Pick VCPUs for all PCPUs in system
VD, AugCreditp = RemainingCredit
Pass HS to DomA scheduler

DomACoSchedule (RQx, HS)
/* To handle #cpus > #accelerators =/
VD € (ROANHS)
Pick D with highest X
if D = null then
/+ To improve GPU utilization */

Pick D with highest X in RQ4

DomAAugSchedule (RQ4, HS)
foreach D € RQ4 do

Pick D with highest (AugCredit + X)

tor. The DomA scheduler, therefore, interprets a domain
in a ContextEstablished state as one that is actively using
the accelerator. When in a NoContextEstablished state, a
minimum time tick (1) is assigned to the domain for the
next scheduling cycle (see Algorithm 1).

4.2 Hypervisor Controlled Policy

The rationale behind coordinating VCPUs and aVCPUs
is that the overall execution time of an application (com-
prised of both host and accelerator portions) can be re-
duced if its communicating host and accelerator tasks
are scheduled at the same time. We implement one such
method described next.

Strict co-scheduling (CoSched) [latency reduc-
tion by occasional unfairness]—an alternative to the
accelerator-centric policies shown above, this policy
gives complete control over scheduling to the hyper-
visor. Here, accelerator cores are treated as slaves to
host cores, so that VCPUs and aVCPUs are scheduled
at the same time. This policy works particularly well
for latency-sensitive workloads like certain financial pro-
cessing codes [24] or barrier-rich parallel applications. It
is implemented by permitting the hypervisor scheduler
to control how DomA schedules aVCPUs, as shown in
Algorithm 2. For ‘singular VCPUs’, i.e., those without
associated aVCPUs, scheduling reverts to using a stan-
dard credit-based scheme.

4.3 Hypervisor Coordinated Policies

A known issue with co-scheduling is potential unfair-
ness. The following methods have the hypervisor ac-
tively participate in making scheduling decisions rather
than governing them:

Augmented credit-based scheme (AugC) [through-
put improvement by temporary credit boost]—going



beyond the proportionality approach in AccC, this pol-
icy uses active coordination between the DomA sched-
uler and hypervisor (Xen) scheduler in an attempt to bet-
ter co-schedule domains on a CPU and GPU. To en-
able coscheduling, the Xen credit-based scheduler pro-
vides to the DomA scheduler, as a hint, its CPU sched-
ule for the upcoming period, with remaining credits for
all domains in the schedule as shown in Algorithm 2.
The DomA scheduler uses this schedule to add tempo-
rary credits to the corresponding domains in its list (i.e.,
to those that have been scheduled for the next CPU time
period). This boosts the credits of those domains that
have their VCPUs selected by CPU scheduling, thus in-
creasing their chances for getting scheduled on the corre-
sponding GPU. While this effectively co-schedules these
domains’ CPU and GPU tasks, the DomA scheduler re-
tains complete control over its actions; no domain with
high accelerator credits is denied its eventual turn due to
this temporary boost.

SLA feedback to meet QoS requirements (SLAF)
[feedback-based proportional fair-share]—this is an
adaptation of the AccC scheme as shown in Algorithm
1, with feedback control. (1) We start with an SLO de-
fined for a domain (statically profiled) as the expected
accelerator utilization—e.g., 0.5sec every second. (2)
As shown in Algorithm 1, once the domain moves to a
ContextEstablished state, it is polled, and its requests are
handled for its assigned duration. In addition, a sum of
domain poll time is maintained. (3) Ever so often, all
domains associated with an accelerator are scanned for
possible SLO violations. Domains with violations are
given extra time ticks to compensate, one per scheduling
cycle. (4) In high load conditions, there is a trigger that
increases accelerator load in order to avoid new domain
requests, which in the worst case, forces domains with
comparatively low credits to wait longer to get compen-
sated for violations seen by higher credit domains.

For generality in scheduling, we have also imple-
mented: (1) Round robin (RR) [fair-share] which is hy-
pervisor independent, and (2) XenoCredit (XC) [propor-
tional fair-share] which is similar to AccC except it de-
pends on CPU credits assigned to the corresponding VM,
making it a hypervisor coordinated policy.

5 System Implementation

The current Pegasus implementation operates with Xen
and NVIDIA GPUs. As a result, resource management
policies are implemented within the management frame-
work (Section 3.2) run in DomA (i.e., Dom0 in the cur-
rent implementation), as shown in Figure 2.
Discovering GPUs and guest domains: the manage-
ment framework discovers all of the GPUs present in the
system, assembles their static profiles using cudaGetDe-
viceProperties() [28], and registers them with the Pega-

sus hypervisor scheduling extensions. When new guest
domains are created, Xen adds them to its hypervisor
scheduling queue. Our management framework, in turn,
discovers them by monitoring XenStore.

Scheduling: the scheduling policies RR, AccC, XC,
and SLAF are implemented using timer signals, with one
tick interval equal to the hypervisor’s CPU scheduling
timer interval. There is one timer handler or scheduler
for each GPU, just like there is one scheduling timer
interrupt per CPU, and this function picks the next do-
main to run from corresponding GPU’s ready queue, as
shown in Algorithm 1. AugC and CoSched use a thread
in the backend that performs scheduling for each GPU
by checking the latest schedule information provided by
the hypervisor, as described in Section 4. It then sleeps
for one timer interval. The per domain pollers are wo-
ken up or put to sleep by scheduling function(s), using
real time signals with unique values assigned to each do-
main. This restricts the maximum number of domains
supported by the backend to the Dom0 operating system
imposed limit, but results in bounded/prioritized signal
delivery times.

Two entirely different scheduling domains, i.e., DomA
and the hypervisor, control the two different kinds of
processing units, i.e., GPUs and x86 cores. This poses
several implementation challenges for the AugC and
CoSched policies such as: (1) What data needs to be
shared between extensions and the hypervisor scheduler
and what additional actions to take, if any, in the hyper-
visor scheduler, given that this scheduler is in the critical
path for the entire system? (2) How do we manage the
differences and drifts in these respective schedulers’ time
periods?

Concerning (1), the current implementation extends
the hypervisor scheduler to simply have it share its
VCPU-PCPU schedule with the DomA scheduler, which
then uses this schedule to find the right VM candidates
for scheduling. Concerning (2), there can be a noticeable
timing gap between when decisions are made and then
enacted by the hypervisor scheduler vs. the DomA ex-
tensions. The resulting delay as to when or how soon
a VCPU and an aVCPU from same domain are co-
scheduled can be reduced with better control over the use
of GPU resources. Since NVIDIA drivers do not offer
such control, there is notable variation in co-scheduling.
Our current remedial solution is to have each aVCPU be
executed for ‘some time’, i.e., to run multiple CUDA call
requests, rather than scheduling aVCPUs at a per CUDA
call granularity, thereby increasing the possible overlap
time with its ‘co-related” VCPU. This does not solve the
problem, but it mitigates the effects of imprecision, par-
ticularly for longer running workloads.



6 Experimental Evaluation

Key contributions of Pegasus are (1) accelerators as first
class schedulable entities and (2) coordinated schedul-
ing to provide applications with the high levels of per-
formance sought by use of heterogeneous processing
resources. This section first shows that the Pegasus
way of virtualizing accelerators is efficient, next demon-
strates the importance of coordinated resource manage-
ment, and finally, presents a number of interesting in-
sights about how diverse coordination (i.e., scheduling)
policies can be used to address workload diversity.

Testbed: All experimental evaluations are conducted
on a system comprised of (1) a 2.5GHz Xeon quad-core
processor with 3GB memory and (2) an NVIDIA 9800
GTX card with 2 GPUs and the v169.09 GPU driver.
The Xen 3.2.1 hypervisor and the 2.6.18 Linux kernel
are used in Dom0 and guest domains. Guest domains
use 512MB memory and 1 VCPU each, the latter pinned
to certain physical cores, depending on the experiments
being conducted.

6.1 Benchmarks and Applications

Pegasus is evaluated with an extensive set of bench-
marks and with emulations of more complex computa-
tionally expensive enterprise codes like the web-based
image processing application mentioned earlier. Bench-
marks include (1) parallel codes requiring low levels
of deviation for highly synchronous execution, and (2)
throughput-intensive codes. A complete listing appears
in Table 1, identifying them as belonging to either the
parboil benchmark suite [30] or the CUDA SDK 1.1.
Benchmark-based performance studies go beyond run-
ning individual codes to using representative code mixes
that have varying needs and differences in behavior
due to different dataset sizes, data transfer times, it-
eration complexity, and numbers of iterations executed
for certain computations. The latter two are a good
measure of GPU ‘kernel’ size and the degree of cou-
pling between CPUs orchestrating accelerator use and
the GPUs running these kernels respectively. Depending
on their outputs and the number of CUDA calls made,
(1) throughput-sensitive benchmarks are MC, BOp, PI,
(2) latency-sensitive benchmarks include FWT, and sci-
entific, and (3) some benchmarks are both, e.g., BS, CP.
A benchmark is throughput-sensitive when its perfor-
mance is best evaluated as the number of some quan-
tity processed or calculated per second, and a benchmark
is latency-sensitive when it makes frequent CUDA calls
and its execution time is sensitive to potential virtual-
ization overhead and/or delays or ‘noise’ in accelerator
scheduling. The image processing application, termed
PicSer, emulates web codes like PhotoSynth. BlackSc-
holes represents financial codes like those run by option
trading companies [24].

Category | Source | Benchmarks

Financial | SDK Binomial(BOp), BlackSc-
holes(BS), Monte-
Carlo(MC)

Media SDK ProcessImage(PI)=matrix

process- or par- | multiply+DXTC, MRIQ,

ing boil FastWalshTransform(FWT)

Scientific | parboil | CP, TPACF, RPES

Table 1: Summary of Benchmarks

6.2 GPGPU Virtualization

Virtualization overheads when using Pegasus are de-
picted in Figures 3(a)—(c), using the benchmarks listed
in Table 1. Results show the overhead (or speedup)
when running the benchmark in question in a VM vs.
when running it in Dom0. The overhead is calculated as
the time it takes the benchmark to run in a VM divided
by the time to run it in Dom0. We show the overhead
(or speedup) for the average total execution time (Total
Time) and the average time for CUDA calls (Cuda Time)
across 50 runs of each benchmark. Cuda Time is calcu-
lated as the time to execute all CUDA calls within the
application. Running the benchmark in Dom0 is equiv-
alent to running it in a non-virtualized setting. For the
1VM numbers in Figure 3(a) and (c), all four cores are
enabled, and to avoid scheduler interactions, DomO and
the VM are pinned on separate cores. The experiments
reported in Figure 3(b) have only 1 core enabled and the
execution times are not averaged over multiple runs, with
a backend restart for every run. This is done for reasons
explained next. All cases use an equal number of physi-
cal GPUs, and Dom0 tests are run with as many cores as
the Dom(0-1VM case.

An interesting observation about these results is that
sometimes, it is better to use virtualized rather than non-
virtualized accelerators. This is because (1) the Pegasus
virtualization software can benefit from the concurrency
seen from using different cores for the guest vs. Dom0
domains, and (2) further advantages are derived from ad-
ditional caching of data due to a constantly running—
in DomO—backend process and NVIDIA driver. This
is confirmed in Figure 3(b), which shows higher over-
heads when the backend is stopped before every run,
wiping out any driver cache information. Also of inter-
est is the speedup seen by say, BOp or PI vs. the perfor-
mance seen by say, BS or RPES, in Figure 3(a). This is
due to an increase in the number of calls per application,
seen in BOp/PI vs. BS/RPES, emphasizing the virtual-
ization overhead added to each executed CUDA call. In
these cases, the benefits from caching and the presence
of multiple cores are outweighed by the per call overhead
multiplied by the number of calls made.
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6.3 Resource Management

The Pegasus framework for scheduling coordination
makes it possible to implement diverse policies to meet
different application needs. Consequently, we use mul-
tiple metrics to evaluate the policies described in Sec-
tion 4. They include (1) throughput (Quantity/sec) for
throughput-sensitive applications, (2) work done (Quan-
tity work/sec) (which is the sum of the calculations done
over all runs divided by the total time taken), and/or (3)
per call latency (Latency) observed for CUDA calls (la-
tency is reported including the CUDA function execution
time to account for the fact that we cannot control how
the driver orders the requests it receives from Pegasus).
Experimental Methodology: To reduce scheduling
interference from the guest OS, each VM runs only a sin-
gle benchmark. Each sample set of measurements, then,
involves launching the required number of VMs, each of
which repeatedly runs its benchmark. To evaluate ac-
celerator sharing, experiments use 2, 3, or 4 domains,
which translates to configurations with no GPU/CPU
sharing, sharing of one GPU and one CPU by two of
the three domains, and sharing of two CPUs and both
GPUs by pairs of domains, respectively. In all experi-
ments, Dom1 and Dom3 share a CPU as well as a GPU,
and so do Dom2 and Dom4, when present. Further, to
avoid non-deterministic behavior due to actions taken
by the hypervisor scheduler, and to deal with the lim-
ited numbers of cores and GPGPUs available on our
experimental platform, we pin the domain VCPUs to
certain CPUs, depending on the experiment scenario.
These CPUs are chosen based on the workload distribu-
tion across CPUs (including backend threads in Dom0)
and the concurrency requirements of VCPU and aVCPU
from the same domain (simply put, VCPU from a do-
main and the polling thread forming its aVCPU cannot
be co-scheduled if they are bound to the same CPU).
For brevity, the results shown in this section focus
on the BS benchmark, because of (1) its closeness to
real world financial workloads, (2) its tunable iteration
count argument that varies its CPU-GPU coupling and
can highlight the benefits of coordination, (3) its easily

varied data sizes and hence GPU computation complex-
ity, and (4) its throughput as well as latency sensitive na-
ture. Additional reported results are for benchmarks like
PicSer, CP and FWT in order to highlight specific in-
teresting/different cases, like those for applications with
low degrees of coupling or with high latency sensitivity.
For experiments that assign equal credits to all domains,
we do not plot RR and AccC, since they are equivalent
to XC. Also, we do not show AccC if accelerator credits
are equal to Xen credits.

Observations at an early stage of experimentation
showed that the CUDA driver introduces substantial vari-
ations in execution time when a GPU is shared by multi-
ple applications (shown by the NoVirt graph in Figure 9).
This caused us to use a large sample size of 50 runs
per benchmark per domain, and we report either the h-
spread' or work done which is the sum of total output
divided by total elapsed time over those multiple runs.
For throughput and latency based experiments, we re-
port values for 85% of the runs from the execution set,
which prunes some outliers that can greatly skew results
and thus, hide the important insights from a particular
experiment. These outliers are typically introduced by
(1) a serial launch of domains causing the first few read-
ings to show non-shared timings for certain domains, and
(2) some domains completing their runs earlier due to
higher priority and/or because the launch pattern causes
the last few readings for the remaining domains to again
be during the unshared period. Hence, all throughput
and latency graphs represent the distribution of values
across the runs, with a box in the graph representing
50% of the samples around the median (or h-spread) and
the lower and upper whiskers encapsulating 85% of the
readings, with the minimum and maximum quantities as
delimiters. It is difficult, however, to synchronize the
launches of domains’ GPU kernels with the execution
of their threads on CPUs, leading to different orderings
of CUDA calls in each run. Hence, to show cumulative
performance over the entire experiment, for some exper-
imental results, we also show the ‘work done’ over all of

Uhttp://mathworld.wolfram.com/H-Spread.htm]



the runs.

Scheduling is needed when sharing accelerators:
Figure 3(c) shows the overhead of sharing the GPU when
applications are run both in Dom0 and in virtualized
guests. In the figure, the 1VM quantities refer to over-
head (or speedup) seen by a benchmark running in 1VM
vs. when it is run nonvirtualized in Dom0. 2dom0 and
2VM values are similarly normalized with respect to the
Dom0 values. 2domO values indicate execution times
observed for a benchmark when it shares a GPU run-
ning in Dom0, i.e., in the absence of GPU virtualiza-
tion, and 2VM values indicate similar values when run
in two guest VMs sharing the GPU. For the 2VM case,
the Backend implements RR, a scheduling policy that is
completely fair to both VMs, and their CPU credits are
set to 256 for equal CPU sharing. These measurements
show that (1) while the performance seen by applications
suffers from sharing (due to reduced accelerator access),
(2) a clear benefit is derived for most benchmarks from
using even a simple scheduling method for accelerator
access. This is evident from the virtualized case that uses
around robin scheduler, which shows better performance
compared with the nonvirtualized runs in DomO for most
benchmarks, particularly the ones with lower numbers
of CUDA call invocations. This shows that scheduling is
important to reduce contention in the NVIDIA driver and
thus helps minimize the resulting performance degrada-
tion. Measurements report Cuda Time and Total Time,
which is the metric used in Figures 3(a)—(b).

We speculate that sharing overheads could be reduced
further if Pegasus was given more control over the way
GPU resources are used. Additional benefits may arise
from improved hardware support for sharing the acceler-
ator, as expected for future NVIDIA hardware [27].

Coordination can improve performance: With en-
couraging results from the simple RR scheduler, we
next experiment with the more sophisticated policies de-
scribed in Section 4. In particular, we use BlackScholes
(outputs options and hence its throughput is given by
Options/sec) which, with more than 512 compute kernel
launches and a large number of CUDA calls, has a high
degree of CPU-GPU coupling. This motivates us to also
report the latency numbers seen by BS.

An important insight from these experiments is that
coordination in scheduling is particularly important for
tightly coupled codes, as demonstrated by the fact that
our base case, None, shows large variations and worse
overall performance, whereas AugC and CoSched show
the best performance due to their higher degrees of coor-
dination. Figures 4(a)—(c) show that these policies per-
form well even when domains have equal credits. The
BlackScholes run used in this experiment generates 2
million options over 512 iterations in all our domains.
Figure 4(a) shows the distribution of throughput values

in Million options/sec, as explained earlier. While XC
and SLAF see high variation due to higher dependence
on driver scheduling and no attempt for CPU and GPU
coscheduling, they still perform at least 33% better than
None when comparing the medians. AugC and CoSched
add an additional 4%-20% improvement as seen from
Figure 4(a). The higher performance seen with Doml
and Dom3 for total work done in Figure 4(b) in case of
AugC and CoSched is because of the lower signaling la-
tency seen by the incoming and outgoing domain back-
end threads, due to their co-location with the scheduling
thread and hence, the affected call ordering done by the
NVIDIA driver (which is beyond our control).

Beyond the improvements shown above, future de-
ployment scenarios in utility data centers suggest the im-
portance of supporting prioritization of domains. This
is seen by experiments in which we modify the credits
assigned to a domain, which can further improve perfor-
mance (see Figure 5). We again use BlackScholes, but
with Domain credits as (1) (Dom1,256), (2) (Dom2,512),
(3) (Dom3,1024), and (4) (Dom4,256), respectively. The
effects of such scheduling are apparent from the fact
that, as shown in Figure 5(b), Dom3 succeeds in per-
forming 2.4X or 140% more work when compared with
None, with its minimum and maximum throughput val-
ues showing 3X to 2X improvement respectively. This is
because domains sometimes complete early (e.g., Dom3
completes its designated runs before Dom1) which then
frees up the accelerator for other domains (e.g., Dom1)
to complete their work in a mode similar to non-shared
operation, resulting in high throughput. The ‘work done’
metric captures this because average throughput is cal-
culated for the entire application run. Another important
point seen from Figure 5(c) is that the latency seen by
Dom4 varies more as compared to Dom?2 for say AugC
because of the temporary unfairness resulting from the
difference in credits between the two domains. A final
interesting note is that scheduling becomes less impor-
tant when accelerators are not highly utilized, as evident
from other measurements not reported here.

Coordination respects proportional credit assign-
ments: The previous experiments use equal amounts
of accelerator and CPU credits, but in general, not
all guest VMs need equal accelerator vs. general
purpose processor resources. We demonstrate the
effects of discretionary credit allocations using the BS
benchmark, since it is easily configured for variable
CPU and GPU execution times, based on the expected
number of call and put options and the number of
iterations denoted by BS(#options,#iterations). Each
domain is assigned different GPU and CPU cred-
its denoted by Dom#(AccC,XC,SLA proportion).
This results in the configuration for this experiment
being: Dom1(1024,256,0.2) running BS(2mi,128),
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Dom?2(1024,1024,0.8) running BS(2mi,512),
Dom3(256,1024,0.8) running BS(0.8mi,512), and
Dom4(768,256,0.2) running BS(1.6mi,128), where mi
stands for million.

Results depicting ‘total work done’ in Figure 6 demon-
strate that coordinated scheduling methods AugC and
CoSched deal better with proportional credit assign-
ments. Results show that domains with balanced CPU
and GPU credits are more effective in getting work
done—Dom?2 and Dom3 (helped by high Xen credits)—
than others. SLAF shows performance similar to
CoSched and AugC due to its use of a feedback loop
that tries to attain 80% utilization for Dom2 and Dom3
based on Xen credits. Placement of Dom4 with a high
credit domain Dom2 somewhat hurts its performance,
but its behavior is in accordance with its Xen credits and
SLAF values, and it still sees a performance improve-
ment of at least 18% compared to XC (lowest perfor-
mance improvement among all scheduling schemes for
the domain) with None. Dom1 benefits from coordina-
tion due to earlier completion of Dom3 runs, but is af-
fected by its low CPU credits for the rest of the schemes.

One lesson from these runs is that the choice of credit
assignment should be based on the expected outcome and
the amount of work required by the application. How
to make suitable choices is a topic for future work, par-
ticularly focusing on the runtime changes in application
needs and behavior. We also realize that we cannot con-
trol the way the driver ultimately schedules requests pos-
sibly introducing high system noise and limiting achiev-
able proportionality.

Coordination is important for latency sensitive codes:
Figure 8 corroborates our earlier statement about the
particular need for coordination with latency-intolerant
codes. When FWT is run in all domains, first with equal
CPU and GPU credits, then with different CPU cred-
its per domain, it is apparent that ‘None’ (no schedul-
ing) is inappropriate. Specifically, as seen in Figure 8,
all scheduling schemes see much lower latencies and la-
tency variations than None. Another interesting point is
that the latencies seen for Dom2 and Dom3 are almost
equal, despite a big difference in their credit values, for
all schemes except RR (which ignores credits). This is
because latencies are reduced until reaching actual virtu-
alization overheads and thereafter, are no longer affected
by differences in credits per domain. The other perfor-
mance effects seen for total time can be attributed to the
order in which calls reach the driver.

Scheduling is not always effective: There are situa-
tions in which scheduling is not effective. We have ob-
served this when a workload is very short lived or when
it shows a high degree of variation, as shown in Figure
9. These variations can be attributed to driver process-
ing, with evidence for this attribution being that the same
variability is observed in the absence of Pegasus, as seen
from the ‘NoVirt’ bars in the figure. An idea for future
work with Pegasus is to explicitly evaluate this via run-
time monitoring, to establish and track penalties due to
sharing, in order to then adjust scheduling to avoid such
penalties whenever possible.

Scheduling does not affect performance in the ab-
sence of sharing; scheduling overheads are low: When
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using two, three, and four domains assigned equal cred-
its, with a mix of different workloads, our measurements
show that in general, scheduling works well and exhibits
little variation, especially in the absence of accelerator
sharing. While those results are omitted due to lack
of space, we do report the worst case scheduling over-
heads seen per scheduler call in Table 2, for different
scheduling policies. MS in the table refers to the Monitor
and Sweep thread responsible for monitoring credit value
changes for guest VMs and cleaning out state for non-
existing VMs. Xen kernel refers to the changes made to
the hypervisor CPU scheduling method. AccO and Accl
refer to the schedulers (for timer based schemes like RR,
XC, SLAF) in our dual accelerator testbed. Hype refers
to the user level thread run for policies like AugC and
CoSched for coordinating CPU and GPU activities.

As seen from the table, the Pegasus backend compo-
nents have low overhead. For example, XC sees ~0.5ms
per scheduler call per accelerator, compared to a typ-
ical execution time of CUDA applications of between
250ms to 5000ms and with typical scheduling periods of
30ms. The most expensive component, with an overhead
of ~1ms, is MS, which runs once every second.

Scheduling complex workloads: When evaluating
scheduling policies with the PicSer application, we run
three dual-core, 512MB guests on our testbed. One VM
(Dom?2) is used for priority service and hence given 1024
credits and 1 GPU, while the remaining two are assigned
256 credits, and they share the second GPU. VM2 is
latency-sensitive, and all of the VMs care about through-
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Figure 9: [CP] with sharing

Policy MS Xen Kernel | AccO/Hype | Accl
(psec) | (usec) (usec) (psec)

None 272 0.85 0 0

XC 1119 | 0.85 507 496

AugC 1395 | 0.9 3.36 0

SLAF 1101 | 0.95 440 471

CoSched | 1358 | 0.825 2.71 0

Table 2: Backend scheduler overhead

put. Scheduling is important because CPUs are shared by
multiple VMs. Figure 7(a) shows the average throughput
(Pixels/sec to incorporate different image sizes) seen by
each VM with four different policies. We choose AugC
and CoSched to highlight the co-scheduling differences.
None is to provide a baseline, and SLAF is an enhanced
version of all of the credit based schemes. AugC tries
to improve the throughput of all VMs, which results in a
somewhat lower value for Dom2. CoSched gives priority
to Dom2 and can penalize other VMs, as evident from
the GPU latencies shown in Figure 7(b). ‘No schedul-
ing’ does not perform well. More generally, it is clear
that coordinated scheduling can be effective in meeting
the requirements of multi-VM applications sharing CPU
and GPU resources.

6.4 Discussion

Experimental results show that the Pegasus approach ef-
ficiently virtualizes GPUs and in addition, can effec-
tively schedule their use. Even basic accelerator request
scheduling can improve sharing performance, with ad-
ditional benefits derived from active scheduling coordi-



nation schemes. Among these methods, XC can per-
form quite well, but fails to capitalize on CPU-GPU co-
ordination opportunities for tightly coupled benchmarks.
SLAF, when applied to CPU credits, has a smoothing
effect on the high variations of XC, because of its feed-
back loop. For most benchmarks, especially those with
a high degree of coupling, AugC and CoSched perform
significantly better that other schemes, but require small
changes to the hypervisor. More generally, scheduling
schemes work well in the absence of over-subscription,
helping regulate the flow of calls to the GPU. Regulation
also results in lowering the degrees of variability caused
by un-coordinated use of the NVIDIA driver.

AugC and CoSched, in particular, constitute an inter-
esting path toward realizing our goal of making accel-
erators first class citizens, and further improvements to
those schemes can be derived from gathering additional
information about accelerator resources. There is not,
however, a single ‘best’ scheduling policy. Instead, there
is a clear need for diverse policies geared to match differ-
ent system goals and to account for different application
characteristics.

Pegasus scheduling uses global platform knowledge
available at hypervisor level, and its implementation ben-
efits from hypervisor-level efficiencies in terms of re-
source access and control. As a result, it directly ad-
dresses enterprise and cloud computing systems in which
virtualization is prevalent. Yet, clearly, methods like
those in Pegasus can also be realized at OS level, par-
ticularly for the high performance domain where hyper-
visors are not yet in common use. In fact, we are cur-
rently constructing a CUDA interposer library for non-
virtualized, native guest OSes, which we intend to use
to deploy scheduling solutions akin to those realized in
Pegasus at large scale on the Keeneland machine.

7 Related Work

The importance of dealing with the heterogeneity of fu-
ture multi-core platforms is widely recognized. Cy-
press [10] has expressed the design principles for hy-
pervisors actually realized in Pegasus (e.g., partitioning,
localization, and customization), but Pegasus also articu-
lates and evaluates the notion of coordinated scheduling.
Multikernel [4] and Helios [26] change system structures
for multicores, advocating distributed system models and
satellite kernels for processor groups, respectively. In
comparison, Pegasus retains the existing operating sys-
tem stack, then uses virtualization to adapt to diverse un-
derlying hardware, and finally, leverages the federation
approach shown scalable in other contexts to deal with
multiple resource domains.

Prior work on GPU virtualization has used the
OpenGL API [21] or 2D-3D graphics virtualization (Di-
rectX, SVGA) [9]. In comparison, Pegasus operates on

entire computational kernels more readily co-scheduled
with VCPUs running on general purpose CPUs. This
approach to GPU virtualization is outlined in an earlier
workshop paper, termed GViM [13], which also presents
some examples that motivate the need for QoS-aware
scheduling. In comparison, this paper thoroughly evalu-
ates the approach, develops and explores at length the no-
tion of coordinated scheduling and the scheduling meth-
ods we have found suitable for GPGPU use and for
latency- vs. throughput-intensive enterprise codes.

While similar in concept, Pegasus differs from coordi-
nated scheduling at the data center level, in that its de-
terministic methods with predictable behavior are more
appropriate at the fine-grained hypervisor level than the
loosely-coordinated control-theoretic or statistical tech-
niques used in data center control [20]. Pegasus co-
scheduling differs in implementation from traditional
gang scheduling [36] in that (1) it operates across mul-
tiple scheduling domains, i.e., GPU vs. CPU schedul-
ing, without direct control over how each of those do-
mains schedules its resources, and (2) because it limits
the idling of GPUs, by running workloads from other
aVCPUs when a currently scheduled VCPU does not
have any aVCPUs to run. This is appropriate because
Pegasus co-scheduling schemes can afford some skew
between CPU and GPU components, since their aim is
not to solve the traditional locking issue.

Recent efforts like Qilin [23] and predictive runtime
code scheduling [16] both aim to better distribute tasks
across CPUs and GPUs. Such work is complementary
and could be used combined with the runtime schedul-
ing methods of Pegasus. Upcoming hardware support for
accelerator-level contexts, context isolation, and context-
switching [27] may help in terms of load balancing op-
portunities and more importantly, it will help improve
accelerator sharing [9].

8 Conclusions and Future Work

This paper advocates making all of the diverse cores of
heterogeneous manycore systems into first class schedu-
lable entities. The Pegasus virtualization-based approach
for doing so, is to abstract accelerator interfaces through
virtualization and then devise scheduling methods that
coordinate accelerator use with that of general purpose
host cores. The approach is applied to a combined
NVIDIA- and x86-based GPGPU multicore prototype,
enabling multiple guest VMs to efficiently share het-
erogenous platform resources. Evaluations using a large
set of representative GPGPU benchmarks and compu-
tationally intensive web applications result in insights
that include: (1) the need of coordination when sharing
accelerator resources, (2) its critical importance for ap-
plications that frequently interact across the CPU-GPU
boundary, and (3) the need for diverse policies when co-



ordinating the resource management decisions made for
general purpose vs. accelerator cores.

Certain elements of Pegasus remain under develop-
ment and/or are subject of future work. Admission con-
trol methods can help alleviate certain problems with ac-
celerator sharing, such as those caused by insufficient
accelerator resources (e.g., memory). Runtime load bal-
ancing across multiple accelerators would make it easier
to deal with cases in which GPU codes do not perform
well when sharing accelerator resources. Static profiling
and runtime monitoring could help identify such codes.
There will be some limitations in load balancing, how-
ever, because of the prohibitive costs in moving the large
amounts of memory allocated on completely isolated
GPU resources. This restricts load migration to cases
in which the domain has no or little state on a GPU. As
a result, the first steps in our future work will be to pro-
vide Pegasus scheduling methods with additional options
for accelerator mappings and scheduling, by generalizing
our implementation to use both local and non-local accel-
erators (e.g., when they are connected via high end net-
work links like Infiniband). Despite these shortcomings,
the current implementation of Pegasus not only enables
multiple VMs to efficiently share accelerator resources,
but also achieves considerable performance gains with its
coordination methods.
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